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Abstract
Systemic vascular disease, especially hypertension, has 
been suspected as a risk factor for some eye diseases 
including, diabetic retinopathy and age-related macular 
degeneration. Hypertension can contribute to chronic 
diseases by hemodynamic injury and/or cellular actions 
induced by hypertension-related hormones or growth 
factors. Among the most important is Angiotensin Ⅱ 
(Ang Ⅱ), which controls blood pressure and induces dif-
ferent cellular functions that may be dependent or in-
dependent of its effect on blood pressure. Importantly, 
as is true for heart, kidney and other organs, the renin-
angiotensin system (RAS) is present in the eye. So, 
even in the absence of hypertension, local production 
of Ang Ⅱ could be involved in eye diseases. The goal of 
this manuscript is to review the most relevant scientific 
evidence supporting the role of the RAS activation, in 
the development of age-related macular degeneration 
and diabetic retinopathy, and highlight the importance 
of Ang Ⅱ in the etiology of these diseases.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Renin-angiotensin system; Angiotensin Ⅱ; 
Angiotensin receptors; Hypertension; Retinal microvas-
culature; Blood flow; Angiotensin-related hypertension; 
Age-related macular degeneration; Diabetic retinopathy

Core tip: Association between eye diseases and system-
ic hypertension has been revealed. The developments 
of some ocular diseases, as well as, alterations in the 
severity of these diseases have been associated with 
disregulation of the ocular renin-angiotensin system 
and activation of the angiotensin type 1 receptor. In 
this paper we reviewed the importance of angiotensin 
Ⅱ in the etiology of age-related macular degeneration 
and diabetic retinopathy, two ocular diseases that can 
rob people of their vision.
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INTRODUCTION
Knowledge of  the renin-angiotensin system (RAS) has 
advanced remarkably over recent years from that of  a 
classical endocrine system that explained homeostasis 
for maintenance of  circulating intravascular volume and 
thereby restoration of  arterial pressure to a newer con-
cept including a number of  local RASs that operate inde-
pendently within several organs[1-5], including the eye[6,7].

Angiotensin Ⅱ (Ang Ⅱ), a hormone that raises blood 
pressure, is derived either from the circulation or from 
local production. Ang Ⅱ causes vasoconstriction, sym-
pathetic nervous stimulation, release of  aldosterone, and 
renal actions which contribute to control the blood pres-
sure[8]. The effects of  Ang Ⅱ provoke different responses 
in tissue, which are mostly mediated via the Ang Ⅱ type 
1 receptor (AT1R). According to previous studies, the 
systemic RAS is not supposed to be directly accountable 
for the increase in blood pressure, it appears to be that 
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the blood pressure and local blood flow (BF) adjustment 
are due to the local RASs[9]. Ang Ⅱ directly or indirectly 
also promotes apoptosis, hypertrophy, neovascularization, 
inflammation and fibrosis via AT1R activation[10-13].

Ophthalmic literature concerning the RAS started 
in 1977 with a study by Igić et al[14] on the detection of  
angiotensin-converting-enzyme (ACE) activity in homog-
enates of  the retina. Since then, and as shown in Table 
1, the presence of  all constituent of  the RAS has been 
confirmed in different parts of  the eye (Figure 1), where 

the mediators of  the RAS are locally released, conferring 
the molecular basis for a biological function of  these me-
diators in the eye[15-18] . However, the origin of  intraocular 
mediators such as Ang Ⅱ and renin has been debated. 
Local synthesis of  both renin and ACE has been sug-
gested in the retina of  rats[19]. In this way, the secretion of  
renin by retinal pigment epithelium (RPE) to the retinal 
side was demonstrated by Milenkovic et al[20] (2010). It 
has been also suggested that Ang Ⅰ, Ang Ⅱ, and angio-
tensinogen are not able to cross the barriers between eye 

969 September 26, 2014|Volume 6|Issue 9|WJC|www.wjgnet.com

Marin Garcia PJ et al . Eye diseases and angiotensin Ⅱ

Table 1  Presence of renin-angiotensin system components in the eye

RAS molecule Eye part Species Ref.

Prorenin Retina Human Sramek et al[207], 1988
Ciliary body Human Danser et al[33], 1989

Vitreous body Human Danser et al[33], 1989
Retina Retina Human, rabbit Danser et al[33], 1989

Ciliary body Rabbit Wagner et al[19], 1996
Choroid Human, Rabbit Ramirez et al[208], 1996

Iris Rabbit Ramirez et al[208], 1996
Vitreous Human, rabbit Ramirez et al[208], 1996

Aqueous humor Rabbit Ramirez et al[208], 1996
Angiotensinogen Retina Human, rabbit Sramek et al[209], 1992

Ciliary body Human, rabbit Ramirez et al[208], 1996
Choroid Human, rabbit Wagner et al[19], 1996

Iris Human, rabbit Wagner et al[19], 1996
Vitreous Human, rabbit Wagner et al[19], 1996

Aqueous humor Rabbit
ACE1 Retina Dog, monkey, human Vita et al[210], 1981

Rabbit, porcine Weinreb et al[211], 1985
Ciliary body Human, rabbit, porcine Immonen et al[212], 1987

Choroid Dog, monkey, human Ramirez et al[208], 1996
Rabbit, porcine Wagner et al[19], 1996

Sclera Dog, monkey Shiota et al[213], 1997
Iris Rabbit, porcine Geng et al[214], 2003

Cornea Human Savaskan et al[16], 2004
Vitreous Dog, monkey, rabbit Savaskan et al[16], 2004

Aqueous humor Human, dog, monkey, rabbit Savaskan et al[16], 2004
Tear fluid Human, rabbit Savaskan et al[16], 2004

ACE2 Retina Rodent Tikellis et al[215], 2004
Human Senanayake et al[17], 2007

Chymase Choroid Dog Shiota et al[213], 1997
Sclera Dog Maruichi et al[216], 2004

Vitreous body Human
AT1R Retina Human Savaskan et al[16], 2004

Cornea Human Senanayake et al[17], 2007
RPE Human Striker et al[18], 2008

Rodent Praddaude et al[104], 2009
AT2R Retina Human Senanayake et al[17], 2007

RPE Human Striker et al[18], 2008
Rodent Praddaude et al[104], 2009

Ang Ⅰ Retina Porcine Danser et al[22], 1994
Choroid Porcine

Vitreous body Porcine, human
Aqueous humor Human

Ang Ⅱ Retina Human, porcine, rabbit Danser et al[22], 1994
Ciliary body Human, rabbit Ramirez et al[208], 1996

Choroid Porcine, human, rabbit Savaskan et al[16], 2004
Iris Rabbit Senanayake et al[17], 2007

Cornea Human
Vitreous body Porcine, human, rabbit

Aqueous humor Human, rabbit
RPE Rodent Praddaude et al[104], 2009

Ang 1-7 Retina Human Senanayake et al[17], 2007

Ang: Angiotensin; RAS: Renin-angiotensin system; AT1R: Angiotensin Ⅱ type 1 receptor; ACE1: Angiotensin-converting-enzyme 1.



and circulating blood[21,22]. On the other hand, the pres-
ence of  a ocular local production of  Ang Ⅱ has been 
indicated[22,23]. As a result, increased local or tissue Ang Ⅱ 
formation in the retina in the absence of  elevated circu-
lating Ang Ⅱ may indeed be deleterious.

The RPE, a cell layer between the neurosensory retina 
and choroid, nourishes retinal visual cells and forms part 
of  the blood-retinal barrier, therefore, playing a central 
role in maintaining retinal function. For example, the 
presence of  the AT1R in the RPE basolateral mem-
brane[20], indicates that the systemic RAS is a part of  that 
retinal function signaling. Interestingly, by using electro-
retinography, it was previously demonstrated that regula-
tion of  the systemic RAS changes the neuro-sensory reti-
na activity[24-26]. Furthermore, plasma Ang Ⅱ cannot pass 
into the eye[7], and modifications of  the renin expression 
in the RPE by regulators of  the systemic RAS alter, have 
been observed[24]. Overall, these data lead to think the 
systemic RAS credits the presence of  an intraocular RAS 
through the RPE.

The presence of  the most important RAS compo-
nents in the retina and the Ang Ⅱ actions observed in 
the eye (Surveying PubMed for eye, ocular, or retina, and 
Ang yields 734 citations dating back to 1963), imply an 
important role of  RAS in the eye. However, its exact role, 
remains inadequately recognized. Of  special focus are the 
components of  the RAS and its receptors in the retina, 
as the RAS is increasingly recognized as a mediator of  
the pathogenesis of  ocular diseases such as age-related 
macular degeneration (AMD) and diabetic retinopathy 
(DR)[27-36], which are two major causes of  severe vision 
loss and blindness. Therefore, in this manuscript we re-
view the most relevant scientific evidence supporting the 
function of  the RAS activation, in the development of  
AMD and DR, and highlight the importance of  Ang Ⅱ in 
the etiology of  these two ocular diseases.

RETINAL MICROVASCULATURE: 
MODULATION BY ANG Ⅱ
Given that vascular pathology in the retina is an important 
contributor of  vision loss, the greatest research examin-
ing retinopathy and the possible role played by the RAS 

has been focused on the microvasculature. The circulatory 
system of  the retina supplies oxygen and nutrients to reti-
nal tissue, which is essential for a correct function.

The retina circulation essentially comprises two parts: 
(1) a retinal circulation without autonomic innervation; 
and (2) a choroidal vasculature with autonomic innerva-
tions[37]. Evidence is accumulating that the retinal mi-
crovasculature is an interactive complex that includes a 
network of  capillaries and a tertiary arteriole that links 
the capillaries with a secondary arteriole (Figure 2). The 
capillary is formed by an uninterrupted endothelium and 
inner pericytes[38]. Both endothelial cells and pericytes are 
directly communicated and share a common basement 
membrane[39]. It was previously demonstrated that con-
traction and relaxation of  pericytes leads to alterations 
in the capillary lumen, which could regulates local perfu-
sion[40-45]. Moreover, evidence suggests that a capillary net-
work including pre-capillary at the tertiary arteriole form 
a working unit which is able to control local perfusion 
within the retinal vessels[39,46,47].

The retina tends to keep its BF constant through an 
autoregulatory response that is intrinsic[48,49]. The utoregu-
lation of  the retinal microcirculation is evaluated by some 
methods, including changes in systemic blood pressure[50]. 

The main regulators of  BF are the vascular perycites[51,52], 
endothelium cells and the neural and glial cells[53]. One of  
the most important peptides playing a crucial role in the 
regulation of  vasculature tone is Ang Ⅱ[54-58]. For instance, 
it has been demonstrated that Ang Ⅱ induces retinal 
endothelial cells apoptosis[59] and constriction of  peri-
cytes[60-63], therefore, decreasing the mean retinal arterioles 
and capillaries diameter, which leads to BF reduction[51,52].

Modifications in the retinal BF has been observed 
in some eye disorders. For example disturbances in the 
ocular circulation have been reported in AMD[31-33], sup-
porting the presence of  hemodynamic abnormalities in 
this disease. AMD is the main cause of  severe visual loss 
and legal blindness in elderly. There are three stages of  
AMD: (1) early AMD, which is diagnosed by the presence 
of  medium-sized drusen: (2) intermediate AMD, charac-
terized by the presence of large drusen and/or pigment 
changes in the retina: and (3) late AMD, in which in addi-
tion to drusen, there is damage of  the macula with severe 
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Figure 1  A drawing of a section through the human eye with a schematic enlargement of the retina [Helga Kolb from AMER Sci (2003)].
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of  their vision. This ocular disease is a public health 
problem that will remain a major threat to vision.

There are two forms of  AMD; early (dry) AMD and 
late (wet) form. Wet AMD is always preceded by early 
disease, and in about one-third of  cases dry AMD can 
lead to wet macular degeneration which progresses much 
more rapidly and leads to greater loss of  central vision. 
Death of  photoreceptors is the ultimate cause of  vision 
loss. However, the initial cellular target of  this deseade is 
the RPE, its extracellular matrix, and the subjacent vas-
cular bed (called choriocapillaris; Figure 2C), the blood 
supply for the outer retina.

Dry AMD is characterized by the accumulation of  
debris and other lipid rich extracellular deposits in form 
of  drusen under the RPE and within Bruch’s membrane 
(BrM) (Figure 3B)[86,87]. During aging, deposits initially ac-
cumulate between the RPE and its basement membrane 
(called BLD), but progression into AMD requires ad-
ditional deposit formation within BrM, (called BLiD and 
“nodular” drusen). These are yellowish lesions that can 
be seen in the macula at the earliest stages of  dry AMD. 
A finding in dry AMD that represents disease progres-
sion and can be used as a surrogate endpoint is the pres-
ence, size, and appearance of  drusen. Over time, these 
drusen enlarge, coalesce, become pigmented, and eventu-
ally can disappear when they progress to the late form 
of  AMD. We observed that when drusen go away, there 
are three possible outcomes; formation of  geographic 
atrophy, formation of  abnormal blood vessels known as 
wet AMD or choroidal neovascularization (CNV) (Figure 
3C), or disappearance of  drusen without any significant 

vision loss[64]. Both local ocular and systemic vascular 
risk factors, such as systemic hypertension seem to be 
connected with the etiology of  AMD. A relationship be-
tween AMD and modifications in the eye circulation was 
previously reported[27,29,65-72] and numerous studies have 
proposed a decrease in the vascularity of  the choroid[73-75], 
reinforcing the existence of  hemodynamic abnormalities 
in this disease. The relationship between impaired choroi-
dal perfusion, reduced choroidal BF and clinical manifes-
tations of  AMD has been recently reported by previous 
studies[70,71,75-79]. 

Association between AMD and systemic hypertension 
has been studied by many epidemiological studies[80-84]. 
The Macular Photocoagulation Study has demonstrated 
that patients with both, AMD and hypertension respond-
ed less to laser photocoagulation treatment than patients 
with only AMD[85]. These observations, suggested that 
hypertension could have a harmful effect on the stages 
of  AMD. A decrease in the choroidal BF in individuals 
with hypertension versus those without was previously 
reported[31,32]. These authors, also showed that this reduc-
tion becomes more marked with increasing AMD sever-
ity[31,32]. Therefore, the observed decrease in choroidal BF 
in AMD patients with hypertension suggests the implica-
tion of  an ischemic mechanism in the etiology of  AMD.

ANG Ⅱ-RELATED HYPERTENSION IN THE 
PATHOGENESIS OF AMD
AMD is a slow progressing disease that can rob people 
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Figure 2  Anatomy of ocular circulation. A: Central retinal artery and vein respectively; B: Arteriole (black arrowhead); capillaries (white arrowhead); C: Choroidal 
vasculature (Anand-Apte, Hollyfield, Academic Press, Elsevier Books, 2009; 9-15). 
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anatomic abnormality. The endpoint that represents the 
progression of  the disease is the growth and enlargement 
rate of  drusen[88-90]. Wet AMD is always preceded by early 
disease. 

Our understanding of  this disease has increased; 
however, no one knows exactly what causes AMD. Age 
is the major factor determinant for developing AMD. 
However, it has been suggested that the disease results 
from some interactions between different issues: genetic 
susceptibility, environmental factors and systemic health 
co-factors[91-95]. Because the increasing frequency of  hy-
pertension, the RAS is of  special interest among these 
systemic health co-factors. In this context, epidemiologi-
cal demonstrated an association between hypertension 
and incidence of  drusen[28] and with wet AMD develop-
ment[29,96-98]. Exciting findings which showed a strong link 
between hypertension and progression of  early AMD to 
the wet form were recently published[99]. However, the 
mechanism(s) by which hypertension contribute to the 
progression from early form to CNV was not elucidated. 
In recent years, evidence has revealed that Ang Ⅱ, AT1R 
signaling, and prorenin, may play a significant role in the 
mentioned pathologic processes[100-104]. Moreover, recent 
studies revealed the participation of  AT2R, Ang Ⅰ and 
Ang 1-7[24]. Consequently, investigation of  the local RAS 
in the retina will allow find out new approach for the de-
velopment of  new treatments.

Dry (early) AMD
As mentioned previously, RPE-derived debris and other 
debris accumulated between the RPE and within BrM 
is a very well-known histopathologic sign of  the dry 
AMD[105-108]. Studies in eyes from AMD patient found out 
deposits of  RPE-derived debris within BrM[109]. Never-
theless, the mechanism(s) by which the debris accumulate 
were not studied. Based in the idea that a relationship 
between matrix metalloproteinases (MMPs) and inhibi-
tors of  matrix metalloproteinases and development of  
dry AMD exits. We proposed that the evolution of  the 
sub-RPE deposits into BrM necessitates breakdown of  
the RPE basement membrane’s components by diges-

tion or degradation of  these compounds (i.e., type Ⅳ 
and Ⅰ collagens and laminin)[110,111], and that ECM turn-
over up-regulation through activation of  MMP-2 and 
MMP-14 is required for the interruption of  these physi-
cal barriers. We evaluated the regulatory effects of  Ang 
Ⅱ and prorenin-activated prorenin receptor (PRR) on the 
MMP-2 and basement membrane component proteins, 
in the RPE. The objective of  our work was to describe 
the expression and function of  Ang Ⅱ receptors in the 
RPE and at explore the contribution of  this hormone 
and PRR in the etiology of  dry AMD. Mice were ren-
dered hypertensive either by exogenous administration of  
Ang Ⅱ or by using a model of  experimental renovascular 
hypertension (1K1C). Measurements of  systolic blood 
pressure (BP) revealed a progressive increase during Ang 
Ⅱ infusion period reaching a peak value on day 14 and 
remaining at plateau through day 30. However, after 24 h 
of  exposure to Ang Ⅱ, BP was not modified. Similarly, 
BP was significantly higher in 1K1C mice compared with 
the corresponding sham-operated group. No significant 
differences in BP were observed between control and 
sham-operated groups. Treatment using Ang Ⅱ in com-
bination with angiotensin receptors blockers showed that 
the AT1R blocker eliminated the modifications in the 
BP due to Ang Ⅱ. However, the AT2R blocker did not 
alter the effect of  Ang Ⅱ on systolic BP, demonstrating, 
that the effect on BP caused by Ang II was AT1R medi-
ated[104,112].

Our study in human and mouse also confirmed that 
both ATRs were expressed and upregulated by Ang Ⅱ 
in the RPE and showed that the activation of  the AT1R 
by Ang Ⅱ increased the intracellular calcium levels[18,105]. 
These results clearly evidenced the functionality of  the 
RPE’s AT1R, which could be coupled to the phospho-
lypase C-pathway. In contrast, activation of  the AT2R by 
Ang Ⅱ did not mobilize intracellular calcium. AT2R could 
be coupled to the cytosolic phospholipase A2 and not to 
the PLC pathway as shown for other tissues[113]. Conse-
quently, regulation of  the AT2R transduction pathway is a 
possibility to be explored.

Ang Ⅱ also up-regulated the activity of  MMP-2, 

Figure 3  The pathologic changes to the retina and choroidal blood vessels typical of dry and early wet age-related macular degeneration respectively. A: 
Control; B: Early age-related macular degeneration (AMD); C: Wet AMD. PR: Photoreceptors; RPE: Retinal pigment epithelium; BrM: Brusch’s membrane; CC: Cho-
riocapillaries; CNV: Choroidal neovascularization (provided by the OcuCure Therapeutics’ website).
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MMP-14, and basigin (also known as extracellular matrix 
metalloproteinase inducer or cluster of  differentiation 
147) as well as digestion of  type Ⅳ collagen[18,104,112]. The 
Ang Ⅱ observed effects were blocked by the AT1R an-
tagonist candesartan. In vivo, the Ang Ⅱ-derived decrease 
in collagen Ⅳ was AT1R/AT2R mediated, implying a 
synergistic effect. Therefore, Ang Ⅱ through MMP-2, 
MMP-14, and basigin regulation could stimulate RPE 
basement membrane breakdown allowing the migration 
of  BLD and buildup of  BLiD deposits or drusen. 

It is important to note that the majority of  intra-
cellular effects of  Ang Ⅱ in most tissues are MAPKs 
mediated. MAPKs are a group of  serine/threonine ki-
nases[114-116] which can be divided into three major groups: 
ERK, p38, and Jun N-terminus kinase (JNK) and partici-
pate in a wide array of  cellular responses including pro-
liferation, differentiation, migration, and stress responses 
among others[117-120]. We explored the involvement of  
MAPK as intracellular modulator of  Ang Ⅱ-induced up-
regulation of  MMPs in the RPE. Our study showed that 
Ang Ⅱ-induced increase in MMP-2 activity is mediated 
by ErK(1/2) and p38 MAPK in the human RPE cell line 
ARPE-19. We also demonstrate that Ang II increased the 
expression of  MMP-14, MMP-2 activity major regulator, 
in an ErK(1/2) and p38 MAPK-dependent way while 
basigin does not appear to be involved in RPE cells. In 
addition, we reported that ErK/p38 MAP kinase signal-
ing pathway is AT1R mediated, which could be an im-
portant mechanism by which Ang Ⅱ up-regulates MMPs 
in RPE cells. Moreover, we show that RPE from mice 
exposed to Ang Ⅱ for 4 wk showed increased MMP-14 
and basigin protein expression as well as increased 
phosphorylated ErK(1/2), p38, and JNK MAPK. The 
increase in MMP-14 protein expression and activation 
of  ErK(1/2), p38, and JNK MAPK were AT1 receptor-
mediated, whereas the increase in basigin expression 
increase was mediated by AT2 receptor[112]. Blockade of  
extracellular signal-regulated kinases or p38 MAPK abol-
ished the up-regulation of  MMPs in RPE cells[112]. Given 
that MMP-14 and basigin are major inducers of  MMP-2, 
our results lead us to speculate that MMP-14 and basigin 
might regulate Ang Ⅱ-induced MMP-2 activity through 
MAPKS- and AT1 receptor-dependent signaling path-
ways in the RPE. These original observations highlight 
the potential importance of  this signaling pathway as a 
potential mediator of  RPE response to Ang Ⅱ-induced 
ECM dysregulation and disruption of  the RPE basement 
membrane believed to be involved in sub-RPE deposits 
progression in the pathogenesis of  AMD. Based on our 
observations, MAPKs inhibitors and AT1R blockers may 
prevent these changes in the ECM, which are essential in 
the development of  early AMD. 

We also provided evidence that activation of  the PRR 
may be involved in ECM-remodeling through increase of  
collagen Ⅰ[121]. Interestingly, we confirmed that PRR and 
type Ⅰ collagen were present in human retinas and that 
the expression of  both proteins was higher in the RPE 
from dry AMD hypertensive donors (Figure 4), support-

ing our in vitro findings. Overall, our studies suggest a 
molecular mechanism by which hypertension may aggra-
vate the pathology of  dry AMD.

Even though dry AMD is not a retinal vascular pa-
thology, we reviewed this form of  the disease here be-
cause hypertension-related Ang Ⅱ has been implicated 
in dry AMD pathogenesis[28], and wet AMD is always 
preceded by the early form of  the disease.

Wet AMD 
As mentioned previously, about one-third of  cases dry 
AMD can lead to wet macular degeneration which pro-
gresses much more rapidly and leads to loss of  central 
vision. CNV is a retinal vasculature related pathology[120] 

associated with several common retinal degenerative or 
inflammatory diseases[87,120,122,123]. Inflammation and hy-
poxia are key cellular processes involved in the develop-
ment of  CNV[17-25], in that choroidal monocytes processes, 
for example, have been noted to insert into BrM deposits 
suggesting that these sub-RPE deposits may generate 
inflammatory stimulus at the BrM and sub-RPE space. 
Macrophage infiltration to the damaged sites by chemo-
tactic factors may be responsible for the production of  
inflammatory cytokines and angiogenic factors such as 
intercellular adhesion molecule 1 (ICAM-1) and monocyte 
chemoattractant protein-1 (MCP-1)[124] and vascular en-
dothelial growth factor (VEGF)[125] which will ultimately 
contribute to induction and/or progression of  CNV[26-28]. 
Blockade of  AT1R by systemic administration of  telmis-
artan reduced CNV formation, macrophage infiltration 
and expression of  VEGF, VEGF receptor-2 (VEGFR-1), 
ICAM-1 MCP-1 and interleukin 6 in eyes from a laser 
induced CNV mouse model of  AMD[125]. This suggests 
that AT1R mediated up-regulation of  these molecules and 
mediators participate in the development of  CNV.

Ang Ⅱ has been shown to act as an indirect mitogenic 
agent for retinal vascular endothelial cells by increasing 
VEGFR-2 expression[23] which could lead to formation of  
CNV. Blockade of  AT1R signaling suppresses pathologic 
but not normal retinal neovascularization by inhibiting 
inflammatory processes[34,116]. Additionally, it has been 
shown that excised choroidal neovascular membranes 
from patients with AMD express AT1R, AT2R and Ang 
Ⅱ on the vascular endothelium[126]. Similar findings were 
seen in the laser-induced mouse model of  CNV[126]. As 
noted above, formation of  CNV was suppressed with the 
AT1R blocker telmisartan but not with an AT2R antago-
nist[127]. In a laser induced model of  CNV using AT1R 
knockout mice, the ACE inhibitor, imidapril, significantly 
reduced choroidal and retinal neovascularization in wild 
type mice to levels detected in laser treated AT1R KO 
mice[128]. Additionally, in a rat model of  laser-induced 
CNV, losartan was shown to inhibit the incidence of  new 
vessel formation from 99.5% to 72.5%[129].

Increasing evidence support the notion that increase 
in the production of  of  chemokines happens in diseases 
related to an inflammatory component. Several of  these 
chemokines are expressed in the RPE cells, including 
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MCP-1[29,30], which has been proposed to be implicated in 
the development of  dry and wet AMD[31-33]. During in-
flammatory responses, RPE cells have been shown to se-
crete MCP-1 toward the choroid, consequently, implying 
that RPE cells might induce recruitment of  macrophage 
to the choroid[34]. There is clear evidence for the role of  
MCP-1 in angiogenesis in several angiogenic-related dis-
orders[35-37]. Interestingly, expression of  the recently dis-
covered novel zinc finger protein MCP-1 induced protein 
(MCPIP) has been shown to induce tube formation in 
human umbilical vein endothelial cells[38].

As mentioned previously, hypoxia, which was pro-
posed to be one of  the most significant driving forces for 
CNV formation[130], is another key cellular process which 
stimulates the expression of  VEGF in AMD. Angiogenic 

factor expression occurring secondary to hypoxia is me-
diated by the family of  transcription regulators know as 
hypoxia inducible factors (HIF). HIF-1 and -2 have been 
found to be expressed in human choroidal neovascular 
membranes[131], and HIF-1 has been shown to upregu-
late expression of  VEGF in RPE[132,133]. Hypertension-
associated Ang Ⅱ is known to induce inflammation, 
macrophage infiltration, and angiogenesis by stimulating 
expression of  MCP-1, HIF-1 and VEGF through the 
AT1R[126,134-137]. Up-regulation of  MCP-1 has been dem-
onstrated in hypoxic animals[138] and recently, it has been 
demonstrated that MCP-1 promotes angiogenesis via 
MCPIP, HIF-1 and VEGF induction[139]. Interestingly, 
previous works also suggest that the BF in the choroi-
dal and retinal is down-regulated in AMD hypertensive 

Figure 4  Representative immunofluorescent double staining of prorenin receptor, collagen types Ⅰ and Ⅳ, laminin and matrix metalloproteinase-2 (green) 
and nuclei (bleu) in retina sections from human donor eyes with no known eye disease (B, D, F, H, J and L), and human donor eyes with dry age-related 
macular degeneration and hypertension (A, C, E, G, I and K)[121]. Negative controls were generated by omission of the primary antibody (A and B). Sections were 
analyzed by using confocal microscopy (original magnification, × 40). INL: Inner sections were analyzed with a confocal microscope at a magnification of × 40. INL: 
Inner nuclear layer; ONL: Outer nuclear layer; MMP: Matrix metalloproteinase; PIS: Photoreceptor inner segments; POS: Photoreceptor outer segments; RPE: Retinal 
pigment epithelium; Ch: Choroid.

INL

ONL

PIS

POS
RPE

Ch

A B C D

E F G H

I J K L

Control Control
50 μm (P)RR (P)RR

Collagen Ⅰ Collagen Ⅰ Collagen Ⅳ Collagen Ⅳ

Laminin Laminin MMP-2 MMP-2

INL

ONL

PIS
POS
RPE

Ch

INL

ONL

PIS

POS

RPE

Ch

Marin Garcia PJ et al . Eye diseases and angiotensin Ⅱ



975 September 26, 2014|Volume 6|Issue 9|WJC|www.wjgnet.com

patients[31,32], which leads to think about the possibility 
that an ischaemic/hypoxia mechanism plays a role in 
the CNV development. Given that a positive correlation 
between elevated levels of  circulating MCP-1 and hyper-
tension has been previously shown, we studied whether 
hypertension-induced Ang Ⅱ influences the development 
of  CNV and characterized the role played by MCP-1/
MCPIP in this event. We addressed this by setting goals 
of  understanding the mechanisms underlying the interac-
tions between the RPE, choroidal microvascular endothe-
lial cells (cEC) and Ang Ⅱ which may contribute to CNV 
development in hypertensive dry AMD patients.

Our results indicated that hypertension-induced Ang 
Ⅱ increases MCP-1 and MCPIP expression in mouse 
RPE-choroid through AT1 receptor. In vitro, MCP-1 and 
MCPIP expression was up-regulated by Ang Ⅱ in RPE 
cells. Moreover, MCP-1 induced expression of  MCPIP in 
RPE cells, which led to cEC tube formation (Figures 5-7) 
(Marin-Castano et al[140] IOVS 2013; ARVO E-Abstract 
6089). Therefore, our data support the hypothesis that 
Ang Ⅱ, through MCP-1/MCPIP may contribute to CNV, 
proposing a possible mechanism linking hypertension 
and CNV, which can provide new targets for more effec-
tive early preventive and novel therapeutic interventions.

DR AND THE RAS
The incidence of  DR is alarming. A recent study empha-
sizes that 93 million people have DR, and that about 17 
million have the blinding form of  the disease[141]. Patients 
with type 1 or type 2 diabetes are at risk for the develop-
ment of  DR. The longer a person has diabetes, the more 
likely they are to develop DR[142]. DR is classified into two 
types: (1) non-proliferative DR (NPDR), the early state 
of  the disease. In NPDR, the blood vessels in the retina 
are weakened causing tiny bulges called microanuerysms. 
The microanuerysms may leak fluid into the retina, which 
may lead to swelling of  the macula: and (2) proliferative 
DR (PDR), which is the more advanced form of  the dis-
ease. At this stage, the retina becomes oxygen deprived. 
New blood vessels can start to grow in the retina and into 
the vitreous causing clouding vision. If  left untreated, 
PDR can cause severe vision loss and even blindness[143]. 
The progression to PDR looks like to be a result of  tis-
sue ischemia and the consequent increase in the produc-
tion of  angiogenic growth factors such as VEGF.

The report that some components of  the RAS are 
augmented in blood and eyes from DR patients[46,144,145], 
suggests the RAS may be implicated in the pathogenesis 
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Figure 5  Hypertension-induced Angiotensin Ⅱ up-regulated monocyte chemoattractant protein-1 and monocyte chemoattractant protein-1 induced pro-
tein expression through AT1R activation in retinal pigmented epithelium-choroid[140]. C57BL 6 mice were treated with saline (1), Ang Ⅱ (2), and Ang Ⅱ in com-
bination with candesartan (10 mg/kg per day) (3). Blood pressure was recorded before and after treatment. After 30 d of treatment, animals were sacrificed and eyes 
enucleated and collected for microdisection of retinal pigmented epithelium-choroid. Monocyte chemoattractant protein-1 (MCP-1) and MCP-1 induced protein (MCPIP) 
proteins were analyzed by real-time PCR and Western blot. MCP-1 and MCPIP mRNA expression by real-time PCR (A and D), protein expression by Western blot (B 
and E), and MCP-1 protein secretion by ELISA (C). GAPDH was used as control. Data are expressed as mean ± SE (n  = 3). aP  < 0.05, bP  < 0.01 vs  control; cP  < 0.05, 
dP  < 0.01 vs  Ang Ⅱ-treated animals. CD: Candesartan. Ang: Angiotensin; PCR: Polymerase chain reaction; GAPDH: Glyceraldegyde 3-phosphate dehydrogenase; 
ELISA: Enzyme-linked immuno assay.
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of  DR[28]. An increase of  angiotensinogen, ACE, ACE2, 
and AT1R in retinas from diabetic animals was described 
previously[35,146,147]. Up to now, research addressed to find 
a link between the RAS and retinopathy has been based 
on the retinal microvasculature. Strong evidence support-
ing a role of  Ang Ⅱ in pericytes and endothelial cells 
in the retinal microvasculature has been shown. Ang Ⅱ 
has a mitogenic effect on retinal endothelial cells[23,59,148]. 
This peptide also decreases the expression of  pigment 
epithelium derived growth factor[148] and enhances prolif-
eration of  endothelial cells in retina through VEGF up-
regulation[23,149]. Moreover, glucose ingestion by the retinal 
tissue might be instantly regulated by Ang Ⅱ[150,151]. This 
increase in glucose in turn could induce VEGF expres-
sion and potentates the effect of  Ang Ⅱ on VEGF ex-
pression as demonstrated previously in vascular smooth 
muscle cells[152]. Since it is clear that reactive oxygen spe-
cies (ROS) contribute to cellular damage in DR by induc-
ing VEGF[153,154], and that both Ang Ⅱ and high glucose 
can lead to ROS formation,[155,156] ROS may be a common 
pathway linking a synergistic effect between Ang Ⅱ and 
high glucose on the activation of  VEGF. 

The actions of  Ang Ⅱ on the retinal vasculature have 
been well described in pericytes. These microvascular cells 
are incriminated in the regulation of  capillary tone[157], 
and it has been suggested they have other extra roles such 
as preservation of  microvascular homeostasis[149]. For 
instance, death of  pericytes has been linked to the initial 
sign of  DR. It has been reported that Ang Ⅱ uncouples 
pericytes from the vasculature[48,158]. Studies in vitro have 
shown activation of  pericyte migration by Ang II through 
the AT1R[159,160]. Moreover, Ang Ⅱ also has an effect on 
pericyte viability, by increasing apoptosis[33,59]. Therefore, 
it is evident that Ang Ⅱ impacts the retinal microvascu-
lature. Research in diabetic animals showed a reduction 
in the retinal microvascular injury by exposure to ACE 
inhibitors and AT1R blockers. These data revealed a de-
crease in the vascular leakage, acellular capillaries forma-
tion, VEGF production[161-164], leukostasis and adhesion 

molecules[164-167]. Comparable advantages were observed 
in different animal models of  diabetes, which were treated 
with renin inhibitors[167], PRR inhibitor[35], and gene de-
livery of  ACE2[160] respectively. Diabetes may also affect 
neuronal retina in DR. For example, diabetic retina may 
reveal releasing of  pro-inflammatory factors by microg-
lia[168] , death of  retinal neurons[169], apoptosis of  ganglion 
cells[170], glial dysfunction[170] and photoreceptors loss[171]. 
These pathological neuronal effects may be translated 
to electrophysiological abnormalities[172-174]. Color vision, 
contrast sensitivity and dark adaption[24,175] can be altered 
by diabetes before the presence of  any apparent patholog-
ical sign in the vessels[175]. Given that treatment with ACE 
inhibitors and AT1R blockers decreases these deficits in 
retinal function[176-179], the advantages of  RAS blockade 
could extend to non-vascular cells. 

It is also interesting to note that discovery of  other 
important players on the RAS such as ACE2 and Ang 
(1-7) has resulted in the emerging new role ascribed to 
these RAS components beyond the classic ACE/Ang Ⅱ
/AT1R axis of  the RAS[179-180]. Nevertheless, the force of  
this novel axis stays inadequately elucidated[180,182-184]. This 
new protective axis antagonizes the classic role of  the 
vasoconstrictor axis. Thus, it was assumed that a dispro-
portion in the vasoprotective/vasodeleterious axis of  the 
RAS, could result in the development and progression of  
DR. Many studies in non-ocular tissues have emphasized 
the beneficial effect of  the balance displacement of  the 
RAS towards the ACE2/Ang (1-7)[180,185-189]. Therefore, 
activation of  the vasoprotective axis is currently consid-
ered to be part of  the beneficial actions of  ACEi and 
ATRs blocker drugs[180,182], which neutralize the actions of  
Ang Ⅱ, in spite of  its origins of  generation[146].

High blood pressure is a great risk factor for DR. 
Several studies have been addressed to elucidate if  the 
contribution of  the Ang Ⅱ to the development of  DR is 
via blood pressure dependent or independent. This is an 
intricate search, given that blockers of  some compound 
of  the RAS decrease both blood pressure and the actions 
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of  the Ang Ⅱ at cellular levels. Studies in Ren-2 rat with 
hypertension showed that both AT1R and β-adrenergic 
blockade regularize blood pressure[158]. Nevertheless, the 
retinal vascular pathology only becomes better using 
AT1R blockers. Additional determination of  the blood 
pressure-independent effects of  the RAS blockade in DR 
is crucial for diabetic patients without hypertension. 

The mechanism(s) by which the RAS exerts its ef-
fects in the retina are being investigated. There is proof  
that hypertension and mechanical stretch up-regulate the 
RAS and VEGF expression[190]. It has been previously 
demonstrated an increase of  VEGF in the RPE[191] and 
in retinal endothelial cells[192] due to mechanical stretch. 

Moreover, rats with hypertension showed increased ex-
pression of  the VEGFR-2 in the retina[191]. Therefore, it 
could be probable that the decrease in VEGF reported 
in DR[193] following RAS blockade could be due to the 
antihypertensive properties of  this treatment, rather 
than, suppression of  the growth factor effects of  Ang 
Ⅱ. Moreover, given that a relationship between ROS and 
cellular damage in DR has been demonstrated and the 
fact that ROS production is induced by Ang Ⅱ[153,154,194,195], 
it is likely that ROS are essential in the pathogenesis of  
DR. The main origin of  the ROS is nicotinamide adenine 
dinucleotide phosphate (NADPH, or NOX) and ROS 
originated from NOX have been associated with the de-
velopment of  DR[196,197]. Ang Ⅱ modulates NOX to gen-
erate ROS[194,198]. However, the connection between the 
RAS and NOX in retinopathy is not completely clarified 
yet[199,200]. Obviously, the link involving RAS and NOX in 
DR guarantees further study.

Clinical trials evaluated the influence of  Ang Ⅱ in the 
development and progression of  DR. To elucidate this, 
three major studies addressed to evaluate the blockade 
of  the RAS were done: (1) the DIabetic REtinopathy 
Candesartan trial[201-204]; (2) the Appropriate Blood Pres-
sure Control in Diabetes trial[205]; and (3) the Action in 
Diabetes and Vascular Disease Controlled Evaluation 
(ADVANCE) trial[206]. The first study showed that cande-
sartan, an AT1R blocker, modestly avoid the evolution of  
retinopathy in type 1 diabetic patients without hyperten-
sion. From another point of  view, this AT1R blocker 
caused reversion of  retinopathy in type 2 diabetic pa-
tients in a 34% regression of  retinopathy and decreased 
the risk of  microaneurysm evolution in both types of  
diabetes[202]. The second trial study, showed notably ben-
efit for RAS blockade[203], whereas the ADVANCE study 
reported that treatment with a combination of  an ACE 
inhibitor and a diuretic, did not affect the retinopathy 
risk[205]. I summary, these data document the influence of  
Ang Ⅱ in the development of  DR. Further evaluation 
of  the RAS blockade in DR is still to be determined.

CONCLUSION
Hypertension is a potential link between cardiovascular 
pathologies and eye diseases. A large amount of  infor-
mation has demonstrated the presence of  a RAS in the 
retina which is greatly spread in the vasculature. To date, 
findings from epidemiological studies indicate an associa-
tion between AMD and hypertension. Moreover, studies 
in vitro and in vivo show that Ang Ⅱ contributes to sub-
RPE deposit formation and CNV development and that 
these events can be improved by Ang Ⅱ receptor block-
ers (ARBs). However, the utility of  ARBs for the treat-

Figure 7  Conditioned medium collected from human ARPE-19 cells ex-
posed to Ang Ⅱ promotes tube formation in choroidal microvascular en-
dothelial through AT1 activation[140]. Cells were exposed to: (1) Ang Ⅱ alone; 
or (2) Ang Ⅱ in combination with candesartan for 24 h, supernatants were 
collected after treatment and human choroidal microvascular endothelial (cECs) 
were treated with the supernatants for 24 h. Thereafter, cells were trypsinized 
and then seeded (42000 cells/cm2) on a 24-well polystyrene plate coated with 
Geltrex™ (50 μL/cm2) according to the manufacturer’s protocol followed by 
incubation in EBM medium for 24 h at 37 ℃ in 5% CO2. At 16 h post-seeding, 
2 μg/mL of Calcein, AM (Invitrogen, Cat # C3099), was added directly to the 
culture well and allowed to incubate for 20 min (37 ℃, 5% CO2). Cells were 
visualized using a fluorescence microscope. A: Control; B: cECs exposed to 
conditioned medium from Ang Ⅱ-treated ARPE-19 cells; C: cECs treated with 
medium collected from treated retinal pigment epithelium cells. EBM: Endothe-
lial cell basal; AM: Acetoxymethyl.
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ment of  eye AMD is still to be determined. In terms of  
DR, there is documented evidence showing a clear con-
tribution of  Ang Ⅱ to the development of  this disease. 
Therefore, the use of  ARBs can confer retinoprotection 
and arrest the progression of  DR.
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