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Abstract 
Hepatic ischemia-reperfusion injury (IRI) is a patho-
physiological event post liver surgery or transplantation 
and significantly influences the prognosis of liver func-
tion. The mechanisms of IRI remain unclear, and effec-
tive methods are lacking for the prevention and therapy 
of IRI. Several factors/pathways have been implicated 
in the hepatic IRI process, including anaerobic metabo-
lism, mitochondria, oxidative stress, intracellular cal-
cium overload, liver Kupffer cells and neutrophils, and 
cytokines and chemokines. The role of nitric oxide (NO) 

in protecting against liver IRI has recently been report-
ed. NO has been found to attenuate liver IRI through 
various mechanisms including reducing hepatocellular 
apoptosis, decreasing oxidative stress and leukocyte 
adhesion, increasing microcirculatory flow, and enhanc-
ing mitochondrial function. The purpose of this review 
is to provide insights into the mechanisms of liver IRI, 
indicating the potential protective factors/pathways that 
may help to improve therapeutic regimens for control-
ling hepatic IRI during liver surgery, and the potential 
therapeutic role of NO in liver IRI.   
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Core tip: This review provides insights into several key 
mechanisms of liver ischemia-reperfusion injury, includ-
ing the effects of anaerobic metabolism and the role 
of mitochondria, oxidative stress, intracellular calcium 
overload, liver Kupffer cells and neutrophils, and cyto-
kines and chemokines; and summarizes the protective 
effects of nitric oxide. 
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INTRODUCTION
In recent years, liver resection and liver transplantation 
have been widely adopted in clinical practice for the 
treatment of  liver diseases. Hepatic ischemia-reperfusion 
injury (IRI) occurs substantially during liver resection or 
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transplantation and remains a major cause of  liver non-
function or functional failure following liver surgery. This 
non-negligible injury has become a bottleneck which 
has restricted the use of  marginal liver donors and the 
development of  extensive liver resection. Hepatic IRI 
includes both warm and cold IRI - two types that share 
similar pathophysiological processes. The mechanisms of  
liver IRI have been widely investigated, but nevertheless 
remain largely unclear. The factors/pathways have been 
implicated in the hepatic IRI process include anaerobic 
metabolism, mitochondria, oxidative stress, intracellular 
calcium overload, liver Kupffer cells (KCs) and neutro-
phils, and cytokines and chemokines. More importantly, 
an effective prevention or treatment method is still lack-
ing. Therefore, an effective method for preventing or 
minimizing hepatic IRI during liver surgery is urgently 
needed. A better understanding of  the mechanisms in the 
development of  IRI will provide insights into improving 
the treatment regimen for IRI. In this review, the authors 
comprehensively discuss the mechanisms of  liver IRI and 
describe the role of  nitric oxide (NO) in protecting the 
liver from IRI.  

ANAEROBIC METABOLISM AND 
ACIDOSIS
IRI exerts wide-ranging metabolic effects on the body. 
During the state of  hepatic ischemia, the metabolic 
pattern is shifted from aerobic to anaerobic, the redox 
process of  the hepatocytes is blocked, adenosine tri-
phosphate (ATP)-dependent cellular metabolic activities 
are gradually stopped, and intracellular ATP is rapidly 
depleted. Conversely, there is accumulation of  acidic 
metabolites, such as lactic acid and ketone bodies, which 
is caused by enhanced anaerobic glycolysis. This is ac-
companied by hypofunction of  mitochondrial oxidative 
phosphorylation, resulting in the decrease of  pH values 
between tissues and cells, known as metabolic acidosis. 
Studies have shown that this change plays a role in pro-
tecting the liver cells[1,2]. However, the pH values restore 
to normal after reperfusion, and further enhance pH-de-
pendent enzyme activation, such as activation of  prote-
ases and phospholipases, further worsening the damage 
of  tissues and organs. This is called the pH paradox[3]. 
The toxicity of  acidic metabolites caused by a lower 
ATP supply mainly impairs the cellular functions of  ho-
meostasis, signaling interactions, and sodium/potassium 
ATPase (Na+/K+-ATPase), causing mitochondrial dam-
age and resulting in microcirculation failure and cellular 
destruction[4].

ROLE OF MITOCHONDRIA
IRI exerts effects not only on the body as a whole, but 
also at the cellular level. The mitochondria are the loca-
tion where oxidative phosphorylation mainly takes place, 
and the mitochondria participate in multiple pathophysi-
ological processes of  IRI. A large number of  reactive 

oxygen species (ROS) and reactive nitrogen species are 
generated in the mitochondria during the state of  isch-
emia. Hypoxia undermines the process of  oxidative phos-
phorylation in cells and obstructs the production of  ATP, 
causing disorders of  the cytoplasmic ions such as Ca2+, 
Na+, and H+ in the mitochondria, and finally leads to mi-
tochondrial membrane permeability transition (MMPT)[5]. 
MMPT is manifested primarily by mitochondrial swell-
ing and the decline of  membrane potential[6], which al-
lows soluble molecules of  a molecular weight less than 
1500 kDa to freely pass through the inner mitochondrial 
membrane, the so-called “mitochondrial megachannel”[7]. 

Many studies have indicated that MMPT is related to the 
process of  hepatocyte damage after IRI[5,8]. 

OXIDATIVE STRESS
IRI has many biochemical ramifications. It has been 
shown that oxidative stress plays a key role in reperfusion 
injury. Many highly reactive molecules, such as ROS, are 
induced during the period of  hepatic IRI. ROS include 
superoxide anions, hydroxyl radicals, and peroxide hydro-
gen, and mainly act on proteins, enzymes, nucleic acids, 
cytoskeleton, and lipid peroxides, leading to mitochon-
drial dysfunction and lipid peroxidation[9]. ROS can also 
damage endothelial cells and destroy the integrity of  the 
microvasculature. ROS can be reduced or overcome by 
reducing the blood flow and applying endogenous anti-
oxidants, such as superoxide dismutase, catalase, glutathi-
one, vitamin E, or beta-carotene[10]. On the other hand, 
application of  recombinant adenovirus superoxide has 
been shown to effectively reduce hepatic IRI in mice[11]. 

INTRACELLULAR CALCIUM OVERLOAD
Among the biochemical factors affected by IRI, calcium 
has an especially important role. The electrochemical 
gradient of  the calcium ion plays an important role in 
maintaining homeostasis of  physical calcium (Ca2+). If  
the calcium level is elevated when ischemia or hypoxia, 
oxidative stress, toxic substance release or other harm-
ful events occur, this is called Ca2+ overload. Intracellular 
Ca2+ overload can activate Ca2+-dependent enzymes such 
as calpains, protein kinase C, and phospholipase C, and 
ultimately leads to cell death or apoptosis. Recent studies 
have shown that the increased amount of  intracellular 
Ca2+ is not uniform, but is a local phenomenon. Non-
specific calcium channel blockers can inhibit the elevation 
of  intracellular Ca2+ and reduce cellular damage, demon-
strating that Ca2+ influx may play a major role in the IRI 
process[12,13]. 

KCS AND NEUTROPHILS
It has been demonstrated that liver KCs and neutro-
phils are involved in the hepatic IRI process. The KCs 
mainly mediate liver ischemic injury in the earlier stage 
of  reperfusion (within 2 h) by synthesizing and releasing 
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ROS and the pro-inflammatory cytokines tumor necrosis 
factor-alpha (TNF-α) and interleukin (IL)-1β to further 
activate liver sinusoidal endothelial cells, enhance the ex-
pression of  the adhesion molecules intercellular adhesion 
molecule 1 (ICAM-1)/vascular cell adhesion molecule 1 
(VCAM-1), further promote the adhesion, migration, and 
chemotaxis of  neutrophils and endothelial cells, and ac-
cumulate and activate neutrophils, resulting in subsequent 
liver cell damage[14]. Studies have shown that endotoxins 
are also involved in the process of  liver IRI[10,15]. Block-
ing KC activation by the use of  gadolinium chloride or 
methyl palmitate can reduce acute liver cell injury sig-
nificantly. Activation of  neutrophils can directly damage 
liver cells by the release of  oxidants and proteases after 
reperfusion. Ultimately, myeloperoxidase (halide form, 
such as Cl-) released from neutrophils changes hydrogen 
peroxide (H2O2) into hypochlorous acid (HOCl), which 
is a potent oxidant. These oxidants can directly cause 
liver cell damage and/or induce protease-mediated injury 
through inactivation of  the endogenous anti-protease 
system[15,16], suggesting that anti-oxidant or anti-protease 
therapy would be helpful for preventing IRI.

ROLE OF CYTOKINES AND CHEMOKINES 
Cytokines play a dual role of  anti-inflammatory and pro-
inflammatory responses in the process of  liver IRI (Figure 
1). TNF-α is a key member of  the group of  endogenous 
pro-inflammatory and anti-inflammatory molecules, and 
is a critical factor in triggering the inflammatory cascade. 

It is secreted by activated KCs and impacts liver tissue 
and distant organs through paracrine signaling and the 
endocrine system[17]. TNF-α can bind to the receptors 
on the surface of  liver cells to induce overproduction of  
the chemokine epithelial neutrophil activating protein-78 
(ENA-78) and ROS, activate nuclear factor (NF)-κB, 
mitogen-activated protein kinase, and c-Jun N-terminal 
kinase (JNK), and cause liver injury directly[18]. In addition, 
TNF-α also can upregulate expression of  the chemokines 
ICAM-1, VCAM-1 and P-selectin[19]. Moreover, JNK and 
ROS can directly act on liver cells to cause liver damage.  

In addition to TNF-α, the other important cytokines 
involved in liver IRI are interferon-gamma (IFN-γ), IL-
1β, IL-6, IL-12, IL-23, IL-10, IL-13, vascular endothelial 
growth factor (VEGF), and hepatocyte growth factor 
(HGF). These cytokines promote leukocyte activation in 
the liver after ischemia through various pathways. IFN-γ 
is mainly produced by T cells and natural killer T cells, 
and activated by toll-like receptor-4 and IL-12. IFN-γ 
can either aggravate liver damage or reduce liver damage 
through enhancing or downregulating neutrophil accu-
mulation and activation in a dose-dependent manner[20]. 
IL-1β, IL-6, IL-12, and IL-23 are mainly produced by 
KCs and hepatocytes. IL-1β can upregulate NO synthesis 
through the protein kinase B (Akt), NF-κB, and induc-
ible nitric oxide synthase (iNOS) pathways. IL-1β can 
further upregulate leukocyte aggregation and adhesion 
by activating NF-κB and macrophage inflammatory pro-
tein (MIP)-2, thus damaging the liver cells[21]. IL-12 and 
IL-23 can also increase TNF-α production by activating 
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been studied extensively in recent years. NO is a highly 
reactive free radical produced from L-arginine and oxygen 
by nitric oxide synthase (NOS) in vivo[28]. Many studies have 
demonstrated that NO is a versatile signaling mediator in-
volved in a multitude of  critical cellular events, such as in-
hibition of  platelet aggregation, regulation of  the microcir-
culation, and inhibition of  caspase activities to prevent cell 
apoptosis[29,30]. It has been shown that both endogenously 
generated and exogenously administrated NO plays an 
important role in protecting the liver from IRI[31]. NO has 
been found to attenuate liver IRI through various mecha-
nisms, including the protection of  hepatocytes from apop-
tosis and the reduction of  macrophage infiltration[32]. Com-
plicated mechanisms and numerous molecules are involved 
in exerting the protective effects of  NO against liver IRI, 
including ATP molecules, endothelin, adhesion molecules, 
cytokines, free radical species, and antioxidants[33] (Figure 
2). NO has been shown to potentiate hepatic ATP levels, 
reduce oxidative damage, prevent the reduction of  antioxi-
dants such as glutathione, and reduce the adverse effects 
of  endothelin during liver IRI[33,34]. Studies have demon-
strated that NO affects cellular decisions of  life and death 
by either turning on or shutting off  apoptotic pathways, 
suggesting that NO can function differently depending on 
the dose and duration of  exposure[35,36]. Large amounts of  
NO may in turn paradoxically damage liver tissue by form-
ing nitrogen peroxide[37], suggesting that the therapeutic 
safety window of  NO is limited. 

NO-based therapy has been applied for many years 
to patients with pulmonary hypertension or cardiopul-
monary disorders. The therapeutic application of  NO 
in protecting the liver from IRI has just been emerging. 
A prospective randomized small group trial with liver 
transplant patients has demonstrated that NO inhalation 
in liver recipients during the perioperative period of  liver 
transplantation significantly protects hepatocytes from 
apoptotic death, accelerates the restoration of  liver graft 
function, and reduces hospital length of  stay[38]. Since 
NO has a very short half-life in vivo, it is not an ideal gas 

NF-κB and signal transducer and activator of  transcrip-
tion (STAT)-4, and further stimulating CD4 T cells to 
produce IL-17, ensuring the accumulation of  neutrophils 
and aggravating liver damage[22]. 

On the contrary, IL-6 can activate STAT-3, upregulate 
glutathione (GSH) expression, and downregulate oxida-
tive stress markers, thus reducing hepatocyte damage and 
promoting hepatocyte proliferation[23]. IL-10 and IL-13 
are mainly produced by KCs and T lymphocytes, and also 
play a role in alleviating liver damage and promoting liver 
regeneration. The protective role of  IL-10 and IL-13 
is mainly mediated by upregulation of  heme oxygenase 
(HO)-1, B-cell lymphoma (Bcl)-2/bcl-x, and downregula-
tion of  NF-κB, IL-1β, IL-2, IFN-γ, MIP-2, cytokine-in-
duced neutrophil chemotaxin, E-selectin, and neutrophil 
aggregation[24,25]. 

VEGF can be produced by many types of  cells in-
cluding KCs, T cells, sinusoidal endothelial cells and he-
patocytes. It plays dual functions in liver IRI. IRI triggers 
the VEGF receptor and Src tyrosine kinase activation, 
and upregulates the expression of  TNF-α, INF-γ, mono-
cyte chemoattractant protein-1 and E-selectin, all of  
which result in the accumulation of  intrahepatic T lym-
phocytes, macrophages and neutrophils, producing liver 
damage. On the other hand, exogenous administration of  
VEGF can upregulate iNOS production and protect the 
liver from IRI[26]. 

HGF is produced by liver non-parenchymal cells, 
mainly KCs. HGF can increase hepatocyte DNA syn-
thesis, proliferation, and glutathione expression, down-
regulate the expression of  the oxidative stress marker 
ICAM-1 in sinusoidal endothelial cells, and inhibit 
cytokine-induced neutrophil chemotaxin and neutrophil 
permeability, further reducing liver damage and promot-
ing liver cell proliferation[27]. 

PROTECTIVE ROLE OF NITRIC OXIDE
The effects of  NO in protecting the liver from IRI have 
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Figure 2  The protective effects of nitric oxide on liver ischemia-reperfusion injury. ATP: Adenosine triphosphate; IL: Interleukin. 
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for the treatment of  IRI. NO drugs administered to liver 
donors, such as organic nitrates and sodium nitroprus-
side, are now being explored as an alternative choice for 
NO delivery. 

Sodium nitrite, a storage form of  NO, can release 
NO during hypoxia and acidosis[39]. Sodium nitrite has 
now been identified as an important storage reservior of  
bioavailable NO in the blood and tissues[40]. The reduc-
tion of  nitrite to NO has been demonstrated to confer 
cytoprotection against IRI in the heart, liver, brain, and 
kidney[40]. Interventions that increase NO production 
by the use of  sodium nitrite before the occurrence of  
ischemia, either through intraperitoneal injection or oral 
administration, can mediate significant cytoprotection. 
This strategy has been demonstrated to potently limit 
acute IRI in both the heart and liver in murine warm IRI 
models, with the ability to decrease myocardial infarction 
and hepatocyte apoptosis[40-43]. 

NO is also an important effector molecule, produced 
by KCs and dendritic cells (DCs), and is involved in 
immune regulation and host innate and adaptive immu-
nity[44]. NO inhibits proinflammatory cytokines, including 
TNF-α, IL-1β, IL-1α and IL-12, which may induce the 
inflammatory cascade during liver IRI [24-26,33]. It has been 
reported that NO exerts multiple effects on immune 
cells, decreasing the number of  T helper (Th)1 cells and 
augmenting Th2 cell proliferation and their cytokine syn-
thesis, regulating leukocyte adhesion and recruitment to 
the site of  infection[45-47], inhibiting Th1 proliferation, and 
promoting T cell apoptosis[48,49]. Moreover, NO also con-
tributes to the immunosuppressive function of  induced 
T regulatory cells (Treg)[50]. Therefore, NO is involved in 
the regulation of  liver IRI-associated immune responses. 
The underlying mechanisms are largely unknown and 
warrant further investigation. 

CONCLUSION
Hepatic IRI is not only a pathophysiological process 

involving the liver itself, but also a complex systemic 
process affecting multiple tissues and organs. Hepatic 
IRI can seriously impair liver function, even producing 
irreversible damage, which causes a cascade of  multiple 
organ dysfunction. Many factors, including anaerobic 
metabolism, mitochondrial damage, oxidative stress, 
intracellular Ca2+ overload, cytokines and chemokines 
produced by KCs and neutrophils, and NO, are all in-
volved in the regulation of  liver IRI processes. The most 
important pathways of  liver IRI are initiated by oxidative 
stress, anaerobic metabolism and acidosis, further result-
ing in the cellular damage through induction of  apopto-
sis, immune responses, and cytokine regulations (Figure 
3). Inhaled NO or NO-producing drugs have shown 
positive effects on IRI protection in clinical practice, and 
may be a good choice for liver IRI therapy in the future. 
Therefore, further exploration of  the mechanisms of  
IRI on animal models focusing on the regulatory path-
way of  IRI development, with concomitant development 
of  a more effective method of  controlling IRI, will help 
overcome the challenges in the prevention of  IRI and 
therapeutic strategies. 
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