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Abstract
Cancer stem cells (CSCs) are the main cause of tumor growth, invasion, metastasis 
and recurrence. Recently, CSCs have been extensively studied to identify CSC-
specific surface markers as well as signaling pathways that play key roles in CSCs 
self-renewal. The involvement of CSCs in the pathogenesis of gastrointestinal (GI) 
cancers also highlights these cells as a priority target for therapy. The diagnosis, 
prognosis and treatment of GI cancer have always been a focus of attention. 
Therefore, the potential application of CSCs in GI cancers is receiving increasing 
attention. This review summarizes the role of CSCs in GI cancers, focusing on 
esophageal cancer, gastric cancer, liver cancer, colorectal cancer, and pancreatic 
cancer. In addition, we propose CSCs as potential targets and therapeutic 
strategies for the effective treatment of GI cancers, which may provide better 
guidance for clinical treatment of GI cancers.
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Core Tip: This review summarizes the role of cancer stem cells (CSCs) in gastrointestinal (GI) cancers, 
focusing on esophageal cancer, gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer. In 
addition, we propose CSCs as potential targets and therapeutic strategies for the effective treatment of GI 
cancers, which may provide better guidance for clinical treatment of GI cancers.
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INTRODUCTION
Cancer stem cells (CSCs) are small subgroups of undifferentiated cancer cells. CSCs possess an infinite 
self-renewal capability and a set of unique surface biomarkers[1]. Gastrointestinal (GI) cancer is the 
most common major malignancy, and includes esophageal cancer (EC), gastric cancer (GC), liver cancer 
(LC), colorectal cancer (CRC), pancreatic cancer and other related diseases[2]. The incidence of GI 
cancers is high. Recently, a growing number of studies have been conducted on the important role of 
CSCs in GI cancers. Research shows that CSCs are mainly involved in the growth, initiation, 
maintenance, survival, metastasis and recurrence of GI cancer. There are certain limitations in the 
methods of treatment for currently accepted GI cancers, often leading to treatment failure. This is due to 
CSCs resistance to chemotherapy and radiation therapy. In current treatment, CSCs cannot be erased, 
causing metastasis and recurrence of the tumor. Recently, studies have been conducted to clarify the 
signaling pathway which plays a critical role in the specific surface markers of CSCs and the self-
renewal of CSCs. These cell surface markers as well as signaling pathways are potential targets for the 
treatment of GI cancer that provide the environment necessary for tumor growth[3-5]. Thus, certain 
therapies for CSCs will potentially help to eliminate the tumor.

This review aims to summarize the mechanism and treatment of CSCs in GI cancer, and to propose a 
potential target and therapeutic strategy for the treatment of GI cancer.

ROLES OF CSCS IN EC
EC, a common tumor of the digestive tract, causes a majority of cancer deaths[6]. EC includes 
esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). EAC may be 
associated with obesity and ESCC may be associated with drinking and narcotics. Approximately 
300000 people die of EC worldwide every year. The incidence and mortality rates of EC vary from 
country to country[7]. Recently, the relationship between CSCs and the occurrence and development of 
EC has attracted more and more attention. Chen et al[8] discovered that esophageal CSCs activate matrix 
metalloproteinase 9 in EC cells and promotes cancer metastasis by the expression of placental growth 
factor. Moreover, CSCs expressing placental growth factor can promote[9] or suppress tumor 
angiogenesis by stimulating vascular endothelial growth factor[10]. Wang et al[11] found that by acting 
on ATG7-dependent β-catenin, OV6 CSCs can stably promote the progression of ESCC. In addition, 
studies have shown that exosomal O-GlcNAc transferase derived from esophageal CSCs can promote 
the suppression of cancer immunity by increasing programmed death-1 (PD-1) in CD8 T cells[12].

CSCs play a critical role in the treatment of EC. CSCs markers could help to identify the functions of 
CSCs in EC and can be used as targets for the treatment of EC. It was found that CD44, a CSC surface 
marker, can isolate and detect ESCC[13]. In addition, Lu et al[14] found CD133 and CXCR4 markers on 
the surface of ESCC, and the high expression of CD133-CXCR4 may become a marker for forecasting 
poor prognosis in patients with ESCC. Liu et al[15] found that Cripto-1 is a functional marker of CSC-
like cells (CSLCs) and can predict the prognosis of patients with ESCC. In addition, studies have shown 
that MYH9 is a novel esophageal CSC marker and prognostic indicator, which promotes tumorigenesis 
through the PI3K/AKT/mTOR axis[16]. Studies have demonstrated that esophageal CSLCs can resist 
ferroptosis induced cell death through the active HSP27-GPX4 pathway. Hence, targeting HSP27 or 
GPX4 blockade is a promising therapeutic strategy to eradicate CSCs in ESCC[17]. Li et al[18] found that 
exosomal FMR1-AS1 can promote CSLCs homeostasis through TLR7-NFκB-Myc signaling in female EC. 
Song et al[19] analyzed clinical specimens and found that BCL-2 inhibitor AT101 could overcome drug 
resistance by targeting the CSC pathway and had good antitumor activity. In addition, Zarei et al[20] 
found that salinomycin could destabilize the low-pathway sensor TAZ in CSLCS and reduce the 
viability of esophageal CSLCs. Studies have shown that TRPV2 can maintain the growth of CSCs, and 
its specific inhibitor tranilast may be used as a targeted therapeutic agent for ESCC[21]. STAT3 and miR-
181b activate each other via the CYLD pathway, thereby regulating the proliferation of esophageal 
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CSLCs[22]. Metformin can inhibit EC cell growth and sensitize EC cells to the cytotoxic effects of 5-FU 
by targeting components of CSCs and mTOR[23].

CSCs play an important role in the development, progress and future treatment of EC, but the 
associated research is inadequate, and the underlying mechanisms have not been fully explored. 
Therefore, more studies are needed to determine the mechanism and support the corresponding 
conclusions.

ROLES OF CSCS IN GC
GC is a malignant tumor derived from gastric mucosal epithelium. Most GCs are early adenocar-
cinomas with no apparent symptoms and are easily overlooked[24]. GC is the main cause of global 
cancer deaths. The treatment of GC involves surgery in combination with chemotherapy and 
radiotherapy, but the prognosis of terminal GC is still poor[25]. Over the past decade there is increasing 
evidence to show that CSCs have a significant role in GC development.

The concept that CSCs cause GC and may lead to invasion, metastasis, and treatment resistance has 
profound implications for anticancer therapy. Takaishi et al[26] implanted gastric CSCs (GCSCs) in the 
skin of immunodeficient mice, and a few weeks later observed that these GCSCs showed strong 
tumorigenic ability. Yang screened out GCSCs with serum-free medium, and found that these GCSCs 
had high tumorigenesis ability in nude mice, and high expression of GCSCs surface markers OCT4 and 
SOX2[27]. E-cadherin is a vital adhesion molecule, and its expression is closely related to the degree of 
cell adhesion[28]. Studies have found that the expression of E-cadherin in GCSCs is down-regulated, 
resulting in a decrease in the adhesion of tumor cells; thus, GCSCs are highly aggressive and easily 
metastasize to local lymph nodes or distant metastasis[29]. CSC Lgr5+ can promote the growth and 
proliferation potential of GC[30]. In addition, CSCs may maintain their viability through autophagy[31].

Identifying and targeting CSCs play a vital role in the treatment of GC. Chemotoxicity-induced 
exosomal lncFERO can regulate ferroptosis and stemness in GCSCs. Therefore, chemotherapy targeting 
the lncFERO/hnRNPA1/SCD1 axis could be an implicit strategy for CSCs-based GC therapy[32]. In 
addition, microRNA (miR)-375 can trigger ferroptosis by targeting SLC7A11, thereby attenuating the 
stemness of GCSCs[33]. CBX7 was found to positively regulate the stem-like characteristics of GC cells 
by inhibiting p16 and activating the AKT-NF-κB-miR-21 pathway[34]. Sezer et al[35] found that 
lymphatic metastasis-associated TBL1XR1 promotes the metastasis of gastric CSLCs by sensitizing 
ERK1/2-SOX2 signaling. Huang et al[36] found that SIRT1 inhibits both chemoresistance and cancer 
stemness in GC by launching a positive feedback loop of AMPK/FOXO3. The m6A methyltransferase 
METTL3 was found to promote oxaliplatin resistance in CD133+ GCSCs by improving PARP1 mRNA 
stability to increase base excision repair pathway activity[37]. Celastrus orbiculatus ethyl acetate extract 
can prevent GC growth by limiting the stemness of GCSCs by changing PDCD4 and EIF3H expression
[38]. Methionine has been found to inhibit autophagy in GCSCs by promoting RAB37 methylation and 
phosphorylation. Therefore, supplementation with methionine γ-lyase can induce autophagy in GCSCs 
and inhibit tumor growth[36].

The role of CSCs in growth, metastasis, treatment and prognosis of GC is increasingly important. In 
the past few years, an increasing number of studies have been conducted on the mechanism of action of 
CSCs against GC and to offer promising targets and therapeutic tactics for GC treatment. Many 
treatments targeting CSCs have been developed, but there are limits to CSCs targeting therapy. It affects 
normal stem cells and causes tissue renewal problems. For example, Lgr5 is a marker associated with 
common stem cells in gastric tissue. mTORC1 can maintain self-renewal of the Lgr5 population, 
preventing cell differentiation and causing gastric tumorigenesis. However, the use of mTORC1 
inhibitors may cause gastric glandular atrophy due to tissue malfunction, limiting its therapeutic use
[39]. Therefore, more efforts are needed to treat GC based on CSCs.

ROLES OF CSCS IN LC
LC is the third most common cause of cancer associated deaths worldwide. This is due to its high 
recurrence rate, which after normal treatment, can reach 70%. Hepatocellular carcinoma (HCC) is the 
main pathology and causes approximately 80% of LC cases[40]. Liver CSCs (LCSCs) are now known to 
be responsible for HCC growth, metastasis and recurrence, in addition to failure of chemotherapy and 
radiation therapy[41]. These findings indicate that LC therapy kills most of the tumor cells, but cannot 
eliminate LCSCs and treatment can eventually fail as LCSCs survive and generate new tumors. 
Therefore, CSCs theory has provided new findings in the diagnosis, treatment and prevention of LC 
(Table 1).

LCSCs play a vital role in the development, progression, recurrence and drug tolerance of HCC. 
Studies have shown that LCSCs can accelerate tumor growth in primary cancer cells and metastasis of 
secondary tumors, causing the recurrence of HCC[42]. Studies have found that EpCAM-high HCC stem 
cells can promote tumor growth by upregulating CEACAM1 to weaken the capacity of natural killer 
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Table 1 Methods for targeting liver cancer stem cells in the treatment of liver cancer

Ref. Genes/transcription 
factors/protein Inducing way Role

Park et al[43] EpCAM-high HCC stem cells Upregulating CEACAM1 Promoting the growth of LC

Deng et al[44] Histone demethylase JMJD2D Enhancing Sox9 expression Promoting the growth of LC

Yang et al[45] lncARSR Targeting STAT3 signaling Promoting LCSCs expansion

Chen et al[47] 4-PBA Activating β-catenin signaling pathway Promoting the growth of LC

Galizia et al[49] CD133 - Indicator of tumor recurrence

Haraguchi et al
[51]

CD13 - Causing drug resistance of LCSCs

Yang et al[52] OV6 - Causing drug resistance of LCSCs

Wei et al[53] CD44 Regulating PES1 Promoting the growth of LC

Chen et al[55] FOXM1 Reducing the expression of ALDH2 Inducing the apoptosis of LCSCs

Dou et al[56] BC-02 Inhibiting CD13 Eradicate LCSCs

Zhou et al[57] CD133-apt-Dox Targeting CD133-expressing cells Inhibiting the growth of LC

Feng et al[58] MiR-124 - Inhibiting LCSCs self-renewal

Jiang et al[59] MiR-365 Regulating RAC1 pathway Inhibiting the proliferation and invasion of 
HCC cells

Li et al[60] MicroRNA-21 - Inhibiting highly invade LCSCs

Si et al[61] MiR-219 E-cadherin pathway regulates the expansion of LCSCs

Dou et al[62] MicroRNA-6838-5p Down-regulating CBX4 expression and Inactivating 
ERK signaling

Inhibiting self-renewal and metastasis of 
Human LCSCs

Zhang et al[63] MiR-589-5p Inhibiting MAP3K8 Inhibiting the growth of LC

Wang et al[64] HAND2-AS1 - Promoting the growth of LC

Li et al[66] Neuropilin1 The loss of neuropilin1 Inhibiting LCSCs

Wang et al[67] ZBP-89 Inhibiting Notch1 signaling pathway Regulating self-renewal of LCSCs

HCC: Hepatocellular carcinoma; LC: Liver cancer; LCSCs: Liver cancer stem cells.

cells to recognize and kill cancer cells[43]. Histone demethylase JMJD2D can enhance EpCAM and Sox9 
expression to promote the self-renewal of liver CSLCs, promoting tumor growth[44]. Yang et al[45] 
found that lncARSR promoted HCC cell dedifferentiation and LCSCs expansion by targeting STAT3 
signaling. Moreover, LCSCs release exosomes in a RAB27A-dependent manner which can lead to 
resistance to regorafenib in LC cells[46]. Chen et al[47] found that activating the β-catenin signaling 
pathway leads to upregulation of PPAR-α by 4-PBA, which in turn initiates LCSCs and promotes early 
HCC. Cao et al[48] found that RACK1 advances self-renewal and chemoresistance of CSCs in HCC by 
stabilizing nanoparticles.

The biomarkers of LCSCs are important targets in the treatment of LC. CD133 is one of the common 
surface markers of LCSCs, and studies have found that CD133 isolated from HCC cell lines has high 
proliferative and tumorigenic potential; thus, enhanced CD133 expression can also serve as a prognostic 
indicator for survival and tumor recurrence in patients with LC[49]. Yin et al[50] found that aldehyde 
dehydrogenase was expressed in LCSCs and was positively correlated with CD133 expression. CD13 is 
a marker of LCSCs, which has the function of dormancy and slow growth, and is the main reason for 
drug resistance of LCSCs[51]. The LCSCs marker OV6 was found to be chemoresistant, but this was 
reversed when lentivirus-delivered miRNAs targeting β-catenin were stably expressed. Therefore, 
targeting Wnt/β-catenin signaling could be a potential strategy to reverse the drug resistance properties 
of OV6 LCSCs[52]. Wei et al[53] found that CD44 regulated PES1 in LCSCs through miR-105-5p to 
promote tumor growth. Twist2 advances self-renewal of liver CSLCs by changing CD24[54].

LCSCs play a vital role in the treatment of LC. It was found that the transcription factor FOXM1 
inhibits the dryness of LCSCs by reducing the expression of ALDH2, and inhibits proliferation, 
migration, invasion and tumorigenesis, while inducing apoptosis of LCSCs[55]. The CD13 inhibitor BC-
02 can target CD13 and upregulate intracellular reactive oxygen species (ROS) and ROS-induced DNA 
damage to damage LCSCs. Therefore, BC-02 may be a potential therapeutic strategy to eradicate LCSCs 
and overcome chemoresistance in LC[56]. Studies have found that aptamer-based drug delivery agents 
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(CD133-apt-Dox) targeting CD133-expressing cells can impair the self-renewal ability of liver CSLCs 
and inhibit the growth of LC[57]. MiRNAs are important regulators of CSCs therapy in LC. Feng et al
[58] found that forced expression of miR-124 can inhibit LCSCs self-renewal and tumorigenesis. It was 
shown that miR-365 regulated LCSCs through the RAC1 pathway and prevented the proliferation and 
invasion of HCC cells[59]. In addition, miR-21 downregulation can inhibit cell proliferation and highly 
invade LCSCs[60]. Si et al[61] found that miR-219 regulates the expansion of LCSCs through the E-
cadherin pathway. Dou et al[62] showed that miR-6838-5p inhibited self-renewal and metastasis of 
LCSCs by down-regulating CBX4 expression and inhibiting ERK signaling. In addition, miR-589-5p 
inhibited MAP3K8 in HCC and inhibited CD90 CSCs[63]. It was shown that HAND2-AS1 can promote 
self-renewal of LCSCs and drive liver tumorigenesis, providing a potential new target for HCC 
treatment[64]. In addition, tumor-associated macrophages produce interleukin-6 and signal through 
STAT3 to improve the expansion of LCSCs[65]. Li et al[66] found that the loss of neuropilin 1 inhibits the 
LCSC population and blocks metastasis in HCC through epithelial-mesenchymal transition. Wang et al
[67] found that ZBP-89 negatively regulated self-renewal of LCSCs by inhibiting the Notch1 signaling 
pathway.

Traditional HCC treatment mainly targets fast growing and differentiated HCC cells. However, a part 
of the emerging CSCs concept explains the failure of these therapies. The research progress of LCSCs 
has provided a new viewpoint on the possible adhibition in the clinical treatment of LCSCs. Detection of 
LCSCs is useful for predicting postoperative survival of patients. The development of treatment 
strategies for LCSCs may greatly improve the treatment of LC[68].

ROLES OF CSCS IN CRC
CRC is one of the most common cancers and the fourth most frequent cause of cancer death worldwide
[69]. Despite the great progress in surgery and chemotherapy over the past decade, the five year 
survival rate of CRC patients is 50%-65%[70]. In the past few years, an increasing number of studies 
have shown that CSCs are closely associated with the occurrence and development of CRC, which 
provides promising directions for the diagnosis and treatment of CRC (Table 2).

CSCs are the major cause of drug resistance and disease recurrence in CRC. Studies have found that 
Lgr5 CSCs have a vital role in primary and metastatic colon cancer, and can promote tumor growth and 
metastasis[71]. In addition, most colorectal CSCs (CCSCs) express Lgr5 and form distant metastasis, 
which is a major factor driving CRC metastasis[72]. Recent studies have found that human CCSCs can 
give rise to vascular endothelial cells and constitute the vasculature in cancer tissue, which provides a 
new mechanism for tumor angiogenesis in cancer[73]. CD26 CCSCs can lead to CRC metastasis[74]. 
Razi et al[75] found that DCLK1 is a promising CCSC marker that changes tumor progression and 
invasion in a miR-137- and miR-15a-dependent manner. The JAK2/STAT3/CCND2 axis promotes the 
persistence and radioresistance of CRCs, which is the drug resistance mechanism for the continuous 
growth of CSCs after radiotherapy[76]. Liu et al[77] found that Sec62 promotes stemness and chemores-
istance in human CRC by sensitizing the Wnt/β-catenin pathway. Studies have shown that CCSCs 
acquire chemoresistance by the upregulation of F-Box/WD repeat-containing protein 7 and the 
consequent degradation of c-Myc[78]. In addition, PD-L1 can maintain CSCs self-renewal by activating 
the HMGA1-dependent signaling pathway[79]. 5-FU improves the stemness of CRC through p53-
mediated WNT/β-catenin pathway activation[80].

Whereas conventional therapies target proliferating and mature cancer cells, CSCs are mostly 
quiescent and poorly differentiated, so they could easily survive the chemotherapy attack. Therefore, 
novel therapies targeting CSCs are necessary. Chen et al[81] found that phenethyl isothiocyanate inhibits 
CCSCs by suppressing the Wnt/β-catenin pathway. In addition, (-)-Epigallocatechin-3-Gallate can also 
inhibit CCSCs by suppressing the Wnt/β-catenin pathway[82]. Studies have shown that AGR2 is a new 
stem cell marker that is changed by the canonical Wnt/β-catenin pathway in CCSCs and is important 
for stemness maintenance of CCSCs[83]. Jang et al[84] reported that tankyrase inhibitors downregulated 
c-KIT tyrosine kinase and prevented the growth of CD44-positive CCSCs. Liu et al[85] found that PTK6 
interacts with JAK2 and phosphorylates to activate JAK2/STAT3 signaling, which can improve 
stemness and chemoresistance of CRC cells and reverse chemoresistance in CRC. Studies have shown 
that mithramycin A inhibits CRC growth by targeting CSCs[86]. Studies have also found that disruption 
of endolysosome RAB5/7 effectively eliminates CCSCs[87]. PrPC inhibits CSCs properties by 
interacting with c-MET in CRC cells[88].

According to the data accumulated during cancer research, CSCs have become a fundamental cause 
of cancer progression and resistance to treatment. Therefore, it is important to understand the biological, 
functional and clinical significance of CSCs in CRC tolerance in order to develop an effective treatment 
model for CRC patients. However, the practical clinical application of CSCs in CRC is still limited, and 
further studies and efforts are needed for clinical applications.
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Table 2 Methods for targeting colorectal cancer stem cells in the treatment of colorectal cancer

Ref. Genes/transcription 
factors/protein Inducing way Role

Fumagalli et al
[72]

Lgr5 - Promoting the growth of CRC

Cheung et al[74] CD16 - Promoting the growth of CRC

Razi et al[75] DCLK1 MiR-137 and Mir-15a-dependent manner Promoting the growth of CRC

Park et al[76] JAK2/STAT3/CCND2 axis - Causing drug resistance of CCSCs

Liu et al[77] Sec62 Activating the Wnt/β-catenin pathway Causing drug resistance of CCSCs

Izumi et al[78] F-Box/WD repeat-containing protein 
7

- Causing drug resistance of CCSCs

Wei et al[79] PD-L1 Activating HMGA1-dependent Signaling 
pathway

Maintaining CSCs self-renewal

Cho et al[80] 5-FU Activing p53-mediated WNT/β-catenin 
pathway

Promoting the stemness of CRC

Chen et al[81] Phenethyl isothiocyanate Suppressing Wnt/β-catenin pathway Inhibiting CCSCs

Chen et al[82] (-)-Epigallocatechin-3-Gallate Suppressing Wnt/β-catenin pathway Inhibiting CCSCs

Dahal et al[83] AGR2 Regulating Wnt/β-catenin pathway Regulating the stemness maintenance of 
CCSCs

Jang et al[84] Tankyrase inhibitors Downregulating c-KIT tyrosine kinase Inhibiting the growth of CD44-positive 
CCSCs

Liu et al[85] PTK6 interacts with JAK2 Activating JAK2/STAT3 signaling Reversing chemoresistance in CRC

Quarni et al[86] Mitramycin A - Inhibiting CCSCs

Lim et al[88] PrPC Interacting with c-MET Inhibiting CCSCs

CCSC: Colorectal cancer stem cells; CRC: Colorectal cancer; CSCs: Cancer stem cells.

Figure 1 The roles of cancer stem cells in gastrointestinal cancers. CSC: Cancer stem cells; LCSC: Liver cancer stem cells.
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ROLES OF CSCS IN PANCREATIC CANCER
Pancreatic cancer is one of the most deadly human malignancies, the survival rate is 8% and the 
prognosis is the worst of all GI tumors[89-91]. It is now the fourth most common cause of cancer 
associated deaths worldwide. The tumorigenesis capacity of pancreatic cancer cells is different, and the 
proliferation and growth of pancreatic cancer are highly dependent on the presence of a limited 
subgroup of pancreatic cancer cells, called pancreatic CSCs (PCSCs)[92]. The concept of CSCs is 
recognized and some of the identified molecules and signaling pathways are associated with cancer 
diagnosis and treatment.

PCSCs contribute to the development and invasion of pancreatic cancer. It has been found that PCSC 
CD9 can promote the plasma membrane localization of glutamine transporter ASCT2, improving 
glutamine uptake in pancreatic cancer cells and promoting tumor growth[93]. Leng et al[94] found that 
SIRT1 coordinating with CRL4B can regulate PCSCs to promote tumorigenesis. In PCSCs, PAF1 
interacts with DDX3 and PHF5A to regulate the expression of NANOG and other genes that regulate 
stemness. Therefore, knockdown of PAF1 reduced the development and progression ability of in situ 
pancreatic cancer in mice and its CSCs[95]. Bao et al[96] found that pancreatic CSLCs can promote tumor 
formation and rapid tumor growth by activating FoxQ1. Masuo et al[97] demonstrated that SNAIL2 can 
promote the tumorigenicity and chemotherapy resistance of PCSCs by regulating IGFBP2.

PCSCs have an important role in pancreatic cancer therapy. Studies have shown that PCSCs have 
longer telomeres and higher telomerase activity than tumor cells, which is associated with the 
expression of pluripotent genes (Nanog, Sox2, Oct3/4). Therefore, telomerase inhibition can lead to 
apoptosis of PCSCs, which is a suitable therapeutic approach against CSCs, especially in pancreatic 
cancer[98]. Yang et al[99] found that miR-873 could inhibit self-renewal and proliferation of PCSCs by 
blocking the PLEK2-dependent PI3K/AKT pathway. In addition, miR-205 can resensitize gemcitabine-
resistant pancreatic cancer cells to gemcitabine and act as a tumor suppressor miRNA[100]. JNK is 
required for PCSCs self-renewal and tumor initiation, as well as its survivin expression. Dexamethasone 
was found to induce the expression of MKP-1 through glucocorticoid receptor activation, thereby 
inactivating JNK and inhibiting tumor growth[101]. Urtasun et al[102] showed that simultaneous 
blockade of IGF-IR and EGFR/Her-2 using NVP-AEW541 and lapatinib could inhibit drug resistance in 
pancreatic cancer.

The role of CSCs in pancreatic cancer metastasis, recurrence and treatment has become very 
important. A large number of studies have allowed tumor stem cell markers to achieve metastasis, 
progression and resistance of pancreatic cancer cells, which provide potential targets and therapeutic 
directions for the treatment of pancreatic cancer. Nevertheless, there are still few practical clinical 
applications of PCSCs, and further studies are needed for clinical applications.

Recently, many studies have shown that CSCs are closely related to tumor recurrence, metastasis and 
drug resistance, especially in EC, GC, LC, CRC and pancreatic cancer (Figure 1). CSCs can be identified 
by a series of surface markers, including OV6, EpCAM, CD13, CD133 and CD44. Surface markers of 
CSCs are useful for cancer diagnosis and prognosis prediction. In addition, CSCs regulate tumor 
progression and therapeutic resistance through multiple mechanisms, including Notch, Wnt/β-catenin 
and other signaling pathways. There are many other elements that make CSC impressions, such as the 
tumor microenvironment and non-coding RNAs, including miRNAs and long non-coding RNAs.

CONCLUSION
Currently, we have developed a combination of chemotherapeutic agents and small molecule inhibitors 
to reduce CSCs and effectively treat GI cancer. As CSCs have many similar features to stem cells, the 
molecular signal pathway or mechanism that distinguishes the two cell subgroups is still unknown. 
Therefore, stem cell therapy is limited, and it is necessary to further study the biological difference 
between normal stem cells and LCSCs. Research on the therapy of GI cancer with regard to CSCs is still 
at the in vitro and animal experimental stage, and the precise molecular mechanism of CSCs in GI cancer 
requires further study. Therefore, more research is needed to promote the application of CSCs in clinical 
practice.
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