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Abstract
Esophageal cancer (EC) has a high incidence and mortality rate and is emerging 
as one of the most common health problems globally. Owing to the lack of 
sensitive detection methods, uncontrollable rapid metastasis, and pervasive 
treatment resistance, EC is often diagnosed in advanced stages and is susceptible 
to local recurrence. Exosomes are important components of intercellular 
communication and the exosome-mediated crosstalk between the cancer and 
surrounding cells within the tumor microenvironment plays a crucial role in the 
metastasis, progression, and therapeutic resistance of EC. Considering the critical 
role of exosomes in tumor pathogenesis, this review focused on elucidating the 
impact of exosomes on EC metastasis and therapeutic resistance. Here, we 
summarized the relevant signaling pathways involved in these processes. In 
addition, we discussed the potential clinical applications of exosomes for the early 
diagnosis, prognosis, and treatment of EC.
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Core Tip: Esophageal cancer (EC) is a highly malignant type of cancer, and its early diagnosis and effective treatment are 
lacking. We highlighted the following: (1) Exosomes are involved in altering the number or function of cells in the tumor 
microenvironment of EC; (2) all steps of EC metastasis and various therapeutic resistance are closely related to exosomes; 
and (3) exosomes can serve as reliable biomarkers and effective treatment tools for EC. Finally, we presented the urgent 
challenges and described the future research directions for exosome application in the diagnosis and treatment of EC.

Citation: Ning XY, Ma JH, He W, Ma JT. Role of exosomes in metastasis and therapeutic resistance in esophageal cancer. World J 
Gastroenterol 2023; 29(42): 5699-5715
URL: https://www.wjgnet.com/1007-9327/full/v29/i42/5699.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i42.5699

INTRODUCTION
Esophageal cancer (EC) is a common malignancy of the digestive system, ranking seventh in incidence and sixth in 
mortality worldwide. According to the GLOBOCAN Project, approximately 604000 new cases of EC were reported, and 
more than 544000 patients died worldwide in 2020[1]. EC has two main histological subtypes, esophageal adenocar-
cinoma (EAC) and esophageal squamous cell carcinoma (ESCC). ESCC is the primary subtype of EC found in East and 
Central Asia, whereas EAC is prevalent in Western Europe and North America. Early EC is difficult to diagnose because 
of its insidious onset, as most patients are diagnosed at stage 4 or an advanced stage. Surgery and systematic drug 
therapy play an important role in preventing further spread of cancer cells. A distant metastasis or therapeutic resistance 
also occurs in approximately half of patients after treatment, and the 5-year survival rate for patients is less than 25%. 
Therefore, rapid metastasis and therapeutic resistance have emerged as two major issues that need to be addressed in EC.

Extracellular vesicles (EVs) were first described by Chargaff and West as “procoagulant platelet-derived particles” in 
1946[2]. Subsequently, Wolf distinguished minute particulate materials (platelet dust) from intact platelets[3]. With in-
depth investigation, the biology of EVs has gradually been revealed and their functions have been explored[4-7]. 
Research on EVs has increased markedly over the past decade, with exosomes being the most widely discussed topic[8]. 
According to the canonical classification scheme, EVs can be divided into exosomes (< 150 nm in diameter) and 
microvesicles (≤ 1000 nm in diameter) based on their size and biogenesis route[9]. With a diameter of 30-150 nm, 
exosomes carry abundant cargo, including selected RNAs [miRNAs, regulatory mRNAs, and long noncoding RNAs 
(lncRNAs)], specific DNA sequences, proteins, lipids, glycoconjugates, and metabolites[10,11]. Exosomes secreted by all 
cell types, such as fibroblasts, tumor cells, and various immune cells, can be found in blood and other biological fluids, 
including urine[12], saliva[13], cerebral spinal fluid[14], breast milk[15] amniotic fluid[16], and gastric acid[17]. Multiple 
studies have revealed that exosomes play an important role in processes related to cancer progression, including 
carcinoma cell proliferation[18], apoptosis[19], invasion[20], epithelial-mesenchymal transition (EMT)[21], angiogenesis
[22], immunosuppression[23], and tumor implantation[24] (Table 1).

The aim of this review was to provide a brief introduction to the underlying mechanisms through which exosomes 
affect oncogenesis, metastasis, and resistance to different therapies in EC. Here, we summarized the applications of 
exosomes as diagnostic and/or prognostic biomarkers and therapeutic tools to enhance the treatment efficacy of EC.

BIOGENESIS AND CHARACTERIZATION OF EXOSOMES
Content of exosomes
Exosomes are phospholipid bilayer-encapsulated nanosized vesicles formed via the endocytic pathway[25]. There are 
multiple ways in which exosomes are transported from donors to recipient cells (Figure 1). Depending on the cell source, 
physiological conditions, and sorting mechanisms, exosomal contents can be divided into two main categories: those 
related to the exosome formation mechanism and those related to exosome functions[26]. The cargos of exosomes play 
important roles in cancer metastasis, modulating stromal reactions, inducing angiogenesis, immune response, and other 
biological processes through paracrine, autocrine, and endocrine effects. The fact that exosomes have substantial effects 
on the abovementioned processes explains their essential role in cell-to-tissue communication as well as intercellular 
communication, which robustly alters the function of cells and promotes the development of cancer and drug resistance
[27,28]. Extensive research has proposed that proteins in exosomes not only participate in the biogenesis of exosomes, but 
also mediate signal transduction and immunogenic regulators, including the transferrin receptor, epidermal growth 
factor receptor (EGFR), major histocompatibility complex-I (MHC-I), and MHC-II[29]. Protein studies have revealed that 
exosomes have their own conserved components that may serve as biomarkers for other exosomes[30]. The main RNAs 
carried by exosomes, including miRNAs, mRNA, rRNAs, tRNA, lncRNAs, and circular RNAs, have been revealed to play 
a crucial role in tumorigenesis by modulating gene expression and regulating inter-organ communication during disease 
progression[31-34]. Another type of nucleic acid, DNA, is an exosomal cargo. Jeppesen et al[35] observed the presence of a 
large fraction of cell-free DNA in plasma exosomes during the qualitative analysis of plasma exosomes. Lipids are 
abundant in exosomes, and their expression level and status vary with exosome type, suggesting that lipids are important 

https://www.wjgnet.com/1007-9327/full/v29/i42/5699.htm
https://dx.doi.org/10.3748/wjg.v29.i42.5699
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Table 1 Typical studies on tumor-associated exosomes that affect esophageal cancer progression

Molecules in 
exosomes Biological process Targets Ref.

lncRNA ZFAS1 Regulate proliferation, invasion, migration, and apoptosis MicroRNA-124, 
STAT3

[2]

miR-103a-2-5p Promote proliferation and migration of ESCC cells - [3]

miR-93-5p Promote the proliferation of esophageal cancer cells PTEN, p21, CCND1 [4]

miR-200a Promote the proliferation, migration, and invasion of esophageal cells and inhibits apoptosis KEAP1, NRF2 [5]

miR-19b-3p Inhibit apoptosis, promote cell migration and invasion PTEN [6]

LINC01410 Promote metastasis and epithelial-mesenchymal transition miR-122-5p, PKM2 [7]

lncRNA FAM225A Accelerate progression and angiogenesis miR-206, NETO2, 
FOXP1

[8]

miRNA-21-5p Promote angiogenesis and malignant progression - [9]

miR-154-5p Attenuate progression and angiogenesis KIF14 [10]

miR-301a-3p Promote angiogenesis PTEN [11]

uc.189 Promote proliferation and lymph angiogenesis of human lymphatic endothelial cells and thus 
facilitate lymph node metastasis

EPHA2 [12]

ESCC: Esophageal squamous cell carcinoma.

Figure 1 Exosome biogenesis, uptake, and contents. Briefly, the biogenesis of exosomes involves the inward invagination of the cytoplasmic membrane, 
the transition from early endosomes to late endosomes, the maturation of late endosomes into multivesicular bodies, the generation of ILVs, and the release of ILVs 
into the extracellular environment to become exosomes. Exosomes are structured with proteins, lipids, and nucleic acids. Recipient cells mainly uptake exosomes 
through the manner of endocytosis, direct fusion, macropinocytosis and binding with receptors. MHC: Major histocompatibility complex; TGN: Trans-Golgi network; 
MVB: Multivesicular body.
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tools that can be used to improve cancer diagnosis. Studies on prostate cancer have revealed that urinary exosomes in 
patients with cancer contain lipids, such as phosphatidylserine, lactosylceramide, and cholesterol, which are notably 
different from those in healthy controls[36].

Isolation and identification of exosomes
As exosomes are more representative of their originating cells, are more abundant, and have higher biological stability in 
body fluids than other cellular factors, developing accurate methods for exosome isolation is critical[37]. Current 
separation methods for exosomes have limitations such as low reproducibility, low accuracy, complicated extraction 
procedures, low exosome yield, extensive duration, and high cost. The small size and intrinsic heterogeneity of exosomes 
limit their applications[38]. Although ultracentrifugation is usually applied as the standard method and is the most 
commonly used protocol for exosome isolation, it requires expensive machinery and considerable time. Nonetheless, 
purity requirements are met with this technology, albeit at the expense of recovery.

Ultrafiltration operates based on the specific sizes and molecular weights of membranes, obtaining exosomes in less 
time and with lower equipment and reagent costs; however, its purity is lower than that of ultracentrifugation[39-41]. 
Size-exclusion chromatography has proven to outperform other technologies in the following areas: purity, efficiency, 
integrity, and retention of major characteristics of exosomes[42,43]. However, size-exclusion chromatography involves 
high equipment costs and additional methods for exosome extraction[44]. As mentioned above, each method for isolating 
exosomes has its advantages and disadvantages, and the choice must be made according to the specific situation. Further 
efforts are warranted to create a high-purity, high-utilization, and low-cost method of exosome isolation that can be 
widely used in the future.

CELLS IN THE TUMOR MICROENVIRONMENT ASSOCIATED WITH METASTASIS AND THERAPEUTIC 
RESISTANCE OF EC
The tumor microenvironment (TME), comprising malignant cells, peripheral blood vasculature, noncancer host cells, and 
noncellular components, plays a central role in tumor invasion and metastasis[45,46]. According to the “seed and soil” 
theory, metastasized tumor cells invade tissue and modulate it to create a suitable “soil” called the TME, which is 
amenable to the ectopic growth and survival of metastasized cancer cells[47]. In addition to the therapeutic resistance 
caused by tumor cell changes, emerging evidence has revealed the role of TME in therapeutic resistance[48]. Nontumor 
cell components in the TME can also drive tumor cell resistance by secreting cytokines, chemokines, growth factors, and 
exosomes[49,50]. Extracellular matrix (ECM) modeling can influence drug delivery, promote immune escape, and 
mediate signal transduction, consequently diminishing the therapeutic effects of antitumor agents[51]. The acidic and 
hypoxic status of the TME can lead to resistance to anticancer treatments[52]. We focused on how cells in the TME 
influence EC development and the role of exosomes in this process (Figure 2).

Endothelial cells play a vital role in angiogenesis, thereby initiating tumors and facilitating distant metastasis. EC 
angiogenesis involves growth factors, cytokines, and ECM, among which vascular endothelial growth factor acts as a key 
factor[53,54]. Studies on EC have demonstrated that the expression of vascular endothelial growth factor is negatively 
correlated with the degree of tissue differentiation and positively correlated with the degree of cell malignancy and 
angiogenic ability[55]. Exosomes derived from ESCC cells cultured under hypoxic conditions promote angiogenesis by 
altering the phenotype and transcriptome of endothelial cells[56]. Exosomes derived from ESCC cells cultured under 
hypoxia have been reported to promote angiogenesis by altering the phenotype and transcriptome of endothelial cells
[57]. Therefore, exosomes may participate in angiogenesis by altering the levels of angiogenesis-related factors in the EC.

T cells, which can generally be divided into CD4+, CD8+, helper, and regulatory T cells (Tregs), play both pro- and 
anti-tumorigenic roles in the TME[58]. Fibroblast growth factor 2 produced by tumor fibroblasts can impair the activation 
of CD8+ T cells in EC, increasing the growth and metastasis of cancer cells in vitro and in vivo by regulating the expression 
of recombinant sprouty homologue 1[59]. Irradiated esophageal carcinoma-infiltrating T-cell derived exosomes can 
directly upregulate β-catenin, nuclear factor-κB (NF-κB), and snail in cancer cells, which is related to EC development, 
indicating a protumorigenic role of T-cell derived exosomes in EC[60].

Under the influence of exosomes, fibroblasts involved in tissue remodeling and repair transform into cancer-associated 
fibroblasts (CAFs)[61]. CAFs can provide suitable conditions for metastatic tumor cells and are thus an important 
determinant of EC. A study involving the analysis of clinical samples and establishment of an orthotopic metastasis 
model of EC indicated that CAFs could promote lymph node metastasis[62]. CAFs accelerate the progression and 
metastasis of tumors by secreting different tumor-promoting factors and regulating communication between tumor cells 
and microenvironment components[63]. CAFs can promote the growth and migration of ESCC cells by generating 
exosomes containing sonic hedgehog factors; inhibition of the Hedgehog signaling pathway can partly neutralize this 
phenomenon, suggesting a new strategy for ESCC treatment[64]. In 2022, Shi et al[65] designed in vitro experiments that 
revealed that CAF-derived exosomes facilitate the metastasis and EMT of ESCC cells via the LINC01410/miR-122-5p/
PKM2 axis. CAFs enhance tumor cell evasion during immune surveillance by inducing M2 polarization of macrophages 
and apoptosis of T and NK cells[66]. Additionally, Zhang et al[67] observed a role of CAFs in establishing resistance of 
ESCC cells to chemotherapeutic drugs, which they accomplished via exosome-mediated FOXO1/TGF1 signaling. In 
addition to being associated with the formation of CAFs, exosomes play an indispensable role in immune dysfunction in 
patients with EC, which may lead to disease progression and poor response to therapy.
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Figure 2 Cells promote metastasis and drug resistance of esophageal cancer in the tumor microenvironment. Esophageal cancer (EC)-cell 
derived exosomes can promote metastasis and drug resistance of EC by influencing cells in the tumor microenvironment (TME). Exosomes are involved in altering 
the number or function of immune cells in the TME, resulting in more EC cells evading the immune system. And, EC-cell derived exosomes may promote the 
proliferation of endothelial cells to form neovascularization and the proliferation of adjacent tumor cells. Moreover, EC-cell derived exosomes could launch the 
migration of EC cells from the primary tumor site to the secondary site. Additionally, originally sensitive EC cells could appear therapeutic resistance under the 
influence of exosomes secreted by neighboring drug-resistant cells. MDSCs: Myeloid-derived suppressor cells; CAF: Cancer-associated fibroblasts; EMT: Epithelial-
mesenchymal transition.

Owing to the high variability of tumor-associated macrophages (TAMs), different stimuli in the TME, including 
exosomes and cytokines secreted by tumor cells, can drive the tilt differentiation of TAMs towards M1 or M2 
macrophages[68]. The transfer of miR-21-5p from EC109 or EC9706 cells to M0 macrophages via exosomes resulted in M2 
macrophage polarization and EMT in EC cells[69]. Shou et al[70] verified that another EC-derived exosomal cargo, miR-
301a-3p, could also facilitate angiogenesis by inducing macrophage polarization The transfer of hsa-circ-0048117 from 
hypoxic ESCC cells to macrophages via exosomes results in M2 macrophage polarization[71]. EC-derived exosomes can 
alter the function of macrophages; similarly, exosomes secreted by macrophages can also affect EC progression. Emerging 
evidence indicates that M2 macrophages are associated with the migration, invasion, poor prognosis of ESCC, and the 
subsequent induction of EMT[72]. By transmitting lncRNA AFAP1-AS1 and microRNA-26a, exosomes derived from M2 
macrophages promoted the migration, invasion, and lung metastasis of EC cells. Mechanistically, M2 macrophage-
derived exosomes increase EC metastasis by transferring lncRNA AFAP1-AS1 to upregulate ATF2 and downregulate 
miR-26a, revealing that targeting M2 macrophages and the lncRNA AFAP1AS1/miR-26a/ATF2 signaling axis may be a 
useful therapeutic strategy for EC[73].

Myeloid-derived suppressor cells (MDSCs) can suppress various types of immune responses and participate in the 
formation of the premetastatic niche and are immature myeloid cells closely linked to tumor development and prognosis
[74,75]. Chen et al[76] found that the level of MDSCs, which cause immune escape and promote metastasis by eliciting T 
cell dysfunction, is considerably related to ESCC formation. Notably, MDSC differentiation has been reported to 
aggravate immunosuppression in EC through transcriptomic alterations induced by the lncRNA Lnc-17Rik[77]. Based on 
the alterations in cells in the TME, the use of exosomes to intervene in this process to regulate TME is worth studying.
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EXOSOME FUNCTION IN METASTASIS
High metastatic rate is a major issue in EC, resulting in high mortality and poor prognosis. Tumor metastasis is a complex 
and multistep process that includes the growth of primary tumors, neovascularization, interactions between tumor and 
stromal cells, EMT, intravasation of tumor cells, extravasation of surviving tumor cells, and colonization and growth at 
secondary sites[78], which are affected by a number of signaling pathways. Existing studies on EC have revealed that 
exosomes derived from tumor and nontumor cells participate in various steps of tumor metastasis by mediating 
intercellular communication (Figure 3).

Exosomes in EMT
EMT, which involves epithelial cells losing their apical polarity, gaining anteroposterior polarity, and losing cell adhesion 
to transform into mesenchymal cells, is a key driver of tumor metastasis[79]. Primary tumors undergo EMT through the 
regulation of various factors, including EMT transcription factors, paired related homeobox protein 1 (Prrx1), cancer stem 
cells, N-cadherin, vimentin, E-cadherin, occludin, cytokeratin, and claudin[80]. Through the transmission of these 
elements, exosomes can cause epithelial cells to undergo morphological and functional changes and acquire invasive 
properties that facilitate EMT.

We summarized the relevant literature on exosomes and EMT process, focusing on changes in signaling pathways. 
Qiao et al[81] compared 50 paired ESCC tumor tissues and matched normal adjacent tissues and found that the 
expression of EMT-related proteins was notably upregulated in ESCC cells in the presence of miR-106b-3p. Then, the 
researchers performed gene and protein expression analyses, and the results revealed that Wnt, GSK3, and β-catenin 
related to Wnt/β-catenin pathway were increased in the miR-106b-3p mimic group compared with the control group. In 
ESCC, miR-106b-3p may be transported by exosomes to induce these effects. By transmitting miR-10527-5p, exosomes 
derived from human ESCC cell lines notably downregulated N-cadherin and vimentin (mesenchymal markers) and 
upregulated the epithelial marker E-cadherin by activating the Wnt/β-catenin pathway[82]. Additionally, one study 
emphasized the function of CAF-derived exosomal miR-3656 in the TME, which could serve as a biomarker for EC 
diagnosis. MiR-3656 in CAF-derived exosomes promotes the proliferation, migration, and invasion of EC cells by 
triggering the ACAP2/phosphatidylinositol 3-kinase (PI3K/AKT) signaling pathway[83].

Exosomes extracted from T cells after radiotherapy significantly promote the EMT of EC cells by increasing the 
expression of β-catenin, NF-κB, and snail, as revealed using western blot analysis[60]. Li et al[84] demonstrated that 
FMR1-AS1 was increased in ESCC tissues, and a comparison of lncRNA levels between 179 pairs of ESCC tissues and 
their adjacent normal tissues showed that the upregulation of FMR1-AS1 was associated with poor prognosis in female 
patients. According to further experiments and analyses, ESCC-derived exosomal FMR1-AS1 maintains the intercon-
version state of cancer stem cells by activating the TLR7-NF-κB signaling pathway and upregulating c-Myc levels in 
target cells. All these studies demonstrate that when studying the relationship between exosomes and EC, we can focus 
on changes in the molecules of the relevant signaling pathways, which opens up possibilities for diagnosis and 
subsequent treatment.

Exosomes in ECM degradation
The ECM is composed of collagen, glycoprotein, proteoglycans, and glucosamine and is a constantly changing part of the 
TME, supporting the survival and activity of cells, mediating the intercellular signal transduction system, and 
maintaining homeostasis. ECM remodeling depends on the functions of MMPs, adamalysins, meprins, growth factors 
secreted by tumor cells, monocytes, CAFs, polymorphonuclear cells, and leukocytes[85,86]. During tumor metastasis, 
collagen decomposes and destroys the basement membrane[79]. CAFs can generate exosomes that transmit miR-451 to 
the esophageal TME, mediating changes in the ECM and degradation of basement membrane collagen. As miR-451 is 
overexpressed in the serum of patients with EC compared with healthy individuals, it may serve as a potential diagnostic 
biomarker for EC[80].

Exosomes in angiogenesis
The importance of exosomes in EC angiogenesis has been demonstrated in three reports. Zhang et al[87] showed that the 
exosome-encapsulated lncRNA FAM225A was highly expressed in ESCC tissues and cell lines and could sponge miR-
206, which targets NETO2 and FOXP1 to accelerate angiogenesis. Exosomal cation-dependent mannose-6-phosphate 
receptors from SRGN-overexpressing ESCC cells facilitate neovascularization[88]. Tumor cell-derived exosomes can 
negatively regulate ESCC progression and angiogenesis by transmitting miR-154-5p, which downregulates kinesin family 
member 14[89].

Exosomes in immune suppression
Immune cells constitute an essential part of the immune system and play diverse protumor and antitumor roles in the 
genesis and metastasis of tumors. Tumor-derived exosomes can mediate the expansion of Tregs, MDSCs, and regulatory 
B cells (Bregs); inhibit the function of NK cells; and control the differentiation of myeloid progenitors, lymphoid 
progenitors, and dendritic cells (DCs) by delivering contents obtained from parent tumor cells to recipient cells[90]. Yuan 
et al[91] observed that exosomes produced from EC stem cells could transfer the nutrient sensor O-GlcNAc transferase to 
neighboring CD8+ T cells, silencing antitumor immune responses by increasing PD-1 expression in CD8+ T cells. These 
studies will bring new promise for immunotherapy of EC.
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Figure 3 The role of exosomes in esophageal cancer metastasis. Exosomes are associated with esophageal cancer (EC) metastasis by transferring their 
contents. The activation of several signaling pathways, including Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways, is closely to the exosome-mediated tumor 
microenvironment in EC. Exosomes can mediate immune suppression by downregulating antitumor cells (including NK cells, dendritic cells and M1 macrophages) 
and upregulating protumor cells (including myeloid-derived suppressor cells, Tregs, Bregs and M2 macrophages). Additionally, in primary EC sites, degradation of 
extracellular matrix and angiogenesis are also promoted by exosomes. MDSCs: Myeloid-derived suppressor cells; ECs: Esophageal cancers; DCs: Dendritic cells.

Exosomes in the formation of the premetastatic niche
The steps underlying the formation of a premetastatic niche in target organs, which is a fundamental process required for 
tumor metastasis, include the arrival of tumor cell-secreted components, infiltration of bone marrow-derived cells, and 
alteration of the matrix microenvironment[92]. In addition to the vascular metastatic niche, the formation of a lymphatic 
metastatic niche in the local lymph nodes that induces immunosuppression, reduces proliferation, and enhances 
apoptosis is vital for metastasis in patients with ESCC[93]. Available evidence suggests that exosomes play an 
indispensable role in mediating signals between the primary tumor and target organs to construct a premetastatic niche 
in breast[94], pancreatic[95], and ovarian cancers[96]. As mentioned above, it is reasonable to hypothesize that exosomes 
participate in the generation of a premetastatic niche in ESCC.

EXOSOMES FUNCTION IN THERAPEUTIC RESISTANCE
Various types of treatment, including surgery, endoscopy, chemotherapy, radiotherapy, and immunotherapy, can be 
employed for EC; they can be used as monotherapy or in combination and should be selected carefully according to the 
cancer stage[96]. However, the use of multitarget drugs and the presence of cellular heterogeneity and immunoediting 
have led to the emergence of widespread treatment resistance, which greatly affects the survival rate of patients with EC
[97,98]. Although detailed mechanisms of tumor therapy resistance have rarely been explored, exosomes, as tools for cell-
to-cell communication, are speculated to play a vital role in the transmission of therapy resistance. In addition to the role 
of exosomes in tumor angiogenesis and immunosuppression, a large number of studies have reported that exosomes can 
mediate changes in signal transduction, drug efflux, and drug sequestration, leading to the development of tumor 
treatment resistance[99]. Therapeutic resistance remains the main factor that limits the application and efficacy of 
therapeutic measures for EC. In the following sections, we explain the role of exosomes in therapeutic resistance using 
specific examples.

Exosome-mediated tumor chemotherapy resistance
When receiving chemotherapy, patients with EC can develop multidrug resistance via several mechanisms, including 
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increase in drug efflux, attenuation of drug influx, alteration of cell apoptosis machinery, changes in molecular drug 
targets, and enhancement of drug metabolism, ultimately leading to treatment failure[98,100-102]. Exosomes derived 
from drug-resistant cells can induce sensitive tumor cells to acquire antitumor characteristics by transmitting proteins 
and nucleic acid cargo to regulate oncogene expression[61]. Additionally, exosomes can lead to drug resistance by 
directly or indirectly regulating immune cells in the EC microenvironment[103,104]. Owing to the complex and unknown 
mechanisms of chemotherapy resistance, it is difficult to find an effective solution.

Recently, CAF-derived exosomes have been reported to participate in EC resistance by establishing a physical barrier 
that inhibits the delivery of drugs and rays to tumor cells[105]. A previous study demonstrated that CAFs can generate 
monocytic myeloid-derived suppressor cells by activating signal transducer and activator of transcription 3 (STAT3) by 
secreting interleukin-6 and exosomal miR-21. Monocytic myeloid-derived suppressor cells not only dampen the function 
and promote apoptosis of some immune cells but also strengthen the cisplatin resistance of EC cells[106]. In 2020, a series 
of experiments conducted by Tong et al[59] suggested that ESCC cell-derived exosomal lncRNA POU3F3 affects the 
proliferation of tumor cells and cisplatin resistance of ESCC by activating normal fibroblasts.

Considering the importance of signaling pathways in mediating the development of drug resistance and their potential 
in treating EC, we focused on signaling pathways related to the exosome-based modulation of chemotherapy resistance. 
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, which includes more 
than 50 cytokines and growth factors, plays an important role in immune fitness, inflammation, and cell apoptosis; the 
pathway begins with the activation of JAK, which leads to the phosphorylation of STAT[107,108]. In 2020, a study 
reported 189 overexpressed and 304 downregulated miRNAs in exosomes secreted by cisplatin-resistant EC cells. 
Analysis of the correlation between small RNA-seq and RNA-seq revealed that exosomes derived from drug-resistant 
cells decreased the inhibitory effects of cisplatin on the cell cycle in sensitive cells and thus increased their cisplatin 
resistance in a manner that was potentially related to JAK/STAT signaling[109]. Exosomal circ_0000337 overexpression in 
cisplatin-resistant EC tissues and cells promoted cisplatin resistance by regulating the miR-377-3p/JAK2 axis[110]. JAK2 
is a crucial component of the JAK2/STAT3 signaling pathway and its activation has been reported to mediate resistance 
to chemotherapy and radiotherapy[111]. Exosomal miR-21 was significantly overexpressed in EC cells with low 
sensitivity to cisplatin[112]. Further experiments indicated that exosomal miR-21 can inhibit the expression of PTEN, 
ultimately activating STAT3 signaling[106]. In summary, exosomes mediate chemotherapy resistance, especially cisplatin 
resistance, in EC through the JAK/STAT signaling pathway. However, whether JAK/STAT signaling participates in 
other forms of therapy resistance remains unknown. A recent study demonstrated that exosomal PD-L1 Leads to 
paclitaxel resistance in EC cells by targeting the STAT3/miR-21/PTEN/Akt axis[113]. CAF-derived exosomes induce cell 
proliferation, suppress cell apoptosis, and decrease tumor chemosensitivity to cisplatin in ESCC, and Cui et al[114] 
reported that RIG-I/IFN-β signaling plays a crucial role in these processes. Exploring additional signaling pathways that 
play an essential role in EC drug resistance and focusing on the relationship between exosomes and these pathways may 
help develop strategies to overcome the widespread problem of chemotherapy resistance[115].

Exosome-mediated tumor radiotherapy resistance
Radiation can directly or indirectly kill cells within a limited range and restrict tumor growth by damaging DNA or 
generating free radicals and ions. However, tumors tend to exhibit radiation resistance via EMT, immunosuppression, 
repair of DNA damage, abnormal expression of noncoding RNAs, activation of autophagy and initiation of related 
signaling pathways[116]. The importance of exosomes in radiotherapy resistance in EC has been demonstrated in two 
reports. In vitro assays and xenograft models showed that hypoxic cell-derived exosomes transfer miR-340-5p to 
normoxic cells, thereby inducing the proliferation of radiotherapy-resistant normoxic ESCC cells by influencing the 
KLF10/UVRAG axis. The level of plasma exosomal miR-340-5p is upregulated and is associated with the in-field 
recurrence-free survival of patients with ESCC, suggesting that plasma exosomal miR-340-5p can serve as a biomarker for 
prognostic evaluation[117]. Additionally, NORAD is associated with local recurrence in patients with ESCC after 
radiotherapy, and in vitro experiments further confirmed that cell-to-cell transfer of exosome-encapsulated miR-199a-5p 
improved the radiosensitivity of radioresistant cells[118]. Further, miR-26b-5p contained in EVs derived from dying 
tumor cells after irradiation promotes cancer cell metastasis by potentiating the deposition of premetastatic niche 
components and the expansion and activation of MDSCs in the TME[119]. After radiotherapy, EC cells may acquire 
radiation resistance by secreting specific exosomes, and it is crucial to identify effective interference targets to improve 
the efficacy of radiotherapy and reduce the recurrence rate.

Exosome-mediated tumor immunotherapy resistance
Immunotherapy exerts antitumor effects by strengthening the body's immune response and disrupting immune tolerance 
by employing tumor cells, nucleic acids, cytokines, antibodies, and/or immune cells[120]. Recently, based on the role of 
immune cells in the TME during EC development, immune checkpoint blockade, chimeric antigen receptor T-cell 
therapy, and tumor vaccines have been used for EC treatment. Despite significant breakthroughs in these immuno-
therapies, primary resistance lowers the overall response rate of immunotherapy and acquired resistance leads to a 
gradual decrease in immunotherapy efficacy in EC treatment[121]. Sensitive EC cells can acquire resistance via the 
downregulation of tumor antigens to escape the attack of T cells, the acquisition of immune escape ability via mutation, 
interferon-γ (IFN-γ) signaling, and neoantigen consumption[122]. Programmed death 1 (PD-1), which can interact with 
programmed death-ligand 1 (PD-L1), is a critical immune checkpoint that helps tumor cells escape T cell attack by 
disguising malignant cells as normal cells and promoting T cell depletion. PD-1/PD-L1 blockade strategies have been 
developed to overcome this problem by decreasing T cell suppression and activation[123]. However, changes in PD-L1 
expression, decreased presentation of tumor neoantigens, and immune suppression may be responsible for the failure of 
anti-PD-1/PD-L1 immunotherapy. Exosomes derived from M2 TAMs regulate PD-1/PD-L1 expression and mediate PD-
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1/PD-L1 immunosuppression[124]. Tumor cell-derived exosomal PD-L1 can be used to supplement PD-1 on the cell 
surface, thereby antagonizing the effects of PD-1/PD-L1-blocking antibodies[125]. Exosomes may participate in immuno-
therapy resistance by disseminating immune checkpoint molecules, inhibitory molecules, cytokines, and growth factors, 
resulting in a poor clinical response[126]. In addition to PD-1/PD-L1, the relationship between exosomes and other 
immunotherapy approaches for EC remains to be explored. Identifying a reliable and universal relationship may help 
address immunotherapy resistance, although this remains a severe challenge.

APPLICATION OF EXOSOMES AS BIOMARKERS IN ESCC
As some exosomes can be found in the early stages of EC and change specifically as malignancy progresses, it is 
reasonable to use exosomes for the early diagnosis of ESCC to prevent EC progression, which will improve the cure rate 
of EC[127,128]. Compared with RNAs in plasma, exosomal RNAs have higher applicability and specificity in diagnosing 
EC for the following reasons: exosomes are stable in the body fluids of patients and can be used as an effective transport 
tool for RNAs; the level of exosomes correlates with that of donor cells; and exosomes can protect RNAs from 
degradation[127,129]. In addition, studies on EAC have reported that serum is a better sample type to test exosome 
content than plasma because it has fewer interfering components, and miRNAs of non-vesicle origins exist in plasma
[130].

Recent studies have demonstrated that exosome-encapsulated miR-21 is prominently upregulated in patients with 
ESCC. In addition, the level of exosomal miR-21 was related to the clinicopathological features, clinical stage, and 
prognosis of patients with ESCC. In summary, exosomal miR-21 may serve as a clinical biomarker for human EC[131]. In 
a multicenter prospective study in 2022, researchers found that the newly discovered “small RNA identified in exosome 
from saliva of patients with ESCC” could be combined with tRNA-GlyGCC-5 to diagnose and determine the prognosis of 
EC. These two types of small RNAs can be found in saliva-derived exosomes, indicating the possible application of saliva-
derived exosomal small RNAs as accurate and noninvasive predictive markers of EC[132]. Searching for ideal diagnostic 
molecules to be applied in combination may greatly improve diagnostic accuracy and reduce the false-positive rate. As 
the levels of circulating exosomal miRNAs differ between patients with Barrett's esophagus (BE) who develop EAC and 
those who do not and between patients with EAC and those with BE, they may predict and distinguish the prognosis of 
BE/EAC and distinguish them[27,133]. Previous reports suggest that the expression level of miR-93-5p is notably 
upregulated in patients with ESCC compared to healthy controls[134]. CircFNDC3B encapsulated in exosomes 
participates in the migration and invasion of EC cells by sponging miR-490-5p and regulating thioredoxin reductase 1 
expression and is abundant in the tissues and cells of EC samples[135].

Currently, the diagnosis of EC mainly depends on medical imaging and endoscopy; laboratory examinations are 
insufficient and inaccurate. Owing to the disadvantages of imaging and endoscopy, such as being time consuming, 
expensive, and invasive, laboratory examinations should be the focus of research to identify strategies for screening and 
diagnosing EC. The application of exosome-based liquid biopsy for the early diagnosis of cancer has pioneering 
significance; however, this strategy cannot be widely applied because of its high false-positive rate and high cost[136]. 
Consequently, finding accurate and readily available contents of exosomes as a new strategy for diagnosing EC is 
complicated but crucial and urgent (Table 2).

EXOSOMES ARE USED IN EC TREATMENT
Only a limited number of patients can receive direct esophagectomy, the most effective treatment, whereas others need to 
choose an alternative comprehensive therapy to prolong survival if they have middle- or advanced-stage disease[137,
138]. Although esophagectomy is the primary method of EC treatment, it can lead to a loss of appetite, dysphagia, reflux, 
and other complications, thereby seriously damaging the quality of life of patients[139]. Furthermore, patients treated 
with esophagectomy are susceptible to local recurrence owing to the presence of cells resistant to radiotherapy, immuno-
therapy, or chemotherapy. Therefore, there is an urgent need to develop novel therapeutic strategies for EC. Exosomes 
can serve as delivery tools by selectively transporting miRNAs, mRNAs, lncRNAs, and proteins to target cells, thereby 
providing new avenues for EC treatment[140]. Although no direct evidence has shown that exosomal miRNAs can alter 
target cell functions in BE/EAC, several studies have provided evidence supporting the application of exosomal miRNAs 
as therapeutic modalities to inhibit the progression from BE to EAC[141,142]. Exosome-derived miR-154-5p attenuates the 
invasion of EC cells and inhibits their angiogenic capability in vitro, curbing the malignant progression of ESCC[89]. 
Whether specific miRNAs regulate radiation resistance or can be used as tumor radiosensitizers in ESCC remains unclear. 
Luo et al[143] observed that some miRNAs, such as miR-339-5p, selectively secreted by exosomes, can promote sensitivity 
to radiation therapy by downregulating the cell division cycle 25 A (Cdc25A), and high levels of miR-339-5p in tumor 
tissues and serum indicated good prognosis, providing a theoretical basis for developing new tumor radiosensitizers 
based on the use of exosomal miRNAs.

In addition, exosomes derived from immune cells can exert antitumor effects by displaying specific surface antigens 
that initiate the human immune system, thus helping kill tumor cells[144]. Evidence suggests that MHC molecules and 
CD86 expressed on the surface membranes of exosomes derived from DCs are associated with T cell activation[145]. The 
activation of T cells, including CD4+ and CD8+ T cells, is vital for tumor immunity. Exosomes derived from tumor 
antigen-stimulated DCs carrying anti-CD3 and anti-EGFR antibodies promote the interaction of T cells with cancer cells
[146]. We believe that exosomes can achieve similar regulatory effects in EC, suggesting new approaches for EC 
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Table 2 Clinical application of exosome in esophageal cancer

Clinical application Biofluids Exosomes or exosomal cargos Expression Ref.

Plasma miR-106a, miR-18a, miR-20b, miR-486-5p, miR-584 High [155]

Serum lncRNA UCA1, POU3F3, ESCCAL-1 and PEG10 High [156]

Plasma lncRNAs NR_039819, NR_036133, NR_003353, ENST00000442416.1, and ENST00000416100.1 High [157]

Diagnosis

Plasma miR-223-3p Low [122]

Serum miR-182 High [158]

Serum miR-766-3p High [159]

Serum hsa_circ_0026611 High [160]

Serum lncRNA-POU3F3 High [156]

Prognosis

Plasma hsa_circ_0001946 Low [161]

treatment.
Synthetic drugs must pass through the cell membrane and enter target cells to function[147,148]. Concomitantly, 

exosomes are better for delivering synthetic drugs than other materials, including liposomes, polymers, and dendrimers, 
as they are more biocompatible, biodegradable, less toxic, better at penetrating the blood-brain barrier, better at traveling 
deep into tissues, and have better target specificity for recipient cells[149,150]. In addition, exosomes cause minimal acute 
immune reactions, more accurately identify tumors, and are not targeted by early attack by circulating immune cells, 
ultimately prolonging the half-life of drugs and reducing drug resistance[148,151]. Similar to exosome isolation, there are 
multiple techniques for loading drugs into exosomes, including sonication, transfection, incubation, transgenesis, pH 
gradient loading, extrusion, and hypotonic dialysis[148].

When considering the application of exosomes as drug delivery systems, it is necessary to focus on engineered 
exosomes. Engineered exosomes are exosomes with particular molecules attached to their surface or loaded with specific 
molecules for delivery, which enables the exosomes to target cells or tissues and enhances the local enrichment of the 
delivered substance. In addition, the engineered exosomes considerably increased the output and shortened the time of 
exosome production. Engineered exosomes of different origins have different lipid and surface protein compositions that 
may affect their functions. For example, tumor cell-derived exosomes may mediate immune responses, immune cell-
derived exosomes may induce immune evasion, and exosomes isolated from fruits, milk, or plants are usually safe, 
inexpensive, and scalable[152]. Therefore, it is important to select a suitable source of exosomes based on their applic-
ations and available conditions. Existing evidence shows that engineered M1 macrophage-derived exosomes can inhibit 
tumor growth and transform M2-type TAMs into M1-like macrophages by targeting IL4 receptors on the surfaces of M2 
macrophages[153]. In summary, we can expect engineered exosomes to have great potential for use in EC treatment.

Based on the above data, the components of exosomes affect the progression of EC through some key signaling 
pathways, and we propose that we can not only use exosomes as vessels for the delivery of signaling pathway inhibitors 
or activators but also change the content of key substances in exosomes to affect downstream signaling. Additionally, 
exosomes can act as carriers to deliver critical components for gene therapy and cancer vaccines. Exogenous exosomes 
also hold tremendous potential for optimizing the therapeutic outcomes of the surgical treatment of EC. Notably, there 
are challenges that urgently need to be overcome for the successful application of exosomes in EC treatment. These may 
be addressed by developing strategies to enable the controlled or continuous release of therapeutic drugs, increasing the 
ability of exosomes to carry therapeutic agents, determining what cells should be used to produce exosomes, and 
determining how exosomes can escape cell and/or enzyme[154]. More efforts are needed to address these problems in 
order to apply exosomes in clinical therapy.

CONCLUSION
Valuable biomarkers with high sensitivity and availability for the diagnosis and prognosis of EC, as well as effective 
therapeutic strategies for EC to confine the disease to a manageable stage and improve disease-free survival in patients, 
need to be urgently identified. Increasing evidence has shown that exosomes are robustly involved in the metastasis and 
treatment resistance of EC by facilitating carcinoma cell proliferation, EMT, angiogenesis, and immunosuppression. 
Factors in the TME, especially cells, have an important impact on tumor growth and development. Furthermore, 
exosomes are differentially expressed and widely present in various biofluids, indicating that they can be used as novel 
biomarkers for the diagnosis and prognosis of EC and delivery of antitumor drugs. However, there remain several 
challenges to overcome for the clinical application of exosomes. Exosomes with considerable specificity and high 
sensitivity for discriminating patients from healthy individuals and EC from other cancers are urgently needed. New 
biomarkers should not only be easy and inexpensive to detect but should also show changes at an early stage of EC. 
Based on the findings of previous studies, we concluded that specific signaling pathways are associated with the exosome 
regulation of metastasis and drug resistance in EC. To identify suitable and precise targets for EC treatment, it is worth 
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exploring more relevant signaling pathways. Overall, there is still a long way to go before exosomes can be used for 
clinical diagnosis, treatment, and prognosis of EC.
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