Variable name	Definition	
Optimal yield_WGS	DNA yield ≥ 100 ng	
Optimal yield_WES	DNA yield \geq 50 ng	
Optimal yield_Amplicon based	DNA yield ≥ 10 ng	
NGS		
Optimal DNA purity	A260/280≥1.7	
WGS adequate	DNA yield \geq 100 ng AND A260/280 \geq 1.7	
WES adequate	DNA yield ≥ 50 ng AND A260/280 ≥ 1.7	
amplicon based NGS adequate	DNA yield \geq 10 ng AND A260/280 \geq 1.7	

Supplementary Table 1 Definition of categorical variables

DNA: Deoxyribonucleic acid; NGS: Next generation sequencing; WES: Whole exome sequencing; WGS: Whole genome sequencing.

NGS type	Adequacy rate by needle type		<i>P</i> value
	19G	22G	
WGS	90%	89%	0.92
WES	90%	91%	0.92
Amplicon based NGS	90%	91%	0.92

Supplementary Table 2 Adequacy for next generation sequencing by needle size

G: Gauge; NGS: Next generation sequencing; WES: Whole exome sequencing; WGS: Whole genome sequencing; NGS adequacy: $A260/280 \ge 1.7$ and DNA yield: ≥ 10 ng for targeted amplicon based NGS, ≥ 50 ng for WES, ≥ 100 ng for WGS respectively.