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Abstract
Central nervous system abnormalities in fetuses are fairly common, happening in 
0.1% to 0.2% of live births and in 3% to 6% of stillbirths. So initial detection and 
categorization of fetal Brain abnormalities are critical. Manually detecting and 
segmenting fetal brain magnetic resonance imaging (MRI) could be time-
consuming, and susceptible to interpreter experience. Artificial intelligence (AI) 
algorithms and machine learning approaches have a high potential for assisting in 
the early detection of these problems, improving the diagnosis process and 
follow-up procedures. The use of AI and machine learning techniques in fetal 
brain MRI was the subject of this narrative review paper. Using AI, anatomic fetal 
brain MRI processing has investigated models to predict specific landmarks and 
segmentation automatically. All gestation age weeks (17-38 wk) and different AI 
models (mainly Convolutional Neural Network and U-Net) have been used. Some 
models' accuracy achieved 95% and more. AI could help preprocess and post-
process fetal images and reconstruct images. Also, AI can be used for gestational 
age prediction (with one-week accuracy), fetal brain extraction, fetal brain 
segmentation, and placenta detection. Some fetal brain linear measurements, such 
as Cerebral and Bone Biparietal Diameter, have been suggested. Classification of 
brain pathology was studied using diagonal quadratic discriminates analysis, K-
nearest neighbor, random forest, naive Bayes, and radial basis function neural 
network classifiers. Deep learning methods will become more powerful as more 
large-scale, labeled datasets become available. Having shared fetal brain MRI 
datasets is crucial because there aren not many fetal brain pictures available. Also, 
physicians should be aware of AI's function in fetal brain MRI, particularly 
neuroradiologists, general radiologists, and perinatologists.

https://www.f6publishing.com
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Core Tip: The manual detection and segmentation of fetal brain magnetic resonance imaging (MRI) may 
be time-consuming, and susceptible to interpreter experience. During the past decade, artificial 
intelligence (AI) algorithms, particularly deep learning, have made impressive progress in image 
recognition tasks. A machine learning approach may help detect these problems early and improve the 
diagnosis and follow-up process. This narrative review paper investigates the role of AI and machine 
learning methods in fetal brain MRI.

Citation: Vahedifard F, Adepoju JO, Supanich M, Ai HA, Liu X, Kocak M, Marathu KK, Byrd SE. Review of deep 
learning and artificial intelligence models in fetal brain magnetic resonance imaging. World J Clin Cases 2023; 
11(16): 3725-3735
URL: https://www.wjgnet.com/2307-8960/full/v11/i16/3725.htm
DOI: https://dx.doi.org/10.12998/wjcc.v11.i16.3725

INTRODUCTION
Role of magnetic resonance imaging for fetal brain imaging
Although sonography is the most used imaging and monitoring technique, magnetic resonance imaging 
(MRI) is increasingly employed to assess the fetus. Fetal MRI for detecting brain disorders is commonly 
used with prenatal ultrasound when an anomaly is discovered. Fetal MRI is often requested to research 
further suspected brain abnormalities such as ventriculomegaly, missing corpus callosum, and posterior 
fossa anomalies[1]. MRI allows for a more precise and high-quality prenatal brain examination in high-
risk fetuses referred from ultrasound. MR images of fetuses can also assist clinicians in detecting brain 
abnormalities at an early stage of development.

One of the most significant advantages of MRI is visualizing the entire brain, even in late pregnancy. 
Also, orthogonal sections can be obtained more easily, because the operator can manipulate the 
direction of spatial encoding gradients at will. With the advancement of rapid MR techniques and MRI 
software, particularly the half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence, fetal 
MR could be conducted without sedation, leading to an increase in the use of this imaging tool[1].

LIMITATION OF "FETAL BRAIN MRI"
Three significant problems with fetal MR imaging affect the quality of the images and the accuracy of 
the anatomical lines. Throughout the second and third trimesters, gyrification and sulcation transform 
the fetus's previously smooth surface into a highly complicated structure. Second, the changes in water 
content that come with active myelination cause MR imaging signal intensity and contrast to varying 
greatly between gestational age (GAs)[2,3]. Third, fetal MRI acquisitions are more susceptible to 
imaging artifacts. For example, the images often present motion artifacts caused by the mother's 
breathing and the fetus's jerky movements. Standing wave artifacts can happen when the conductivity 
of amniotic fluid and tissues differs. Also, the large field of view (FOV) for the mother's abdomen and 
the short scan time can lead to lower image resolution, and, thus partial volume effects, in which a 
single image voxel may contain different types of tissues[4]. These MR artifacts are more prevalent in 
the imaging of fetuses than those of adults. All three of these problems make it difficult to segment the 
brain of a fetus on MR images[5].

Deep learning for medical imaging
Deep learning (DL) uses simple interconnected units to extract patterns from data and solve complex 
problems, specifically on image-related tasks. They have matched or surpassed human performance, 
although the generally accepted performance for detection is that artificial intelligence (AI+) Radiology 
is better than either alone. Radiology is a natural application area for DL because it relies on extracting 
useful information from images. Research in this area has grown rapidly in recent years[6].

The incidence of central nervous system abnormalities in fetuses is rather high, ranging from 0.1% to 
0.2% in live births and from 3% to 6% in stillbirths[7]. As a result, initial detection and categorization are 
critical. There is strong potential for machine learning approaches to assist in the early detection of these 
problems and enhance the diagnosis and follow-up processes.

https://www.wjgnet.com/2307-8960/full/v11/i16/3725.htm
https://dx.doi.org/10.12998/wjcc.v11.i16.3725
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Inclusion criteria: We examined how machine learning and AI can be applied to fetal brain MRI. The 
databases for the search were MEDLINE using PubMed, SCOPUS, Web of Science, EMBASE, Cochrane 
Library, and Google Scholar, up to June 2022. First, we searched keywords including "artificial 
intelligence", "machine learning", "deep learning", "Fetal brain", "Fetal MRI", as well as "AI + Fetal", "AI 
+ Brain MRI", and "AI or ML + neonates".

Exclusion criteria: Only relevant AI and Machine Learning methods models in fetal brain MRI were 
included after the second evaluation. Animal and Basic science studies were also excluded.

We divided models into several applications (Table 1).

AI for preprocessing of fetal images
Obtaining high-quality images of a continually moving subject is one of the most challenging tasks in 
prenatal imaging. Motion correction and preprocessing technologies can help. Usually, qualified techno-
logists must change acquisition planes frequently and re-acquire sequences. The process is time-
consuming and subject to operator variation. Pregnant women who are immobile in a claustrophobic 
MRI scanner for an extended period may find it difficult. Correction for fetal motion during automated 
and precise initialization could lead to higher-quality images and potentially a shorter scan time[8].

Gagoski et al[9] developed a Convolutional Neural Network (CNN) that automatically detects 
artifacts on T2 HASTE sequences during fetal MRI to improve image quality[9]. The CNN would 
evaluate each image slice within an acquisition, and only the slices with the lowest image quality ratings 
would be re-acquired at the end of the study. This could reduce exam time by only re-acquiring motion-
degraded images rather than the entire image stack. Ten healthy pregnant women underwent 73 
modified HASTE sequence imaging acquisitions throughout the study. Their real-time implementation 
of the IQA CNN resulted in an accuracy of 85.2% and an area under the curve of 0.899.

Through DL, Xu et al[10] developed a system that detects fetal landmarks automatically[10] (with 15 
important locations including upper and lower limb joints, eyes, and bladder) to estimate fetal posture, 
provide movement tracking of the fetus, and maybe automate the readjustment of acquisition 
parameters. In less than 1 second, their model could predict fetal posture to the nearest 4.5 mm.

Using a preprocessing AI system (SVRnet), Hou et al[11] propose a conceptual method of correcting 
fetal motion by generating 2-dimensional T2-weighted single slices in varying orientations[11]. They 
achieved a spatial prediction error of 7 mm on simulated data for moving fetuses around 20 wk of 
gestation and produced qualitatively enhanced reconstructions. The model is able to solve the 2D/3D 
registration initialization problem in a broad and computationally efficient way, making it appropriate 
for usage in real-time settings.

Using DL, Singh et al[12] have developed a method for predicting fetal motion directly from acquired 
images in real-time using anatomical information derived from slice sequences. They trained a recurrent 
neural network made up of spatial and temporal encoder-decoders to infer motion parameters. They 
proposed a neural network approach that could predict fetal motion within 8 degrees and estimate 
motion-corrupted slices to schedule subsequent collections[12].

AI for post-processing of fetal images
Post-processing steps associated with image enhancement and correction include noise reduction, image 
artifact correction, and image resolution enhancement. DL has recently demonstrated promising results 
in various research fields, including image enhancement for MRI. Recent publications have de-
monstrated promising results using DL for MR image enhancement[13].

The lack of normative brain templates and the limited possibilities for automated preprocessing make 
a quantitative analysis of prenatal brain MRI difficult.

Previously, 3D reconstructions of the embryonic brain required manual delineation of 2D pictures. Li 
et al[14] developed a U-net-based brain extraction algorithm to autonomously segment normal fetal 
brains using a 5-mm slice fetal MRI in three planes[14]. An average Dice coefficient of 0.97 across all 
three planes was obtained after spending two to three seconds segmenting each fetal brain.

Ebner et al[15] used CNN to automate fetal brain reconstruction through localization, segmentation, 
and super-resolution[15]. Automated segmentation was comparable to manual segmentation performed 
by technologists and radiologists on healthy and diseased fetal brains.

AI for reconstruction of fetal imaging
Single-Shot Fast Spin Echo is one example of a fast imaging technique used to acquire low-resolution 
stacks of 2D slices, which can effectively halt fetal movement. Poor 3D image quality and motion 
artifacts often emerge from stacks of slices acquired at different times due to patient movement between 
procedures. For assessment and quantification of fetal brain, from multiple low-resolution stacks 
acquired from different perspectives, it is desirable to reconstruct a single high-resolution, isotropic 
volume of fetal brain[12]. The brain must currently be located and extracted from many stacks of 2D 
slices using time-consuming reconstruction techniques that frequently include user participation.
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Table 1 Different applications for artificial intelligence for fetal brain magnetic resonance imaging

Classification Different applications

A AI for prepro-
cessing of fetal 
images

(1) Automatic image quality assessment to detect artifacts on T2 HASTE sequences during fetal MRI (Gagoski et al
[9]); (2) Automatically detects fetal landmarks (using 15 key points–upper limb and lower limb joints, eyes, and 
bladder) (Xu et al[10]); (3) Fetal motion correction (Hou et al[11]); and (4) Predicting fetal motion directly from 
acquired images in real-time (Singh et al[12])

B AI for post-
processing of 
fetal images

(1) U-net-based brain extraction algorithm to autonomously segment normal fetal brains (Li et al[14]); and (2) 
Localize, segment, and perform super-resolution reconstruction for the automated fetal brain (Ebner et al[15])

C AI for 
reconstruction of 
fetal imaging

Fully automatic framework for fetal brain reconstruction, consisting of four stages (Ebner et al[15])

D AI for gestational 
age prediction

(1) Predicting GA from fetal brain MRI acquired after the first trimester, which was compared to a BPD (Kojita et al
[19]); and (2) An end-to-end, attention-guided deep learning model that predicts GA (Shen et al[20])

E AI for fetal brain 
extraction

(1) The automatic brain extraction method for fetal MRI employs a multi-stage 2D U-Net with deep supervision (DS 
U-net) (Lou et al[24]); and (2) A brain mask for an MRI stack using a two-phase random forest classifier and one 
estimated high-order Markov random field solution (Ison et al[23])

F AI for fetal brain 
segmentation

(1) U-net-like convolutional neural network (Auto-net) (Mohseni Salehi et al[29]); CNN using images with synthet-
ically induced intensity inhomogeneity as data augmentation (Mohseni Salehi et al[29]); (2) Pipeline for performing 
ICV localization, ICV segmentation, and super-resolution reconstruction in fetal MR data in a sequential manner 
(Tourbier et al[32]); (3) Automatic method for fetal brain segmentation from MRI data, and a normal volumetric 
growth chart based on a large cohort (Link et al[33]); (4) Fetal Brain magnetic resonance Acquisition Numerical 
phantom, to simulate various realistic magnetic resonance images of the fetal brain and its class labels (de Dumast et 
al[34]); (5) SIMOU-Net, a hybrid network for fetal brain segmentation. Was inspired by the original U-Net fused with 
the HED network (Rampun et al[36]); and (6) Incorporating spatial and channel dimensions-based multi-scale feature 
information extractors into its encoding-decoding framework (Long et al[35])

G AI for fetal brain 
linear 
measurement

(1) AI for the anteroposterior (A/P) diameter of the pons and the A/P diameter and S/I height of the vermis (Deng et 
al[40]); and (2) A fully automatic method that computes three key fetal brain MRI parameters: 1-CBD, 2-BBD, 3-TCD 
(Avisdris et al[41])

H AI for automat-
ically localizing 
fetal anatomy

Automatically localizing fetal anatomy, notably the brain, using extracted superpixels (Alansary et al[42])

I AI for classi-
fication of brain 
pathology

Classification using several machine-learning classifiers, including DQDA, K-NN, random forest, naive Bayes, and 
RBF neural network classifiers (Attallah et al[45])

J AI for placenta 
detection

(1) U-net-based CNN to separate the uterus and placenta (Shahedi et al[51]); and (2) automatic placenta segmentation 
by deep learning on different MRI sequences (Specktor-Fadida et al[52])

K AI for functional 
fetal brain MRI

An auto-masking model with fMRI preprocessing stages from existing software (Rutherford et al[53])

AI: Artificial intelligence; MRI: Magnetic resonance imaging; RBF: Radial basis function; K-NN: K-nearest neighbor; DQDA: Diagonal quadratic 
discriminant analysis; CBD: Cerebral Biparietal Diameter; BBD: Bone Biparietal Diameter; TCD: Trans Cerebellum Diameter; S/I: Superior/inferior; 
SIMOU-Net: Single-Input Multi-Output U-Net; HED: Holistically nested edge detection; BPD: Biparietal diameter; ICV: Intracranial volume.

A fully automatic framework for embryonic brain reconstruction was proposed by Ebner et al[15]. A 
fully automatic framework for embryonic brain reconstruction was proposed by Ebner et al[15]: (1) Fetal 
brain localization using a CNN and coarse segmentation; (2) Another CNN with a multi-scale loss 
function was used to fine-tune the segmentation; (3) Super-resolution reconstruction with a single 
parameter that is resilient to outliers; and (4) High-resolution visualization in conventional anatomical 
space, ideal for diseased brains, is performed quickly and automatically.

For validation, images of fetuses with normal and ventriculomegaly with open spina bifida were 
used. Each step of their suggested pipeline outperforms cutting-edge methods in comparisons for 
segmentation and reconstruction, including quality ratings by experienced readers. The results of this 
technique's reconstruction were on par with those of labor-intensive, manually segmented brains, 
suggesting that automatic fetal brain reconstruction studies might be applied in clinical settings.

AI for gestational age prediction
The GA assessment of the first trimester is more accurate than dating in the late stages of pregnancy 
because, as gestation advances, fetal ultrasound measurements have a greater absolute error[16]. MRI 
provides unparalleled visibility of the fetal brain, enabling the establishment of age-specific 
morphologic milestones[17,18]. Determining age-appropriate brain development remains challenging 
due to the fetal brain's continuous development, image quality variation, and motion artifacts' frequent 
occurrence. DL algorithms offer a powerful way of estimating fetal age from highly variable imaging 
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data, with moderate to high prediction accuracy to detect GA.
An AI model was created by Kojita et al[19] for predicting GA from fetal brain imaging after the first 

trimester. T2-weighted images from 126 training and 29 validation exams were used to train the DL 
model. They compared the model with Biparietal Diameter (BPD) model. Compared to the BPD 
prediction, the model prediction has a significant Lin's concordance correlation coefficient (value = 
0.964). As GA grew, the model's and BPD's predictions diverged more from the reference. According to 
their model, first-trimester ultrasounds can predict GA with a maximum deviation of 1.66 wk, which 
falls within the range of sonography-based age predictions in the second trimester (7-14 d). After 28 wk 
of gestation (over 21 d of gestation), these predictions were superior to those based on ultrasound. From 
2nd and 3rd trimester fetal brain MR, their DL accurately predicted GA[19]. DL-based prediction of GA 
could benefit prenatal treatment in underserved first-trimester pregnancies.

Shen et al[20] presented an attention-guided DL model that predicts GA. The CNN was trained using 
741 normal fetal brains[20]. The recommended regression technique was a machine-enabled automated 
tool that could better characterize in-utero neurodevelopment and guide real-time GA estimate beyond 
the first trimester. (concordance correlation coefficient = 0.970, and mean absolute error = 6.7 d).

AI for fetal brain extraction
Prenatal brain MRI reconstruction begins with fetal brain extraction. It is impossible to employ adult 
brain extraction techniques for fetuses because maternal tissue is present in the MRI of fetal brain tissue. 
Brain extraction can be difficult due to changes in the size and shape of the developing brain, motion 
artifacts from fetal movement within the uterus, and substantial variance in the FOV.

Quantitative brain development analysis requires automatic brain tissue segmentation, generally 
preceded by intracranial volume segmentation (ICV)[21]. The extraction of fetal brains can, however, be 
difficult because of sparsely collected imaging stacks. Automated segmentation of brain structures is 
necessary since semi-automatic segmentation is time-consuming and laborious. A variety of strategies 
exist for automated segmentation or brain extraction from fetal MRIs[22]. The automated brain 
extraction and oriented positioning of pediatric exams are not yet as developed as for adult exams. They 
remain challenging given the wide FOV associated with fetal MRI and the large volume of images from 
repeated acquisitions that are often necessary. As a result, research has been limited to small-scale 
studies[23].

Lou et al[24] proposed a multistage 2D U-Net with deep supervision technique for automatic brain 
extraction from fetal MRI (DS U-net)[24]. They started by defining a 3D bounding box for localizing the 
site of the brain using a crude segmentation generated from DS U-net. The deep supervision loss 
function trains the DS U-net to improve its discrimination capacity. A second DS U-net was then 
utilized to focus on the extracted region, resulting in sharper segmentation. Advanced segmentation 
was used to acquire the final segmentation findings. They used 80 training datasets and 43 testing stacks 
to validate the suggested approach. With an average Dice coefficient of 91.69%, the experimental results 
confirmed the precision and robustness of their method, surpassing previously proposed strategies.

As opposed to adult studies, automatic brain extraction and orientation are still a challenge in raw 
fetal MRI volumes with a wide FOV. Ison et al[23] provided a methodology for automatic fetal brain 
extraction and orientation that overcomes this constraint[23]. A two-phase random forest classifier and a 
high-order Markov random field solution were used to produce a brain mask for an MRI stack. The 
extraction that resulted had a detection rate of 98%. Furthermore, when tested on cases ranging in 
gestational weeks from 18 to 30.2, the mean sensitivity was 88%, indicating a solid pipeline to 
automated fetal MRI processing procedures.

AI for fetal brain segmentation
Fetal MRI volumetric and morphologic analysis begins with brain segmentation. Because manual 
segmentation is expensive and time-consuming, automated segmentation could greatly simplify the 
process. Due to increased intensity inhomogeneity and spontaneous fetal movements, automated brain 
tissue segmentation in prenatal MRI is difficult.

Different segmentation strategies for automatic delineation of the fetal brain MRI have recently been 
proposed. Unsupervised, parametric, classification, atlas fusion, and deformable models were used to 
evaluate the segmentation. In the segmentation procedure, brain atlases are frequently used as training 
data[25].

However, difficulties with image capture, continuous brain development, and the shortage of 
imaging data obstruct this segmentation process. Makropoulos et al's paper showed the various 
segmentation approaches for each category[25]. The use of CNN has gained popularity in recent years 
for the automatic segmentation of medical images[26]. There have been several studies that investigated 
different CNN architectures in order to segment brain tissue using adult MRIs[27,28].

Also, Mohseni Salehi et al[29] suggested a DL segmentation method that is iterative and employs a U-
net-like CNN (Auto-net)[29]. ITK-SNAP software segmented the fetal brain from a manual bounding 
box[30].

According to Khalili et al[31], segmentation can be done with a CNN using images augmented with 
synthetically induced intensity inhomogeneity rather than with approaches that estimate the bias field 
prior to segmenting[31]. First, a CNN was used to extract the intracranial volume of the patient. The 
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collected volume is then segmented into seven brain tissue classes using another CNN with an 
analogous architecture. A mixture of linear gradients with random offsets and orientations was added 
to the training data to make a method that worked with slices showing intensity inhomogeneity 
artifacts. When generated intensity inhomogeneity artifacts enriched the training data, mean squared 
displacement dropped from 0.78 mm to 0.37 mm and DC overall tissue classifications improved from 
0.77 to 0.88. These findings showed that the suggested method might replace or augment preprocessing 
processes such as bias field adjustments, resulting in better segmentation performance.

Several methods first find the location of the brain in the fetal ICV, which is different from methods 
that do ICV segmentation without brain localization. Using fetal MR data, Tourbier et al[32] propose a 
pipeline for localizing, segmenting, and reconstructing ICVs sequentially[32]. Using age as prior 
knowledge, this strategy segmented the ICV in fetal MRI. Template-based approaches have the 
disadvantage of being computationally more expensive than machine learning algorithms. Significant 
segmentation errors are likely to occur if representative age-matched templates are unavailable. 
Furthermore, brain localization approaches require the ICV to be segmented afterward to separate brain 
tissue classes.

Link et al[33] developed a semi-automatic fetal brain segmentation approach utilizing MRI data and a 
normal volumetric growth chart based on a large cohort to generate an automatic method for clinical 
use. They used MRI data from 199 usually growing fetuses to construct the Seeded Region Growing 
algorithm (18-37 wk)[33]. Their model strongly correlates (r2 = 0.9183, P = 0.001) with manual 
segmentation. Differences in mean volume and volume overlap were 4.77 and 18.13 percent, 
respectively. They described their procedure as quick, accurate, repeatable, and user-independent.

Automated multi-tissue fetal brain segmentation algorithms are being developed to assess the human 
brain's development in utero quantitatively. However, the available annotated fetal brain datasets have 
limitations in number and heterogeneity, hampering domain adaptation strategies for robust 
segmentation. FaBiAN, a Fetal Brain Magnetic Resonance Acquisition Numerical Phantom, was utilized 
by de Dumast et al[34] to recreate a variety of accurate magnetic resonance images of the fetal brain and 
its class labels[34]. They showed that these multiple synthetic annotated data, created for free and then 
reconstructed using the target super-resolution technique, can be utilized to successfully domain adapt 
a DL method that segments seven brain tissues. The segmentation accuracy was improved overall, 
particularly in the cortical gray matter, white matter, cerebellum, deep gray matter, and brain stem.

Example of segmentation: "Expanding the Unet model": U-Net is a popular CNN used for segmenting 
MR images due to its precision. While U-net often performs well, its performance is often limited by the 
subtle differences between segments in MRI, as well as the loss of information caused by downsampling 
and upsampling. One method for solving this problem is to employ a spatial and channel dimension-
based framework. The encoding part enhances multi-scale features, while the decoding part recovers 
the corresponding localization to a higher resolution layer[35]. There have been two proposed methods 
for extracting multiscale features: Multi-branch pooling and multi-branch dense prediction. A multi-
branch output structure is created in the decoding section by combining dense nearby prediction 
features at various scales.

The hybrid network known as the Single-Input Multi-Output U-Net (SIMOU-Net) was also 
developed by Rampun et al[36] for the purpose of fetal brain segmentation. The original U-Net and the 
holistically nested edge detection network were the basis for this model[36].

SIMOU-Net has a deeper architecture than U-Net, and takes account of all side outputs. In a similar 
way, it acts as a neural ensemble. By combining outputs from a single network instead of averaging the 
results of several independent models, their approach reduced the variance and generalization error of 
predictions. 200 normal fetal brains with over 11500 2D pictures revealed Dice 94.2 ± 5.9% In 54 
abnormal cases , the suggested network achieved Dice of 91.2 ± 6.8%.

A meaningful interpretation of the fetal brain requires brain segmentation. It is essential to accurately 
segment brain tissue on an MRI for diagnosis, therapy planning, and neurologic state monitoring.

AI for fetal brain linear measurement
Routine clinical assessment of fetal brain development using MRI is mainly subjective, with a few 
biometric linear measurements. Based on MRI reference growth centiles of normal-developing fetuses, 
these measurements are compared to those taken in the United States.

Taking manual measurements requires clinician training, takes a lot of time, and is subject to inter-
observer and intraobserver variability[37]. In some cases, small measurement errors can pose a risk of 
misdiagnosis or mismanagement of pregnancy[38]. Several technical challenges involve developing 
automatic methods for calculating biometric fetal brain measurements. First, the method should follow 
the guidelines and steps explicitly and implicitly performed by the clinician, including localizing the 
fetal brain in the MRI volume, selecting the reference slice, and identifying the anatomical landmarks 
and measurements. MRI scanning planes, resolutions, contrasts, and procedures, fetal brain pathology, 
and motion artifacts all result in inaccurate observations and observer variability[39].

Deng et al[40] at Rush University made a new AI model to find two important fetal biometric 
parameters from fetal brain MRI: The anteroposterior (A/P) diameter of the pons and the A/P diameter 
and superior/inferior height of the vermis[40]. There were 55 fetal brains MRI patients and about 100 
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sets of sagittal T2-weighted HASTE brain images. They made U-net DL model to find six landmarks: 
Two on the pons and four on the vermis. The steps that were taken were: (1) Image selection and 
labeling by a neuroradiologist; (2) Dataset augmentation (adding noise, rotating, flipping); (3) Region of 
interest (ROI) masking and use of the transforming process (Gaussian distribution); and (4) Using the U-
net model to find landmarks (Pons-vermis). Both landmarks (2 for pons and 4 for vermis) and four-fold 
cross-validations were taught to the models simultaneously.

They devised two models of 4-fold cross-validation (by GA weeks or by mixed weeks), and mixed 
cross-validation was the most accurate (98 and for pons and 88% for vermis). The most accurate 
measurements were: 100% for the pons; 97.5% for the A/P diameter of the vermis; and 95% for the 
height of the vermis.

The average accuracy was 98% for Pons1, 99% for Pons2, 98% for Vermis1, 84% for Vermis2, 86% for 
Hvermis1, and 86% for Hvermis2.

In 2021, Avisdris et al[41] studied a new deep-learning method to automatically compute linear 
measurements in a fetal brain MRI volume based on landmark detection and estimates[41]. This was a 
fully automatic method that computes three key fetal brain MRI parameters: (1) Cerebral Biparietal 
Diameter (CBD); (2) Bone Biparietal Diameter (BBD); and (3) Trans Cerebellum Diameter (TCD). 
Compared to the measurement of an expert (fetal radiologist), their model has yielded a 95% confidence 
interval agreement of 3.70 mm for CBD, 2.20 mm for BBD, and 2.40 mm for TCD. The authors proposed 
that their model surpasses previously published results and suggested that this model to be directly 
applied to other linear measurements.

Their approach consists of four steps: (1) Detection of the ROI with a two-stage anisotropic U-Net; (2) 
Selection of reference with a CNN; (3) Computation of linear measurement according to landmarks 
detection with a novel CNN, FMLNet; and (4) Finally, estimation the reliability with a Gaussian Mixture 
Model. Their model requires fetal brain structure segmentation and is considered robust based on 
reliability estimation.

Using deep neural networks, Avisdris et al[39] proposed an algorithm that performs automatic linear 
measurements of the fetal brain[39]. The outputs were the measurement values and reference slices in 
which the measurements were computed. The method, which follows the manual measurements 
principle, consisted of five stages: (1) Computation of a ROI that includes the fetal brain with an 
anisotropic 3D U-Net classifier; (2) CNN reference slice selection; (3) Multiclass U-Net classifier slice-
wise fetal brain structures segmentation; (4) Fetal brain mid-sagittal line computation; and (5) 
Measurements. Testing findings on 214 volumes for CBD, BBD, and TCD measures showed a mean L1 
difference of 1.55 mm, 1.45 mm, and 1.23 mm, respectively. This automatic method for computing 
biometric linear measurements of the fetal brain from MR imaging achieved human-level performance, 
and the authors suggested that it can help assess fetal brain biometry in normal and pathological cases.

AI for automatically localizing fetal anatomy
In MR scans, the location and orientation of the fetus are subject to substantial change. In contrast to 
standard adult MRI, where the anatomical planes are aligned, these fetal images are difficult to analyze 
and interpret.

By automatically locating fetal anatomy, including the brain, Alansary et al[42] addresed the problem. 
Using dense scale-invariant feature transform descriptors, they first extracted superpixels, then 
computed histograms for each superpixel[42]. To discriminate between the brain and non-brain 
superpixels, they built a superpixel graph and trained a random forest classifier. The framework was 
tested on 55 MR datasets aged 20 to 38 wk. Using 5-fold cross-validation, the proposed technique was 
found to have a brain detection accuracy rate of 94.55%

AI for classification of brain pathology
Recently, machine learning techniques have been used to detect fetal brain MRI images and identify and 
classify these abnormalities[43]. In most early studies of fetal brain images, anomalies were detected by 
segmenting the images. Only a few studies have examined how machine-learning approaches detect 
prenatal brain abnormalities[25,44].

A new scheme for organizing fetal brains was proposed by Attallah et al[45]. For this purpose, she 
used several machine-learning classifiers, including K-nearest neighbor (KNN), random forest, and 
naive Bayes. Bagging and AdaBoosting ensemble models were created using random forest, naive 
Bayes, and RBF network classifiers. They suggested that this new technique may successfully identify 
and classify various abnormalities in MRI images of the fetal brain of different GAs. KNN classifiers had 
the highest classification accuracy (95.6%) and area under receiving operational characteristics (99%). 
Ensemble classifiers improved model outcomes[45].

Using DL methods, Attallah et al[45] suggested a four-step approach for the early diagnosis of 
Embryonic Neurodevelopmental Disorders (END): Learn-from-previous-experience, deep feature 
extraction, feature reduction, and classification. The study included three experiments. An end-to-end 
DL strategy was employed in the first experiment with three CNN structures. As part of experiment II, 
deep features were extracted from each DCNN's FC layer in order to train support vector machine 
(SVM) classifiers one by one. These features were reduced using Principal Component Analysis and 
used to generate various SVM classifiers. Deep features were put together to see how they affected 
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classification performance, and the best features were selected to improve performance. The proposed 
framework results showed that it could find ENDs with high accuracy. The authors suggested that their 
algorithm can assist neuroradiologists in diagnosing fetal brain abnormality, facilitating treatment 
planning, and follow-up as well as informing the parents of the embryonic conditions. This can reduce 
the occurrence of NDs among newborns, improving the quality of health management[46].

AI for placenta detection
The placenta plays an important role in maternal-fetal health, but limited non-invasive tools exist to 
assess placental function in utero[47]. Placental segmentation has been shown to assist in detecting and 
quantifying pregnancy-related problems such as placenta accreta and growth restriction[48].

MRI is an alternative imaging modality that can be used to quantify placental development in healthy 
and growth-restricted pregnancies. High-risk pregnancies have shown anomalies in placenta volume, 
thickness, and intensity on 2-dimensional MRIs[49,50].

Shahedi et al[51] differentiate the uterus and placenta in 100 pregnant women using a U-net-based 
CNN with DICE coefficients of 0.92 and 0.82[51]. Only a few user inputs (reportedly seven 'clicks') are 
required to obtain the output placental size and placement.

In a recent study, Specktor-Fadida et al[52] presented a method for segmenting the placenta using DL 
on different sequences of MRI[52]. Specktor-Fadida et al[52] developed a DL technique for automatically 
segmenting placentas on various MRI sequences. Placenta ROI detection and segmentation networks 
use a new loss function based on a contour and a soft Dice. On 21 test cases and only 16 training cases, 
the experimental Dice score for the FIESTA sequence was 0.847. Switching to the TRUFI sequence 
improved Dice scores on 15 test cases to 0.78. Sequence transfer bootstrapping and contour Dice loss 
and self-training led to the best placenta segmentation results ever.

AI for functional fetal brain MRI
Prenatal brain development can now be assessed using resting-state functional MRI (rs-fMRI). Despite 
this approach's rapid and widespread adoption, we lack neuroimaging processing pipelines to handle 
this data format's unique issues. The most challenging part of the processing is isolating the fetal brain 
from the rest of the tissue in hundreds of moving 3D brain volumes. Rutherford et al[53] trained a CNN 
using 1241 manually traced fetal fMRI It performed well on two held-out test sets from different MR 
scanners and patients. They also added fMRI preprocessing stages from existing software to the auto-
masking model[53].

MRI 3T vs 1.5 T in fetal MRI: Using 3-T magnets has improved access to advanced imaging sequences 
and anatomical evaluation in fetal MRI. 3.0-T MRIs have better spatial resolution and signal-to-noise 
ratios than 1.5-T ones. However, when it comes to fetal MRI, there are concerns about the possibility of 
the fetus receiving greater radiofrequency energy. Most fetal 1.5- and 3.0-T MRIs had similar energy 
metrics. Three-dimensional steady-state free precession and two-dimensional T1-weighted spoiled 
gradient echo may need modifications to reduce patient-delivered energy.

LIMITATIONS OF "AI IN FETAL MRI"
DL-based AI tools require many annotated training datasets to produce acceptably accurate results, 
which often have limited availability in terms of the dataset. In addition, it is difficult to constantly 
update models as training data increase and practice patterns change. Among the many DL-based fetal 
MRI algorithms that have been proposed and are under current development, it remains to be 
determined which ones possess the potential for widespread adoption. Thus, radiologists should 
collaborate with AI researchers to understand the latest methods and provide clinical feedback to guide 
future development. AI tools will likely act as powerful image-processing and decision-support tools to 
improve radiologists' accuracy and efficiency, not their replacement.

DL methods are anticipated to become more powerful as more large-scale datasets with labels are 
available. Fetal brain MRI datasets that share data, such as the FeTA Dataset, are crucial due to the 
scarcity of fetal brain images[54]. Automatic multi-tissue fetal brain segmentation algorithms are needed 
to facilitate this analysis, requiring open datasets of segmented fetal brains.

CONCLUSION
Several DL-based strategies have been developed to predict specific landmarks and perform automatic 
segmentation in fetal MRI applications. All gestation age weeks after first trimester[16-37] where 
various AI models have been suggested (most notably CNN and U-Net). Some models have achieved an 
accuracy of 95% or higher. AI tools could be deployed in the preprocessing, the post-processing, as well 
as the reconstruction of fetal MR images. It is also possible to predict GA with an accuracy of one week, 
extract the fetal brain, segment the fetal brain, and detect the placenta with the help of AI algorithms. 
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Some linear measurements of the fetal brain have been proposed; these include the cerebellar diameter, 
the transcerebellar diameter, and the BPD.

As a result of the limited number of publicly available fetal brain MRI data sets, the development of 
AI algorithms is challenging at this point, but the developments so far have been promising. Research in 
these fields will continue to rely on the further development of public data sets and the collaborative 
efforts between physicians (specifically neuroradiologists, general radiologists, and perinatologists) and 
researchers in this field.
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