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Abstract
BACKGROUND 
Bone marrow-derived mesenchymal stem cells (MSCs) show podocyte-protective 
effects in chronic kidney disease. Calycosin (CA), a phytoestrogen, is isolated 
from Astragalus membranaceus with a kidney-tonifying effect. CA preconditioning 
enhances the protective effect of MSCs against renal fibrosis in mice with 
unilateral ureteral occlusion. However, the protective effect and underlying 
mechanism of CA-pretreated MSCs (MSCsCA) on podocytes in adriamycin (ADR)-
induced focal segmental glomerulosclerosis (FSGS) mice remain unclear.

AIM 
To investigate whether CA enhances the role of MSCs in protecting against 
podocyte injury induced by ADR and the possible mechanism involved.

https://www.f6publishing.com
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METHODS 
ADR was used to induce FSGS in mice, and MSCs, CA, or MSCsCA were administered to mice. 
Their protective effect and possible mechanism of action on podocytes were observed by Western 
blot, immunohistochemistry, immunofluorescence, and real-time polymerase chain reaction. In 
vitro, ADR was used to stimulate mouse podocytes (MPC5) to induce injury, and the supernatants 
from MSC-, CA-, or MSCsCA-treated cells were collected to observe their protective effects on 
podocytes. Subsequently, the apoptosis of podocytes was detected in vivo and in vitro by Western 
blot, TUNEL assay, and immunofluorescence. Overexpression of Smad3, which is involved in 
apoptosis, was then induced to evaluate whether the MSCsCA-mediated podocyte protective effect 
is associated with Smad3 inhibition in MPC5 cells.

RESULTS 
CA-pretreated MSCs enhanced the protective effect of MSCs against podocyte injury and the 
ability to inhibit podocyte apoptosis in ADR-induced FSGS mice and MPC5 cells. Expression of p-
Smad3 was upregulated in mice with ADR-induced FSGS and MPC5 cells, which was reversed by 
MSCCA treatment more significantly than by MSCs or CA alone. When Smad3 was overexpressed 
in MPC5 cells, MSCsCA could not fulfill their potential to inhibit podocyte apoptosis.

CONCLUSION 
MSCsCA enhance the protection of MSCs against ADR-induced podocyte apoptosis. The 
underlying mechanism may be related to MSCsCA-targeted inhibition of p-Smad3 in podocytes.

Key Words: Calycosin; Mesenchymal stem cells; Focal segmental glomerulosclerosis; Apoptosis; Smad3

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Calycosin (CA)-pretreated mesenchymal stem cells (MSCsCA) enhanced the protective effect of 
MSCs against adriamycin (ADR)-induced podocyte injury in vitro and in vivo by inhibiting apoptosis, 
accompanied by more reversal of the upregulated expression of p-Smad3 after ADR induction. Smad3 
overexpression eliminated the inhibitory effect of MSCsCA on podocyte apoptosis, suggesting that MSCsCA 
inhibit podocyte apoptosis by targeting p-Smad3. These results broaden our understanding of the potential 
of MSCs pretreated with herbal extract and provide new theories for possible therapeutic mechanisms for 
ADR-induced focal segmental glomerulosclerosis.

Citation: Hu QD, Tan RZ, Zou YX, Li JC, Fan JM, Kantawong F, Wang L. Synergism of calycosin and bone 
marrow-derived mesenchymal stem cells to combat podocyte apoptosis to alleviate adriamycin-induced focal 
segmental glomerulosclerosis. World J Stem Cells 2023; 15(6): 617-631
URL: https://www.wjgnet.com/1948-0210/full/v15/i6/617.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i6.617

INTRODUCTION
Focal segmental glomerulosclerosis (FSGS) is the most common primary glomerulopathy and the 
dominant pathological type of chronic kidney disease (CKD)[1,2], associated with high albuminuria and 
end-stage renal disease (ESRD) with a poor prognosis[3,4]. FSGS is linked with injury or even depletion 
of podocytes, manifested by the gradual disappearance of podocyte-specific markers such as podocin[5,
6]. As podocyte injury plays a critical role in FSGS progression, protecting podocytes is promising to 
prevent ESRD in patients with FSGS[7].

Apoptosis of podocytes has been widely studied in previous studies[8-10], and inhibition of podocyte 
apoptosis has been reported to delay FSGS progression[11]. Podocyte apoptosis is characterized by the 
loss of Bcl-2 protein and the increase of Bax protein[12,13]. Recently, Smad3-related pathways have been 
reported to be involved in podocyte apoptosis[14]. However, the underlying mechanism remains 
unclear, and no specific effective treatment can prevent podocyte apoptosis.

Mesenchymal stem cells (MSCs) are multipotent stem cells that exhibit varying potential for 
multilineage cell differentiation as well as the capacity for self-renewal[15]. Therefore, using MSCs to 
treat various diseases is worth exploring[16-18]. MSCs treat diabetic nephropathy by protecting 
podocytes[19-21], and bone marrow-derived MSC (BMSC) transplantation can attenuate FSGS 
progression in a rat model of FSGS[22,23]. In addition, the protective effects of MSC derivatives or 
exosomes on podocytes have also been reported[24,25]. However, the application of MSCs is also 

https://www.wjgnet.com/1948-0210/full/v15/i6/617.htm
https://dx.doi.org/10.4252/wjsc.v15.i6.617
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limited. For instance, MSCs may be losing their biological function after being isolated and cultured for 
a long time. After infusion, MSCs must face harsh environments with various stressors such as inflam-
mation, hypoxia, high acidity, or reduced energy reserve. On this account, preconditioning, genetic 
modification, and delivering MSCs with biomaterials have been developed[26]. Thus, it is important to 
explore how MSCs can overcome adverse microenvironments to enhance their therapeutic benefits.

Calycosin (CA), a phytoestrogen with a kidney-tonifying effect, is isolated from Astragalus 
membranaceus. It has been reported that CA is the top component of potentially active compounds for 
the treatment of nephrotic syndrome[27]. Moreover, CA has also been found to be an active ingredient 
in the treatment of adriamycin (ADR) nephropathy using network pharmacology combined with 
transcriptomics[28]. Our research group used Ca-pretreated MSCs to treat mice with unilateral ureteral 
occlusion (UUO) and found that they improved renal fibrosis and inhibited necrosis of renal tubular 
epithelial cells more than normal MSCs did[29]. However, the protective effect on podocytes and their 
mechanism of action remain unknown.

In rodents, ADR can induce rapid podocyte injury characterized by massive foot process effacement 
and glomerulosclerosis, which serves as a model of FSGS[30,31]. In the present study, we compared the 
antiapoptotic efficacy of CA-pretreated MSCs (MSCsCA) to that of MSCs or CA in a mouse model of 
FSGS induced with ADR and in vitro, as well as the possible mechanisms of action involved.

MATERIALS AND METHODS
Animal experiments
The C57BL/6 mice utilized in this investigation were bought from Chengdu Dashuo Biotechnology Co., 
LTD. in China. They were male, 8 wk old, and weighed 22-25 g. All the mice were kept in a specific 
disease-free space with 12 h of light and dark cycles and had free access to water and food. The mice 
were randomly divided into the following six groups: Normal control group; ADR injection group; 
ADR with Dulbecco’s modified Eagle’s medium (DMEM; 200 μL) injection (ADR + DMEM); ADR with 
200 μL MSCs (106 cells/mL) (ADR + MSCs); ADR with 200 μg/mL CA (106 cells/mL) (ADR + CA); and 
ADR with MSCs preconditioned with 200 μg/mL CA (106 cells/mL) (ADR + MSCsCA). For ADR-
induced FSGS, the mice were injected with 10 mg/kg ADR (Shenzhen Main Luck Pharmaceuticals Inc.) 
via the tail vein. The normal control mice were injected with vehicle (saline). MSCs, CA dissolved in 
DMEM, and MSCsCA were injected via the tail vein 4 wk after ADR injection once weekly. Since both 
MSCs and CA are soluble in DMEM, mice in the ADR + DMEM group were given an equal volume of 
normal DMEM as the solvent control. All mice were killed at 8 wk after ADR injection. All animal 
experiments were carried out in accordance with the recommendations of the Institute of Nutrition and 
Health’s Animal Care and Utilization Committee, and were approved by the Southwest Medical 
University’s Animal Ethics Committee (No. 20210223-024).

Isolation of MSCs
As previously described, MSCs were isolated from the leg bone marrow of male C57BL/6 mice aged 6-8 
wk[32]. Briefly, cells were grown at 37 °C and 5% CO2 in DMEM Petri plates with 10% fetal bovine 
serum (FBS, Gibco, Carlsbad, CA, United States), 1 g/L glucose, and 1% penicillin-streptomycin 
(Beyotime, Shanghai, China). At 24 h, the medium was changed to remove the non-adherent cells. The 
MSCs were passed once 90% confluence was reached. As described previously[26], anti-CD29 (102205; 
Biolegend), anti-CD90 (ab24904; Abcam, Cambridge, MA, United States), and anti-CD11b (101205; 
Biolegend, San Diego, CA, United States) antibodies were used to label MSCs, and the purity of the 
MSCs was analyzed using a BD FACSVerse (Becton, Dickinson and Company, Franklin Lakes, NJ, 
United States).

CA pretreatment of MSCs
CA (≥ 94% purity) was purchased from Cayman Chemical Company (Ann Arbor, MI, United States). 
The stoste used for MSC pretreatment included full medium and CA (200 g/mL) dissolved in DMEM as 
previously described[29]. After incubation for 72 h, the MSCs and MSCsCA were injected into mice, and 
the supernatants were used to treat mouse podocytes (MPC5) for 48 h.

Urine albumin-creatinine ratio
Random urine samples were collected, followed by determining the albumin concentration with a 
mouse albumin ELISA kit (Sangon Biotech, China) and creatinine with a creatinine assay kit (Nanjing 
Jiancheng, Jiangsu Province, China). The urine albumin-creatinine ratio was calculated by dividing the 
urine albumin concentration by the creatinine concentration.

Hematoxylin-eosin staining
Mouse kidneys were fixed in 4% neutral formaldehyde followed by paraffin embedding. The paraffin 
sections were rehydrated in a graded ethanol series and subjected to hematoxylin-eosin (HE) staining 
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(Beyotime, Shanghai, China) as previously described[33].

Immunohistochemistry
The sections underwent antigen retrieval in 0.01 M citric acid solution (pH 6.0) in a microwave oven for 
10 min after deparaffinization and rehydration. To inhibit endogenous peroxidase, the slices were 
incubated with 5% H2O2 for 15 min. The sections were then further blocked for 30 min at room 
temperature with 5% bovine serum albumin (BSA), and then incubated overnight at 4 °C with anti-p-
Smad3 antibody (C25A9; Cell Signaling Technology, Danvers, MA, United States). The slices were 
treated with secondary antibodies for 1 h at room temperature following PBS washing. Images were 
recorded with a light microscope (Eclipse 80i; Nikon, Japan).

TUNEL assay
TUNEL assay was used to evaluate podocyte apoptosis in the kidneys after ADR induction, as 
previously described[34]. After the mouse kidneys were fixed in 4% neutral formaldehyde followed by 
paraffin embedding, the paraffin sections were used for staining. Podocyte apoptosis was measured 
through the utilization of a One-step TUNEL In Situ Apoptosis Assay Kit (AF488; Green) (E-CK-A321; 
Elabscience, China). The images were captured with an orthotopic fluorescence microscope (DM4B; 
Leica, Germany).

Cell culture and treatment
Prof. San-Tao Ou (Department of Nephrology, Southwest Medical University) kindly donated the 
conditionally immortalized MPC5 cell line. The cells were grown at 33 °C in RPMI-1640 medium 
supplemented with 10 IU/mL recombinant interferon and 10% FBS. After the MPC5 cells were cultured 
at 37 °C for 14 d to induce differentiation, the differentiated cells were treated with different concen-
trations of ADR for 24 h. A Smad3 overexpressing MPC5 cell line was established with the Smad3 
overexpression plasmid pcDNA3.1-Smad3 which was described previously[35].

Immunofluorescence
After treatment, the MPC5 cells or frozen sections were fixed with 4% paraformaldehyde for 10 min, 
permeabilized with 0.25% Triton X-100 (in PBS), and blocked with 5% BSA for immunofluorescence. 
After that, the frozen sections or MPC5 cells were incubated with anti-podocin (BA0290; Boster, Wuhan, 
China), anti-Bax (AF0120; Affinity, United States), and anti-Bcl-2 (AF6139; Affinity) antibodies at 4 °C 
overnight. After washing with PBS, the frozen sections or MPC5 cells were incubated with Alexa Fluor 
594 Donkey anti-mouse/rabbit secondary antibodies (Thermo Fisher Scientific, Waltham, MA, United 
States) for 1 h at room temperature. The nuclei were stained with 4¢,6-diamidino-2-phenylindole 
(Sangon Biotech). Images were captured with a fluorescence microscope (EVOS FL Auto, Thermo Fisher 
Scientific, United States).

Real-time quantitative polymerase chain reaction
TRIzol reagent (Invitrogen, Carlsbad, CA, United States) was used to separate total RNA from cells or 
kidneys, and a Reverse Transcription Kit (Promega, Madison, WI, United States) was used to obtain 
cDNA. Using Master Mixture (TaKaRa, Dalian, China) and LightCycler 480 equipment (Roche, 
Germany), the podocin mRNA expression levels were assessed. The internal control used was GAPDH. 
Using 2-ΔΔCt analysis, the relative expression of the target gene was standardized to GAPDH expression. 
The primer sequences used are shown in Supplementary Table 1.

Western blot analysis
Using RIPA lysis buffer (Beyotime), total proteins were extracted from kidneys or cells. The protein 
concentrations were determined with a BCA protein assay kit (Beyotime). Proteins were transferred 
onto polyvinylidene difluoride membranes after being separated by 12% SDS-PAGE. Then the 
membranes were incubated with anti-podocin (BA0290; Boster), anti-p-Smad3 (C25A9; Cell Signaling 
Technology), anti-Smad3 (C67H9; Cell Signaling Technology), anti-Bax (AF0120; Affinity), anti-Bcl-2 
(AF6139; Affinity), and anti-GAPDH (AB0037; Abways, China) antibodies at 4°C overnight. The 
membranes were treated with the relevant secondary antibody at room temperature for 1 h after being 
rinsed with Tris-buffered saline with Tween (TBST). The protein bands were depicted with an enhanced 
ECL kit (Boster) and a chemiluminescence imaging system (ChemiScope 6200; Clinx, China). ImageJ 
software (NIH, Bethesda, MD, United States) was used to calculate the band gray intensity.

Apoptosis detection by flow cytometry
The cells were digested with trypsin-EDTA solution (C0201; Beyotime), collected in a centrifuge tube, 
and centrifuged for 5 min at 1800 rpm, and the supernatant was discarded. The cells were resuspended 
with 1 mL precooled PBS. According to the Annexin V-FITC/PI Apoptosis Detection kit’s instructions 
(Vazyme, Nanjing, China), the prepared propyl iodide staining solution was added to the cells and 
incubated at 37 °C for 10 min without light. Red fluorescence was detected at an excitation wavelength 
of 488 mm and light scattering was detected with a BD FACSVerse (Becton, Dickinson).

https://f6publishing.blob.core.windows.net/3fe0b1e1-0ed9-4681-a1b8-b52e6f0e3976/WJSC-15-617-supplementary-material.pdf
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Statistical analysis
The mean and standard deviation of the data are displayed. Using SPSS 21.0 software (IBM Corp., 
Chicago, IL, United States), one-way analysis of variance was used to compare the data. P < 0.05 was 
considered statistically significant.

RESULTS
MSCsCA enhance the protective effect of MSCs on podocyte injury in ADR-induced FSGS
To investigate whether CA pretreatment enhances the protective effect of MSCs on podocyte injury in 
ADR-induced FSGS mice, we treated mice with MSCs, CA, or MSCsCA. Due to MSCs, CA, and MSCsCA 
being dissolved in DMEM, a DMEM group was separately designed as the solvent control group to 
exclude the protective effect of DMEM-containing nutrients on podocytes (Figure 1A). The identification 
of MSCs, the chemical formula of CA, and its appropriate concentration can be found in our previous 
research[26]. Eight weeks after ADR injection, increased urinary albumin excretion was detected in 
ADR-treated mice, and MSCsCA reversed this more significantly than MSCs or CA alone. However, there 
was no difference between the DMEM group and the model group (Figure 1B). HE staining showed that 
glomerular atrophy and FSGS were prominent in the ADR and DMEM groups, but MSCsCA treatment 
reversed this change and was superior to MSCs and CA treatment (Figure 1C). Immunostaining, real-
time quantitative polymerase chain reaction (RT-PCR), and Western blot analysis showed that the 
expression of podocin, a podocyte-specific marker, was significantly reduced in the ADR and DMEM 
groups; however, MSCsCA treatment best restored its expression (Figure 1D-G). The above evidence 
indicated that MSCsCA treatment better protected podocytes from ADR injury in FSGS mice.

The capacity of MSCs to prevent apoptosis in ADR-induced FSGS is improved by CA pretreatment
To determine the effect of MSCsCA on renal cell apoptosis, Western blot and TUNEL assay were 
performed. Expression of Bax protein as an apoptosis marker was significantly increased in the ADR 
and DMEM groups compared with the normal group, and their levels were reduced after MSC or CA 
treatment (Figure 2A and B). MSCsCA reduced ADR-induced Bax protein expression more significantly 
than MSCs or CA. The changing trend in Bcl-2 protein expression was opposite to that of Bax in each 
group (Figure 2A and C). TUNEL assay showed an obvious increase in the brightness and range of 
green fluorescence in the ADR group, which was weakened by MSCsCA treatment (Figure 2D). The 
above data indicated that MSCsCA enhanced the antiapoptotic effect of MSCs on kidney cells of ADR-
induced FSGS mice.

P-Smad3 is upregulated in podocytes of ADR-induced FSGS mice and reversed after MSCsCA 
treatment
It has been reported that the Smad3 protein is involved in podocyte apoptosis[13], so we examined the 
effect of MSCsCA on the expression of Smad3 and p-Smad3 proteins. As expected, we found by Western 
blot and immunohistochemistry that MSCsCA treatment significantly reversed the upregulation of p-
Smad3 in ADR-treated mouse renal podocytes, and the effect was superior to that of MSC and CA 
treatment (Figure 3). The above evidence suggested that p-Smad3 was involved in the ADR-induced 
injury of podocytes and the recovery after MSCsCA treatment.

The capacity of MSCs to reduce the injury caused by ADR-stimulated MPC5 cells in vitro is improved 
by CA pretreatment
To further demonstrate the enhanced potential of MSCsCA to protect podocytes from ADR injury, we 
cultured and treated MPC5 cells. Immunofluorescence staining, RT-PCR, and Western blot showed that 
1.2 μM/mL ADR decreased the expression of podocin mRNA and protein, while the expression was 
significantly promoted by treatment with conditioned medium from MSCs, or CA. Importantly, 
conditioned medium from MSCsCA further elevated the expression of podocin mRNA and protein 
compared with the ADR group (Figure 4). Therefore, MSCsCA protected podocytes from ADR injury 
better than MSCs or CA alone.

CA pretreatment enhances the ability of MSCs to inhibit apoptosis in ADR-stimulated MPC5 cells
Immunofluorescence staining and Western blot demonstrated that the protein level of Bax was 
upregulated in MPC5 cells treated with ADR, but its expression was significantly inhibited by treatment 
with a conditioned medium from MSCs, or CA alone (Figure 5). The effects of the conditioned medium 
from MSCsCA were more pronounced. The trend for Bcl-2 protein expression was the opposite. These 
findings revealed that Ca-pretreated MSCs enhanced the inhibitory effect of MSCs on podocyte 
apoptosis.
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Figure 1 Mesenchymal stem cells pretreated with calycosin enhance the protective effect of mesenchymal stem cells on podocyte injury 
in adriamycin-induced focal segmental glomerulosclerosis mice. A: Mice received adriamycin injections through the tail vein at week 6, were injected 
with Dulbecco’s modified eagle medium, mesenchymal stem cells (MSCs), calycosin (CA), and MSCs pretreated with CA (MSCsCA) at week 10, respectively, and 
were sacrificed at week 14; B: Levels of albumin/creatinine ratio in urine (n = 6), aP < 0.05, bP < 0.001; C: Pathological changes in the kidneys of mice examined by 
hematoxylin-eosin staining. Typical glomeruli are indicated by black boxes and enlarged to the next row. Bar = 50 μm; D: Changes in the kidneys of mice examined by 
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podocin immunofluorescence staining. Glomeruli are indicated by white boxes and enlarged to the next row. Bar = 50 μm; E: Relative (podocin/GAPDH) mRNA 
expression analyzed by real-time quantitative polymerase chain reaction. Data are expressed as the mean ± SD (n = 6). aP < 0.05, bP < 0.001; F and G: Relative 
protein levels (podocin/GAPDH) detected by Western blot. Data are expressed as the mean ± SD (n = 3). aP < 0.05, bP < 0.001. NC: Normal control; ADR: 
Adriamycin; DMEM: Dulbecco’s modified eagle medium; MSCs: Mesenchymal stem cells; CA: Calycosin; MSCsCA: Mesenchymal stem cells pretreated with calycosin.

Figure 2 Calycosin pretreatment enhances the ability of mesenchymal stem cells to inhibit apoptosis in adriamycin-induced focal 
segmental glomerulosclerosis mice. A-C: Protein expression levels of Bax and Bcl-2 in the kidneys measured by Western blot and normalized to control. Data 
are expressed as the mean ± SD (n = 3). aP < 0.05, bP < 0.001; D: Apoptosis in each group as determined by TUNEL assay. Bar = 50 μm. NC: Normal control; ADR: 
Adriamycin; MSCs: Mesenchymal stem cells; CA: Calycosin; MSCsCA: Mesenchymal stem cells pretreated with calycosin.

MSCsCA improve ADR-induced podocyte apoptosis by targeting p-Smad3 expression
As described previously, p-Smad3 is involved in ADR-induced FSGS mice. Further experiments were 
conducted to explore whether MSCsCA inhibit podocyte apoptosis by targeting p-Smad3. Expression of 
p-Smad3 in MPC5 cells was markedly elevated by ADR stimulation and subsequently significantly 
downregulated by MSCsCA treatment. The upregulated expression of p-Smad3 was also reversed by 
MSCs or CA, but to a lesser extent (Figure 6A and B). When Smad3 accompanied by p-Smad3 in MPC5 
cells was overexpressed, Bax protein expression was upregulated but Bcl-2 protein expression was 
downregulated. Meanwhile, MSCsCA treatment no longer showed a protective effect against ADR-
induced podocyte apoptosis compared with the group without Smad3 overexpression (Figure 6C-G). 
Flow cytometry was used to detect apoptosis, and it was found that the apoptosis rate of MPC5 cells 
was significantly increased after ADR induction compared with the normal group, and MSCsCA reversed 
this increase. However, after overexpression of Smad3, the apoptosis rate was increased compared with 
the normal group and the model group regardless of whether MSCsCA were administered. This means 
that treatment with MSCsCA did not improve the apoptosis of podocytes with Smad3 overexpression 
(Figure 6H-L). The graphical abstract (created in BioRender.com) is shown in Figure 6M. The above 
evidence suggested that MSCsCA improved podocyte apoptosis through targeted inhibition of p-Smad3.
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Figure 3 P-Smad3 is upregulated in podocytes of adriamycin-induced focal segmental glomerulosclerosis mice and reversed after 
treatment with mesenchymal stem cells pretreated with calycosin. A and B: Protein expression levels of p-Smad3 and Smad3 detected using Western 
blot and normalized to control. Data are expressed as the mean ± SD (n = 3). bP < 0.001; C: Immunohistochemistry staining for p-Smad3 in mouse glomeruli, which 
are indicated by red boxes and enlarged to the next row. Bar = 50 μm. NC: Normal control; ADR: Adriamycin; MSCs: Mesenchymal stem cells; CA: Calycosin; 
MSCsCA: Mesenchymal stem cells pretreated with calycosin.

DISCUSSION
Increasing evidence has shown that MSCs and derived extracellular vesicles can ameliorate renal deteri-
oration in CKD[36,37]. However, because of a hostile environment with several stresses such as inflam-
mation, high acidity, hypoxia, and depleted energy reserve, few MSCs survive in vivo after intravenous 
or direct local injection[38-40]. The question of whether preconditioning BMSCs can shield them from 
the damaging environment at the injury site and enhance their functionality has drawn more attention 
in research. These pretreatments involve the application of supportive materials, cytokines, and natural 
or synthetic chemicals[41-44]. Researchers have been investigating the preconditioning of MSCs using 
Chinese herbal medicine or its primary monomer components. There is evidence that resveratrol-
pretreated adipose-derived stem cells show increased regenerative capacity in a rat model of diabetes-
induced cardiomyopathy[45]. Further research has shown that preconditioning MSCs obtained from 
umbilical cords with the active ingredient of a Chinese herb, triptolide, primed MSCs to be activated 
and inhibited the immune response before being delivered[46]. Previous results from our group have 
also shown that CA-pretreated BMSCs show enhanced antifibrotic activity in UUO mice and inhibit 
tubular epithelial cell necrosis[29]. Therefore, we investigated whether MSCsCA enhance podocyte 
protection. Similar to previous studies, MSCsCA protected podocytes from ADR-induced apoptosis, both 
in vivo and in vitro, which means that they may be a potential therapy for FSGS.

CA is the top ingredient in Astragalus, which is one of the most widely used herbs in Chinese 
medicine to treat kidney disease[47-49]. The effectiveness of CA in CKD has been confirmed in recent 
years[50-52]. However, whether its combination with MSCs can enhance their efficacy in treating CKD 
remains to be seen. It has been shown that human MSCs are stimulated to enhance osteogenesis and 
mineralization by CA-7-O-glucoside obtained from Astragalus membranaceus[53]. This result gave us 
confidence and we also identified the advantages and potential of MSCsCA in the treatment of FSGS, 
which extends the application of CA and MSCs in FSGS.

The main pathological manifestations of FSGS are podocyte injury and the therapeutic options for 
FSGS are limited, requiring further research and exploration. Therefore, we explored the mechanism of 
podocyte injury. Podocyte apoptosis is the main type of podocyte injury, which includes podocyte 
dedifferentiation, autophagy, and epithelial-mesenchymal transformation[54]. Podocyte apoptosis is 
caused by many factors, including drugs, infection, and immune disorders[55-57]. ADR is one of the 
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Figure 4 Calycosin pretreatment enhances the ability of mesenchymal stem cells to ameliorate the injury of adriamycin-stimulated 
mouse podocyte cells in vitro. A: Podocin expression in each group as determined by immunofluorescence staining. Bar = 50 μm; B: Analysis of relative 
(podocin/GAPDH) mRNA expression by real-time quantitative polymerase chain reaction. Data are expressed as the mean ± SD (n = 3). bP < 0.001; C and D: Protein 
expression levels of podocin detected by Western blot and normalized to control. Data are expressed as the mean ± SD (n = 3). aP < 0.05, bP < 0.001. NC: Normal 
control; ADR: Adriamycin; MSCs: Mesenchymal stem cells; CA: Calycosin; MSCsCA: Mesenchymal stem cells pretreated with calycosin.

drugs that causes podocyte apoptosis due to its pharmacological action and distribution[58]. However, 
how to protect podocytes from ADR needs further research to find more effective targeted drugs.

Smad3 is involved in apoptosis, and podocytes are no exception[59,60]. Activation of Smad3 and its 
related pathway proteins induces podocyte apoptosis[14,61]. The canonical Smad pathway is a crucial 
regulatory route in the etiology of renal inflammation and fibrosis, according to earlier research. Major 
receptor-associated Smads include Smad2 and Smad3. Mad-homology 2 domain is located at the C-
terminus of Smad3, which has unique phosphorylation sites and sequences triggered by transforming 
growth factor (TGF)-β1. The binding of phosphorylated Smad3 to TGF-β1 signaling receptors promotes 
fibrosis[62]. Our study showed that MSCsCA significantly downregulated the expression of p-Smad3 in 
the kidneys of ADR-induced FSGS mice and ADR-induced MPC5 cells. Subsequently, we overexpressed 
Smad3 in MPC5 cells and confirmed that MSCsCA targeted inhibition of p-Smad3 to improve podocyte 
apoptosis using rescue experiments. This provides a new possible mechanism and target for preventing 
podocyte apoptosis by MSCsCA.

There were some limitations to this study. Although we have revealed that MSCsCA improve 
podocytes apoptosis by inhibiting Smad3 signaling, this study still has certain limitations and the 
underlying mechanism deserves further exploration. First, how does MSCsCA intervene in the Smad3 
signal, directly or indirectly? We speculate that CA may activate the anti-apoptotic activity of MSCs or 
affect the differentiation, mobilization, and homing of BMSCs as well as the abundance of beneficial 
exosomes, but the main mechanism and responsible factors are still unknown. Second, it is still unclear 
which molecules in podocytes respond to the activity of MSCs and what are their potential relationship 
with Smad3. Understanding these mechanisms is conducive in expanding the application of MSCsCA, 
and we will answer each question one by one in future research.
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Figure 5 Calycosin pretreatment enhances the ability of mesenchymal stem cells to inhibit apoptosis in adriamycin-stimulated mouse 
podocyte cells. A and B: Expression of Bax and Bcl-2 in each group as determined by immunofluorescence staining. Bar = 50 μm; C-E: Protein expression levels 
of Bax and Bcl-2 detected by Western blot and normalized to control. Data are expressed as the mean ± SD (n = 3). bP < 0.001. NC: Normal control; ADR: 
Adriamycin; MSCs: Mesenchymal stem cells; CA: Calycosin; MSCsCA: Mesenchymal stem cells pretreated with calycosin.

CONCLUSION
This study showed that MSCsCA improve ADR-induced podocyte apoptosis by targeting Smad3 
inhibition, and are superior to MSCs or CA. Thus, our study provides a new perspective on the 
synergistic application of MSCs and a new theory for the mechanism of improvement of podocyte 
apoptosis.
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Figure 6 Calycosin-pretreated mesenchymal stem cells improve adriamycin-induced podocyte apoptosis by targeting p-Smad3 
expression. A and B: Protein expression levels of p-Smad3 and Smad3 in mouse podocyte cells (MPC5) detected by Western blot and normalized to control. Data 
are expressed as the mean ± SD (n = 3). aP < 0.05, bP < 0.001; C-G: Protein expression levels of Bax, Bcl-2, p-Smad3, and Smad3 in Smad3-overexpressing MPC5 
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cells detected by Western blot and normalized to control. Data are expressed as the mean ± SD (n = 3). bP < 0.001; H-L: Cell apoptosis detected by flow cytometry; 
M: Graphical abstract (created in BioRender.com). NC: Normal control; ADR: Adriamycin; MSCs: Mesenchymal stem cells; CA: Calycosin; MSCsCA: Mesenchymal 
stem cells pretreated with calycosin; FSGS: Focal segmental glomerulosclerosis.

ARTICLE HIGHLIGHTS
Research background
Focal segmental glomerulosclerosis (FSGS) has become a global public health problem due to its high 
incidence and lack of treatment. Prevention of podocyte apoptosis is essential in the treatment of FSGS. 
Bone marrow-derived mesenchymal stem cells (BMSCs) have been found to protect podocytes, but have 
some limitations, such as low survival rate in vivo and poor homing function. In our previous study, 
calycosin (CA)-pretreated BMSCs enhanced the antifibrotic activity in kidneys compared with BMSCs. 
Therefore, CA-pretreated MSCs are expected to be a new method to protect podocytes in the treatment 
of FSGS.

Research motivation
Although MSCs have been confirmed to improve podocyte apoptosis in mice, their availability and 
effectiveness in vivo are limited. Currently, there is still a lack of effective therapeutic methods for FSGS, 
and their mechanism of action is not clear.

Research objectives
To evaluate the therapeutic effect of CA-pretreated BMSCs in a mouse model of adriamycin (ADR)-
induced FSGS in vivo and MPC5 cells in vivo.

Research methods
MSCsCA were compared with MSCs or CA to observe their inhibitory effects on podocyte apoptosis in 
mice with ADR-induced FSGS in vivo and ADR-treated MPC5 cells in vitro, to explore the possible 
mechanism by which MSCsCA improves podocyte apoptosis.

Research results
In vivo results showed that MSCsCA reduced podocyte apoptosis, improved podocyte injury and 
depletion, alleviated glomerulosclerosis and albuminuria, and downregulated p-Smad3 expression in 
ADR-induced FSGS mice, which were superior to MSCs and CA. Similar to in vivo studies, MSCsCA 
alleviated ADR-induced apoptosis of MPC5 cells more significantly than MSCs and CA. Through rescue 
experiments, we found that the potential of MSCsCA to protect podocytes may be realized through 
targeted inhibition of p-Smad3 expression.

Research conclusions
MSCsCA improve ADR-induced podocyte apoptosis by targeting Smad3 inhibition, which are superior to 
MSCs or CA.

Research perspectives
Our findings provide a new potential strategy for the treatment of FSGS.
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