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Abstract
BACKGROUND 
Liver transplant (LT) patients have become older and sicker. The rate of post-LT 
major adverse cardiovascular events (MACE) has increased, and this in turn raises 
30-d post-LT mortality. Noninvasive cardiac stress testing loses accuracy when 
applied to pre-LT cirrhotic patients.

AIM 
To assess the feasibility and accuracy of a machine learning model used to predict 
post-LT MACE in a regional cohort.

METHODS 
This retrospective cohort study involved 575 LT patients from a Southern 
Brazilian academic center. We developed a predictive model for post-LT MACE 
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(defined as a composite outcome of stroke, new-onset heart failure, severe arrhythmia, and myocardial infarction) 
using the extreme gradient boosting (XGBoost) machine learning model. We addressed missing data (below 20%) 
for relevant variables using the k-nearest neighbor imputation method, calculating the mean from the ten nearest 
neighbors for each case. The modeling dataset included 83 features, encompassing patient and laboratory data, 
cirrhosis complications, and pre-LT cardiac assessments. Model performance was assessed using the area under the 
receiver operating characteristic curve (AUROC). We also employed Shapley additive explanations (SHAP) to 
interpret feature impacts. The dataset was split into training (75%) and testing (25%) sets. Calibration was 
evaluated using the Brier score. We followed Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis guidelines for reporting. Scikit-learn and SHAP in Python 3 were used for all 
analyses. The supplementary material includes code for model development and a user-friendly online MACE 
prediction calculator.

RESULTS 
Of the 537 included patients, 23 (4.46%) developed in-hospital MACE, with a mean age at transplantation of 52.9 
years. The majority, 66.1%, were male. The XGBoost model achieved an impressive AUROC of 0.89 during the 
training stage. This model exhibited accuracy, precision, recall, and F1-score values of 0.84, 0.85, 0.80, and 0.79, 
respectively. Calibration, as assessed by the Brier score, indicated excellent model calibration with a score of 0.07. 
Furthermore, SHAP values highlighted the significance of certain variables in predicting postoperative MACE, 
with negative noninvasive cardiac stress testing, use of nonselective beta-blockers, direct bilirubin levels, blood 
type O, and dynamic alterations on myocardial perfusion scintigraphy being the most influential factors at the 
cohort-wide level. These results highlight the predictive capability of our XGBoost model in assessing the risk of 
post-LT MACE, making it a valuable tool for clinical practice.

CONCLUSION 
Our study successfully assessed the feasibility and accuracy of the XGBoost machine learning model in predicting 
post-LT MACE, using both cardiovascular and hepatic variables. The model demonstrated impressive perfor-
mance, aligning with literature findings, and exhibited excellent calibration. Notably, our cautious approach to 
prevent overfitting and data leakage suggests the stability of results when applied to prospective data, reinforcing 
the model’s value as a reliable tool for predicting post-LT MACE in clinical practice.

Key Words: Liver transplantation; Major adverse cardiac events; Machine learning; Myocardial perfusion imaging; Stress test

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study presents a robust machine learning model, utilizing the XGBoost algorithm, to predict major adverse 
cardiovascular events (MACE) following liver transplantation. The model demonstrated high accuracy and calibration, with 
key factors such as noninvasive cardiac stress test outcomes, use of nonselective beta-blockers, direct bilirubin levels, blood 
type O, and dynamic alterations on myocardial perfusion scintigraphy identified as significant predictors. This tool offers 
valuable insights into the risk assessment of post-liver transplant MACE, particularly in an aging and comorbid patient 
population.

Citation: Soldera J, Corso LL, Rech MM, Ballotin VR, Bigarella LG, Tomé F, Moraes N, Balbinot RS, Rodriguez S, Brandão ABM, 
Hochhegger B. Predicting major adverse cardiovascular events after orthotopic liver transplantation using a supervised machine 
learning model: A cohort study. World J Hepatol 2024; 16(2): 193-210
URL: https://www.wjgnet.com/1948-5182/full/v16/i2/193.htm
DOI: https://dx.doi.org/10.4254/wjh.v16.i2.193

INTRODUCTION
The population of liver transplant (LT) candidates has become older and sicker, experiencing higher morbidity[1]. This 
might be due to the increasing prevalence of metabolic-associated fatty liver disease (MAFLD) as a cause of cirrhosis and 
end-stage liver disease (ESLD)[2-5]. As a result, there is an expected rise in the incidence of major adverse cardiovascular 
events (MACE) following LT, a well-documented complication of LT that negatively impacts prognosis[6-10].

The occurrence of MACE in the post-LT period is a significant concern, since these events contribute to increased 
mortality and jeopardize the success of LT[11]. Previous literature suggests that the incidence of post-LT MACE can be as 
high as 41% within the first 6 months following LT, which translates into a higher mortality rate[6,10]. Various traditional 
and nontraditional cardiovascular risk factors may contribute to these adverse events, including preexisting coronary 
disease, obesity, reduced cardiovascular reserve, poor response to cardiovascular stress, cirrhotic cardiomyopathy, 
increased predisposition to arrhythmias, and heart failure exacerbations[12-15]. The prioritization for transplant of sicker 
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patients with a high burden of critical illness, associated with a higher prevalence of cardiovascular disease, further 
exacerbates the risk[16]. However, the relative contribution of these factors remains incompletely characterized[7,17,18].

In addition to population aging, there has been a significant change in the most prevalent etiology leading to LT, with 
an increase in MAFLD observed both in the West and in the East[2,19]. Currently, MAFLD is the fastest-growing 
indication for LT in Western countries, having become the leading indication for LT waitlisting in the United States[5], as 
predicted by previous studies[20]. Moreover, MAFLD is strongly associated with a higher prevalence of diabetes mellitus, 
morbid obesity, and coronary artery disease (CAD)[4,5,8]. This specific population thus requires a detailed pre-LT cardiac 
evaluation, with particular attention to the increased risk of CAD, as they have a higher risk of cardiac events compared 
to those without MAFLD[8,21].

The first stage of cardiac evaluation usually involves assessing risk factors and subsequently performing noninvasive 
stratification. However, this approach is still controversial. In 2014, the American Association for the Study of Liver 
Diseases updated its guideline, maintaining the recommendation that patients undergoing pre-LT evaluation should 
complete a noninvasive myocardial stress test[22]. Conversely, the 2012 guideline developed by the American Heart 
Association in conjunction with the American College of Cardiology[23] suggests performing a noninvasive myocardial 
stress test only for patients with three or more risk factors for CAD. However, systematic reviews have demonstrated that 
current noninvasive strategies, such as myocardial perfusion scintigraphy (MPS) and dobutamine stress echocardio-
graphy (DSE), are unreliable and inadequate for predicting MACE, mortality, and significant CAD after LT[24-26]. 
Therefore, there is an unmet need for an alternative approach to accurately predict post-LT MACE in this vulnerable 
patient population[18,27].

Few models are available to assist clinicians in accurately stratifying the cardiovascular risk of LT candidates, 
especially those with ESLD[18]. Existing models often rely on traditional logistic regression statistics, making 
assumptions of independent linear relationships between dependent and independent variables[28]. These models are 
further constrained by small sample sizes and the limited number of variables for which they can account, primarily due 
to concerns of overfitting and multicollinearity. They are also unable to accurately consider the small effects of minor 
variables and their complex correlations[18,28]. Two scores have been developed using such models, the CAD-LT[29], 
and the CAR-orthotopic liver transplantation (OLT)[30]. The CAD-LT has demonstrated ability to stratify the risk of CAD 
into low, intermediate, and high categories, while the CAR-OLT point-based prediction model has shown superior 
performance compared to other existing risk models in predicting post-LT MACE.

In addition, patients with liver cirrhosis exhibit significant peripheral vasodilation, which can alter cardiac function 
and mask the presence of CAD, leading to what is now termed cirrhotic cardiomyopathy, a distinct pathologic entity for 
which diagnostic criteria were published in 2020[31]. In the 1990s, a high mortality rate (around 50%) was reported in 
patients with significant CAD in the peri-LT period[32]. However, in the last decade, with improved pre-LT cardiac 
therapy, it is believed that the presence of CAD does not significantly alter the post-LT survival of these patients[33].

To overcome these limitations, we propose the use of machine learning, a subarea of computer science that focuses on 
predicting outcomes using computational models that iteratively learn from data[34,35]. Machine learning models have 
demonstrated robust performance in various fields in gastroenterology[36], such as the diagnosis of hepatocellular 
carcinoma[37], prognostication of variceal hemorrhage[38,39], prediction of acute kidney injury after LT[40], short- and 
long-term post-LT mortality[41], and adverse cardiovascular events in various medical conditions[42]. Unlike conven-
tional statistical models, machine learning models can detect complex patterns and relationships within datasets without 
relying on fixed assumptions about data behavior or pre-selection of variables, using correlations within variables to 
determine outcome[43].

The aim of this study is to conduct a comprehensive assessment of the feasibility and accuracy of employing a machine 
learning model for prediction of MACE following LT. The study focuses on a specific regional cohort to examine the 
potential of machine learning techniques in effectively forecasting post-LT MACE. By leveraging advanced computa-
tional models, this research aims to enhance the predictive capabilities in identifying individuals at higher risk of experi-
encing MACE after LT, thereby enabling early intervention strategies and optimizing patient care.

MATERIALS AND METHODS
This retrospective cohort study was approved by the Research Ethics Committee of Universidade Federal de Ciências da 
Saúde de Porto Alegre under protocol no. 07793412.2.3001.5345 on May 22, 2013, and conducted in accordance with the 
ethical guidelines of the 1975 Declaration of Helsinki. The study utilized medical records from Irmandade Santa Casa de 
Misericórdia de Porto Alegre (Rio Grande do Sul, Brazil).

Inclusion and exclusion criteria
Patients above 18 years of age who underwent their first LT at Irmandade Santa Casa de Misericórdia de Porto Alegre, 
Guido Cantisani LT Team, Brazil, for cirrhosis, between January 1, 2001, and December 31, 2011, were eligible. Patients 
without cirrhosis, those with incomplete medical records, those who did not undergo cardiac evaluation prior to LT, 
retransplantation cases, and living-donor LT recipients were excluded. Patients with 20% or more missing data were 
excluded.

Outcomes
Data were systematically collected on structured forms encompassing extensive clinical and laboratory variables from the 
pre-LT, perioperative, and post-LT periods. The primary outcome of interest was any in-hospital MACE, a composite 
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outcome including stroke, new-onset heart failure, severe arrhythmia, and myocardial infarction. Statistics, including 
frequency, means, SD, and tests such as Pearson’s χ2 test and linear model analysis of variance (ANOVA), were 
conducted in R software (version 4.3.2) using the ‘readxl’ and ‘dplyr’ packages, with the analysis involving data manipu-
lation and exploration.

Machine learning approach and model definition
We employed the extreme gradient boosting (XGBoost) model, available through the XGBoost package, to construct a 
classification model aimed at predicting post-LT MACE. XGBoost is particularly effective in handling imbalanced 
datasets and offers native support for missing data and categorical variables, making it particularly useful for real-world 
applications. The columns considered to compose the outcome variable were not included in the model to avoid bias and 
collinearity.

Data pre-processing and feature engineering
The dataset was divided into training (75%) and test (25%) sets, preserving the outcome proportions in both subsets[44]. 
The training set is used to teach the model, and the test set is used to evaluate how well the model has learned. To 
mitigate the risk of introducing bias by excluding patients with missing values, we employed a two-step imputation 
process using the Scikit-Learn package. First, we removed variables that had missing values for more than 20% of the 
patient population. Following this, we used the k-nearest neighbor (kNN) imputation algorithm to fill in the missing 
values for the remaining continuous variables, imputing the calculated mean value among the 10 closest neighbors. Of 83 
features screened, the model incorporated 50 according to the measure of the impact of each feature on the model’s 
prediction for an instance. This included patient demographics, laboratory data, medical history, and pre-LT cardiac 
evaluations, selected after an initial screening. Categorical and numerical variables were imputed using mode and kNN 
imputation, respectively. To avoid data leakage, transformations were first trained on the training dataset, and only then 
applied to test data. To simulate real-world settings in which missing data are often present, we trained an additional 
model without the imputation and one-hot step and describe its results following the main model report.

Model training and hyperparameter optimization
Overfitting is a problem that occurs when a machine learning model learns the training data too well and is unable to 
generalize to new data. This can happen when the model is too complex or when the training dataset is too small or 
noisy. As a result, the model outputs extremely accurate results in the training set but performs poorly on unseen test-set 
data. To avoid overfitting, we applied regularization and early-stop techniques during the training of the model, as 
described in the code. Regularization is a technique that penalizes the model for being too complex; early stopping is a 
technique that stops training the model when it starts to overfit the training data.

Hyperparameters are external configurations for the model that are not learned from the data and are used to optimize 
the model’s performance. The training set was used for model training, while the test set was reserved for performance 
evaluation. The Optuna package was used for hyperparameter optimization. Additional information about the model 
hyperparameter results and training are provided as supplemental material.

Performance assessment
The area under the receiver operating characteristic curve (AUROC) was used as an evaluation metric and reported with 
a 95% confidence interval (CI). To calculate the AUROC, the true positive rates are compared against the false positive 
rates at various threshold settings. The AUROC represents the degree or measure of separability, indicating how well the 
model distinguishes between the classes.

The model’s performance in predicting positive cases was also assessed using the area under the precision-recall curve 
(AUC-PR). The AUC-PR is a graphical representation of a model’s precision and recall at different thresholds, which are 
the points where the model decides which class an instance belongs to. It is particularly useful when the classes are 
imbalanced. The x-axis represents recall (the proportion of actual positive cases that were correctly classified) and the y-
axis represents precision (the proportion of cases classified as positive that are indeed positive). A higher AUC-PR 
indicates better performance in distinguishing between the classes.

In evaluating the model’s ability to predict positive cases, additional metrics were employed, such as recall, precision, 
sensitivity, specificity, accuracy, and F1-score. Recall measures the model’s effectiveness in correctly identifying actual 
positive cases among all positive instances. It is calculated by dividing the number of true positives by the sum of true 
positives and false negatives. Precision assesses the accuracy of the model’s positive predictions by calculating the 
proportion of true positives among all instances predicted as positive, determined by dividing the number of true 
positives by the sum of true positives and false positives. Sensitivity evaluates the model’s capability to identify positive 
cases accurately, similar to recall. Specificity measures the model’s ability to correctly identify negative cases by 
calculating the proportion of true negatives among actual negatives. Accuracy reflects the overall correctness of the 
model’s predictions, considering both true positives and true negatives relative to the total number of predictions. F1-
score represents the harmonic mean of precision and recall, providing a balanced assessment of the model’s performance. 
The statistical methods of this study were reviewed by co-author Corso LL.

Calibration assessment
Calibration is the process of refining the model to ensure that the predicted probabilities of an event occurring align well 
with the actual probabilities. We tested various methods of calibration for the validation model, including sigmoid, 
isotonic, and Gaussian calibration. We used calibration curves to present the comparison graphically. We used the Brier 
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score to choose the model with the best calibration for deployment and explanation of feature importance.

Model explanation and interpretation
The Shapley additive explanations (SHAP) framework was used to interpret the output of machine learning models, 
providing a measure of the impact of each feature on the model’s prediction for an instance. SHAP are based on game 
theory and assign an importance value to each feature in a model. Features with positive SHAP values positively impact 
the prediction, while those with negative values have a negative impact. The magnitude of the SHAP value is a measure 
of how strong the effect is. To calculate SHAP values, we consider all possible combinations of features (coalitions) and 
how they affect the model’s prediction. We then average the marginal contribution of each feature across all possible 
coalitions. This gives us a measure of how much each feature contributes to the model’s prediction, taking into account 
the interactions between features.

Checklist adherence
In accordance with the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) statement, we have followed a comprehensive reporting framework for this study. The TRIPOD statement 
guided the design, implementation, and reporting of our prediction model for post-LT MACE and the respective checklist 
for present study is presented as a Supplementary material. The checklist comprised the 22 items outlined in the TRIPOD 
statement, ensuring transparency and rigor in our methodology and reporting.

Code availability and web deployment
The code employed for data preprocessing, feature engineering, and model development and evaluation is in an 
accessible public repository (link provided in the supplemental materials). Furthermore, we have deployed our model as 
a user-friendly MACE prediction calculator, which is now available online at https://huggingface.co/spaces/mmrech/
mace-calc. The frontend application was coded with the Streamlit library. The model was originally saved and then 
loaded as a joblib file, and the backend application was deployed with Hugging Face Spaces. All phases from data 
preprocessing to model deployment were implemented in Python 3.

RESULTS
A comprehensive search of hospital databases identified a total of 662 patients who had undergone LT during the study 
period. From this initial cohort, 82 patients were excluded based on specific criteria. The reasons for exclusion were as 
follows: 19 patients transplanted due to fulminant liver failure, 32 patients who had undergone retransplantation, 7 
patients transplanted due to familial amyloid polyneuropathy, 1 patient excluded due to amyloidosis without cirrhosis, 1 
patient due to congenital hepatic fibrosis, 27 patients due to insufficient cardiological data, 2 patients who received living-
donor grafts, 2 patients with primary hyperoxaluria, 2 patients with polycystic liver disease, and 1 patient with metastasis 
of a neuroendocrine tumor. Another 38 patients were excluded due to the high rate of missing data among selected 
variables. The dataset utilized by the final model consisted of 537 samples, with 23 events and 514 non-events (Figure 1). 
As noted above, the original dataset was split such that 75% was used for training the model and 25% was reserved as 
unseen data for internal validation. The proportion of outcomes (4.46%) was maintained in both the training and the 
validation sets.

General cohort
Of the 537 included patients, 23 developed in-hospital MACE, with a mean age at transplantation of 52.9 years. The 
majority, 66.1%, were male. The overall incidence of the composite variable MACE was 4.46%. The components of this 
outcome - stroke, new-onset heart failure, severe arrhythmia, and myocardial infarction - had observed rates of 0.19%, 
1.3%, 1.3% and 1.67%, respectively. Detailed data on the general population included, the 50 variables used in model 
construction, and the composite outcomes are available in Table 1, specifying values for the total cohort, for the strata of 
present and absent MACE, and also their respective missing rates.

Model performance
The XGBoost model demonstrated substantial predictive capability, with an AUROC of 0.89. The classification results 
showed a precision of 0.89, recall of 0.80, and F1-score of 0.84 for the negative class. The AUROC and AUC-PR, along 
with their respective 95%CIs, are provided in Figure 2. The hyperparameters utilized for the best-performing model after 
optimization are provided in the supplementary materials, as is an overview regarding the role of these components in 
the model functionality.

Calibration
The model achieved optimal calibration with the isotonic method, as evidenced by the lowest Brier score of 0.100. This 
calibration demonstrated a high level of precision, recall, F1-score, and accuracy for both negative and positive classes, 
with closer proximity to the diagonal line on the calibration curve (Supplementary Figure 1). Calibration curve is 
provided as a supplemental material.

https://huggingface.co/spaces/mmrech/mace-calc
https://huggingface.co/spaces/mmrech/mace-calc
https://f6publishing.blob.core.windows.net/48512e07-6990-427a-8f89-9105f9b55746/WJH-16-193-supplementary-material.pdf
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Table 1 Cohort patient data

Variable Total (n = 537) MACE absent (n = 520) MACE present (n = 17) P value

Race1 0.41

    White 463 (90.4%) 447 (90.1%) 16 (100.0%)

    Mixed/other 28 (5.6%) 28 (5.6%) 0 (0.0%)

    Black 21 (4.1%) 21 (4.2%) 0 (0.0%)

    Missing 25 24 1

Sex1 0.26

    Male 352 (65.7%) 343 (66.1%) 9 (52.9%)

    Female 184 (34.3%) 176 (33.9%) 8 (47.1%)

    Missing 1 1 0 (0)

Previous esophageal variceal ligation1 0.71

    No 327 (64.5%) 318 (64.6%) 9 (60.0%)

    Yes 180 (35.5%) 174 (35.4%) 6 (40.0%)

    Missing 30 28 2

Portal hypertensive gastropathy1 0.48

    Mild 229 (49.4%) 220 (49.0%) 9 (60.0%)

    Absent 83 (17.9%) 82 (18.3%) 1 (6.7%)

    Intense 152 (32.8%) 147 (32.7%) 5 (33.3%)

    Missing 73 71 2

Previous ascites1 0.05

    Yes 393 (74.3%) 377 (73.6%) 16 (94.1%)

    No 136 (25.7%) 135 (26.4%) 1 (5.9%)

    Missing 8 8 0

Previous spontaneous bacterial peritonitis1 0.92

    No 385 (74.3%) 374 (74.4%) 11 (73.3%)

    Yes 133 (25.7%) 129 (25.6%) 4 (26.7%)

    Missing 19 17 2

Previous hepatopulmonary syndrome1 0.31

    No 399 (77.3%) 389 (77.6%) 10 (66.7%)

    Yes 117 (22.7%) 112 (22.4%) 5 (33.3%)

    Missing 21 19 2

Previous use of nonselective beta-blockers1 0.01

    No 270 (53.9%) 267 (54.8%) 3 (21.4%)

    Yes 231 (46.1%) 220 (45.2%) 11 (78.6%)

    Missing 36 33 3

Portal vein thrombosis1 0.04

    No 443 (85.7%) 432 (86.2%) 11 (68.8%)

    Yes 74 (14.3%) 69 (13.8%) 5 (31.2%)

    Missing 20 19 1

Hepatic encephalopathy1 0.44

    No 277 (53.2%) 270 (53.5%) 7 (43.8%)

    Yes 244 (46.8%) 9 (56.2%) 235 (46.5%)
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    Missing 16 15 1

Previous hepatorenal syndrome1 0.52

    No 499 (97.5%) 15 (100.0%) 484 (97.4%)

    Yes 13 (2.5%) 0 (0.0%) 13 (2.6%)

    Missing 25 23 2

Antibiotic therapy for > 24 h1 0.52

    No 486 (97.4%) 15 (100.0%) 471 (97.3%)

    Yes 13 (2.6%) 0 (0.0%) 13 (2.7%)

    Missing 38 36 2

Hospitalized for > 48 h1 0.70

    No 476 (95.4%) 462 (95.5%) 14 (93.3%)

    Yes 23 (4.6%) 22 (4.5%) 1 (6.7%)

    Missing 38 36 2

Pre-transplant hemodialysis1 0.01

    No 486 (97.0%) 473 (97.3%) 13 (86.7%)

    Yes 15 (3.0%) 13 (2.7%) 2 (13.3%)

    Missing 36 34 2

Hepatocellular carcinoma1 0.34

    No 330 (63.7%) 318 (63.3%) 12 (75.0%)

    Yes 188 (36.3%) 184 (36.7%) 4 (25.0%)

    Missing 19 18 1

Blood group1 0.39

    O 230 (42.9%) 221 (42.6%) 9 (52.9%)

    A 231 (43.1%) 226 (43.5%) 5 (29.4%)

    B 53 (9.9%) 50 (9.6%) 3 (17.6%)

    AB 22 (4.1%) 22 (4.2%) 0 (0.0%)

    Missing 1 1 0

Congestive heart failure1 0.69

    No 518 (99.0%) 502 (99.0%) 16 (100.0%)

    Yes 5 (1.0%) 5 (1.0%) 0 (0.0%)

    Missing 14 13 1 

Previous angioplasty1 0.75

    No 520 (99.4%) 504 (99.4%) 16 (100.0%)

    Yes 3 (0.6%) 3 (0.6%) 0 (0.0%)

    Missing 14 13 1

Dyslipidemia1 0.53

    No 512 (97.7%) 496 (97.6%) 16 (100.0%)

    Yes 12 (2.3%) 12 (2.4%) 0 (0.0%)

    Missing 13 12 1 

Systemic arterial hypertension1 0.04

    No 388 (73.6%) 379 (74.3%) 9 (52.9%)

    Yes 139 (26.4%) 131 (25.7%) 8 (47.1%)

    Missing 10 10 0
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Familiar history of coronary artery disease1 0.43

    No 416 (79.8%) 402 (79.6%) 14 (87.5%)

    Yes 105 (20.2%) 103 (20.4%) 2 (12.5%)

    Missing 16 15 1

Previous acute myocardial infarction1 0.06

    No 515 (98.7%) 501 (98.8%) 14 (93.3%)

    Yes 7 (1.3%) 6 (1.2%) 1 (6.7%)

    Missing 15 13 2

Previous stroke1 0.38

    Ischemic 3 (0.6%) 3 (0.6%) 0 (0.0%)

    Hemorrhagic 27 (5.2%) 25 (4.9%) 2 (12.5%)

    No 493 (94.3%) 479 (94.5%) 14 (87.5%)

    Missing 14 13 1

Diabetes mellitus1 0.21

    No 396 (75.6%) 386 (76.0%) 10 (62.5%)

    Yes 128 (24.4%) 122 (24.0%) 6 (37.5%)

    Missing 13 12 1

Valve replacement1 0.96

    Metallic 1 (0.2%) 1 (0.2%) 0 (0.0%)

    Biological 2 (0.4%) 2 (0.5%) 0 (0.0%)

    No 445 (99.3%) 435 (99.3%) 10 (100.0%)

    Missing 89 82 7

Mitral insufficiency1 0.001

    Mild 137 (28.8%) 131 (28.4%) 6 (46.2%)

    Moderate 3 (0.6%) 2 (0.4%) 1 (7.7%)

    Absent 335 (70.5%) 329 (71.2%) 6 (46.2%)

    Missing 62 58 4

Tricuspid insufficiency1 0.88

    Mild 23 (4.9%) 22 (4.8%) 1 (7.7%)

    Moderate 1 (0.2%) 1 (0.2%) 0 (0.0%)

    Absent 448 (94.9%) 436 (95.0%) 12 (92.3%)

    Missing 65 61 4

Noninvasive diagnostic method for myocardial ischemia1 0.001

    Negative 65 (12.8%) 58 (11.8%) 7 (41.2%)

    Positive 442 (87.2%) 432 (88.2%) 10 (58.8%)

    Missing 30 30 0

Dynamic myocardial perfusion scintigraphy induced ischemia1 0.01

    Negative 304 (88.9%) 292 (89.8%) 12 (70.6%)

    Positive 38 (11.1%) 33 (10.2%) 5 (29.4%)

    Missing 195 195 0

Weight (kg)2 0.74

    Mean (SD) 74.2 (14.2) 74.2 (14.4) 73.1 (10.2)

    Missing 9 9 0
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Height (cm)2 0.38

    Mean (SD) 168.0 (9.0) 168.1 (9.1) 166.2 (6.9)

    Missing 12 12 0

Body mass index (kg/m²)2 0.8

    Mean (SD) 26.2 (4.3) 26.2 (4.3) 26.5 (3.5)

    Missing 13 13 0

Hematocrit (%)2 0.98

    Mean (SD) 36.2 (5.8) 36.2 (5.8) 36.2 (3.8)

    Missing 3 3 0

White blood cell count (mm³)2 0.36

    Mean (SD) 5153 (4539) 5185 (4602) 4163 (1473)

    Missing 2 2 0

Platelets2 0.67

    Mean (SD) 84524 (55946) 84340 (56004) 90058 (55570)

    Missing 9 0 0

Total bilirubin (mg/dL)2 0.09

    Mean (SD) 2.9 (3.4) 2.9 (3.5) 1.5 (0.7)

    Missing 1 0 0

Creatinine (mg/dL)2 0.08

    Mean (SD) 1.2 (1.8) 1.2 (1.7) 2.0 (2.8)

    Missing 5 5 0

International normalized ratio2 0.50

    Mean (SD) 1.5 (0.4) 1.5 (0.4) 1.5 (0.3)

    Missing 32 32 0

Sodium (mEq/L)2 0.91

    Mean (SD) 137.7 (4.9) 137.7 (4.9) 137.8 (4.6)

    Missing 37 36 1

Potassium (mmol/L)2 0.90

    Mean (SD) 4.4 (0.6) 4.4 (0.6) 4.4 (0.7)

    Missing 44 43 1

Albumin (g/dL)2 0.64

    Mean (SD) 3.2 (0.6) 3.2 (0.6) 3.3 (0.4)

    Missing 13 13 0

Aspartate aminotransferase (U/L)2 0.15

    Mean (SD) 89.9 (60.1) 90.6 (60.7) 69.0 (34.8)

    Missing 9 8 1

Alanine aminotransferase (U/L)2 0.62

    Mean (SD) 74.1 (62.8) 74.3 (62.9) 66.5 (60.7)

    Missing 8 7 1

Gamma-glutamyl transferase (U/L)2 0.56

    Mean (SD) 102.8 (131.8) 102.3 (131.5) 122.6 (145.0)

    Missing 33 30 3

Alkaline phosphatase (U/L)2 0.75
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    Mean (SD) 147.2 (127.9) 146.9 (128.4) 157.6 (113.2)

    Missing 24 22 2

Alpha-fetoprotein (ng/mL)2 0.67

    Mean (SD) 49.6 (339.5) 50.8 (345.2) 15.2 (26.7)

    Missing 20 20 0

Fasting blood glucose (mg/dL)2 0.65

    Mean (SD) 108.6 (41.7) 108.7 (42.1) 104.1 (29.2)

    Missing 26 26 0

1n (%), Pearson’s χ2 test.
2Mean (SD), linear model ANOVA.
MACE: Major adverse cardiovascular event.

Model explanations
Figure 3 presents feature importance analysis as per mean SHAP values. It reveals that, at the cohort-wide level, the most 
significant variables for prediction of postoperative MACE were negative noninvasive cardiac stress testing, use of a 
nonselective beta-blocker, direct bilirubin levels, blood type O, and dynamic alterations on MPS. SHAP values are 
averaged, and the impact of each feature on individual predictions may vary. For instance, the feature ‘blood type O’ may 
have varying impacts depending on the specific conditions and characteristics of the patient.

DISCUSSION
The aim of the present study was to assess the risk of in-hospital post-LT MACE and identify clinically relevant 
predictors of such events. In pursuit of this objective, we constructed a machine learning-based risk stratification model 
which could be made available online to assist clinicians in identifying LT recipients at heightened cardiac risk 
immediately after LT. These models hold significance due to cardiovascular causes being a leading contributor to post-LT 
mortality, and the absence of risk prediction models tailored to patients with ESLD.

In this study, various recipient-related factors known prior to LT were thoroughly examined. An optimized clinical 
model demonstrated predictive capabilities for in-hospital MACE following LT, exhibiting a strong discriminative 
performance with an area under the curve (AUC) of 0.89. This surpasses the performance reported in a previously 
published study attempting to predict similar outcomes, which achieved an AUC of 0.71[45].

The present study employed a comprehensive set of candidate variables gathered during the pre-LT evaluation, which 
encompassed a wide array of cardiovascular risk factors. Notably, the machine learning model consistently demonstrated 
superior performance across all endpoints, highlighting significant improvements when compared to widely utilized 
traditional models.

On performance analysis, the XGBoost model demonstrated remarkable predictive capability, achieving an impressive 
AUROC of 0.89. This performance highlights its effectiveness in predicting postoperative MACE in our cohort of 575 LT 
patients. Furthermore, our classification results revealed excellent precision (0.89), recall (0.80), and an F1-score of 0.84 for 
the negative class, underscoring the model’s precision in identifying patients at low risk of MACE. The exceptional 
performance of the model is further substantiated by the calibration results, where the isotonic-calibrated model achieved 
optimal calibration, as indicated by the lowest Brier score of 0.100. This calibration ensures a high level of precision, recall, 
F1-score, and accuracy for both negative and positive classes, aligning the model’s predictions closely with observed 
outcomes. The calibration curve (available as supplemental material) visually depicts the model’s excellent calibration 
performance.

To gain insights into the factors influencing postoperative MACE in our cohort, we conducted feature importance 
analysis, as depicted in Figure 3. Our analysis revealed that several variables - namely, outcomes of noninvasive cardiac 
stress testing, administration of nonselective beta-blockers, direct bilirubin levels, blood type O, and dynamic alterations 
on MPS - contributed significantly to prediction of postoperative MACE at the cohort-wide level. These findings 
emphasize the importance of considering both cardiac and liver-related factors in assessing the risk of post-transplant 
MACE. It bears stressing that, while these variables hold substantial predictive power at the cohort level, their impact 
may vary for individual patients, depending on their unique clinical characteristics and conditions.

We also evaluated the performance of our models in comparison to existing cardiovascular disease risk prediction 
models, such as the Cardiovascular Risk in Orthotopic Liver Transplantation (CVROLT) score, which was derived from a 
cohort of 1024 first-time LT recipients[8]. The CVROLT score included a multitude of donor- and recipient-related factors 
and identified pre-transplant heart failure, atrial fibrillation, diabetes, and the presence of respiratory failure at the time of 
transplantation as the most significant predictors of post-LT adverse cardiovascular events. Notably, our study used 
similar source variables but employed advanced machine learning techniques, which, uniquely, allowed our models to be 
internally validated in a series of “blinded” test cohorts, enhancing the generalizability of the results. While the CVROLT 
score achieved a C statistic of 0.78, our models demonstrated substantial predictive capability, particularly the XGBoost 
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Figure 1  Flow diagram of patient inclusion.

Figure 2 Area under the receiver operating characteristic curve and area under the precision-recall curve for the model on the validation 
set. A and B: The area under the receiver operating characteristic curve in Figure 2A plots the true positive rate (sensitivity) against the false positive rate (1-
specificity) for various threshold values. The area under the precision-recall curve in Figure 2B illustrates precision × recall for different threshold values. The shaded 
region represents the 95% confidence interval in both figures. ROC: Receiver operating characteristic; CI: Confidence interval.

model (AUC = 0.89). As noted above, this exceptional performance underscores the superiority of our models in 
predicting postoperative MACE in the context of LT.

The Revised Cardiac Risk Index (RCRI), another model traditionally used for predicting postoperative cardiovascular 
risk in individuals undergoing noncardiac surgery, has limited applicability in LT candidates[46]. The RCRI derivation 
cohort excluded patients with ESLD and primarily aimed to detect underlying ischemic heart disease, resulting in a 
suboptimal tool for risk-stratifying LT candidates for the occurrence of long-term MACE.

Both Josefsson et al[47] and Umphrey et al[48] reported on smaller cohorts of LT patients (n = 202 and n = 157, 
respectively). In their study, Josefsson et al[47] identified renal impairment, prolonged QTc, and age > 52 years as 
predictors of 1-year cardiovascular mortality. Similarly, Umphrey et al[48] investigated the role of DSE and reported that 
maximum heart rate achieved during the procedure, together with the model for end-stage liver disease (MELD) score, 
may predict adverse cardiovascular events up to 4 months post-orthotopic LT. Both of these previous models were 
limited by relatively small sample sizes, which may have impacted their external validity.

Historically, the assessment of cardiovascular risk in LT candidates has often prioritized the evaluation of CAD using 
methods such as DSE or coronary artery calcium scoring. This focus was largely driven by the high prevalence of 
traditional cardiovascular risk factors in LT recipients. However, the landscape is evolving as transplantation is 
increasingly performed on a medically complex population with higher median age at transplantation and higher MELD 
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Figure 3 The x-axis represents the mean Shapley additive explanations value, which quantifies the average impact of each feature on the 
model’s output. A higher mean Shapley additive explanations value means that the feature has a more significant influence on model predictions. The bars are 
color-coded to represent two distinct classes: Class 0 (blue), which represents absent major adverse cardiovascular event (MACE), and Class 1 (red), which 
represents the occurrence of MACE. The length of the bar in each color indicates the average impact of the corresponding feature on prediction of that specific class. 
Longer bars (regardless of color) mean that the feature has a greater average impact on model output. The direction of the influence (whether it pushes predictions 
towards Class 0 or Class 1) is denoted by the color. SBP: Spontaneous bacterial peritonitis; HCC: Hepatocellular carcinoma; Class 0: Major adverse cardiovascular 
event absent; Class 1: Major adverse cardiovascular event present; SHAP: Shapley additive explanations.

scores. Notably, advanced age alone correlates with cardiovascular comorbidities and independently predicts adverse 
cardiovascular events[1]. Additionally, ESLD is characterized by a high-output state with compromised ventricular 
reserve, known as cirrhotic cardiomyopathy, which may be exacerbated by the hemodynamic stress of liver reperfusion.

Recent systematic reviews and meta-analyses have shed light on the value of DSE in patients listed for LT. These 
studies reported that DSE had variable sensitivity (ranging from 20% to 32%) and specificity (ranging from 78% to 99%) 
for detecting CAD[25,26,49,50] mixed predictive capabilities for MACE post-LT, with sensitivity ranging from 20% to 28% 
and specificity as low as 78%[25,26,48,49]. It is evident that, while DSE exhibits a high negative predictive value, it may 
not be a reliable test for detecting risk of cardiovascular events, mortality, or presence of CAD in LT candidates. 
Therefore, its use should be reserved for selected intermediate-risk patients[51-53].

Furthermore, Oprea-Lager et al[54] demonstrated that the presence of a reversible perfusion defect suggestive of 
myocardial ischemia on MPS appears to increase all-cause mortality post-LT, with a hazard ratio of 3.17. Regarding MPS, 
several systematic reviews and meta-analyses have been conducted to evaluate its value in LT candidates. One such 
analysis, including five studies, found that MPS had a sensitivity of 62% and a specificity of 83% for detecting CAD[50]. 
Another diagnostic meta-analysis, involving 10 studies, reported a sensitivity of 82% and a specificity of 74% for MPS in 
CAD detection[25]. Finally, a prognostic meta-analysis revealed that positive MPS was associated with a relative risk of 
2.6 (95%CI: 1.09-6.1) for major cardiac events and a relative risk of 2.7 (95%CI: 1.25-5.9) for mortality post-LT[26].

In patients listed for LT, the presence of coronary calcium has been significantly associated with various factors, 
including age, systolic blood pressure, alcohol-related cirrhosis, fasting blood glucose levels, the number of metabolic 
syndrome criteria, and the number of affected vessels. Importantly, coronary artery calcium score (CACS) values offer 
valuable insights into cardiac risk stratification. A CACS below 100 predicts a very low risk of post-LT cardiac events, 
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while a CACS above 250 suggests the need for coronary angiography[55] and a CACS exceeding 400 identifies patients at 
risk of MACE for up to 5 years post-LT. A recent study from 2021, comparing the diagnostic accuracy of DSE and CACS 
in detecting CAD, demonstrated the superiority of CACS over DSE[56].

Currently, it is proposed that coronary computed tomography angiography (CCTA) serves as the initial testing 
strategy for LT candidates with moderate to high CAD risk, while low-risk patients may not require additional 
cardiovascular assessment[51]. However, it is essential to acknowledge that CCTA may have limitations in detecting 
functional microvascular disease, which can contribute to type 2 myocardial infarction post-LT[57].

A recent systematic review has highlighted the promising role of machine learning models in improving prognost-
ication for LT. The authors have found that machine learning models consistently outperformed traditional scoring 
systems, demonstrating excellent predictive capabilities for various post-transplant complications, including mortality, 
sepsis, and acute kidney injury. They suggest that machine learning could enhance decision-making related to organ 
allocation and LT, representing a substantial advancement in prognostication methods[58].

In the future, generalist medical artificial intelligence (GMAI) may bring a paradigm shift in medical AI use. 
Emphasizing flexibility and reusability, GMAI models can perform diverse tasks with minimal labeled data, developed 
through self-supervision on extensive datasets[59]. This might cause a shift in this paradigm, driven by hardware 
advances and the demand for personalized care, emphasizing AI’s role in decision-making and improving diagnostic and 
prognostic performance[60].

In the context of utilizing machine learning to predict major MACE following LT, addressing the ethical implications 
and challenges that arise when implementing these models in clinical practice is crucial. The integration of machine 
learning introduces concerns surrounding data privacy, as patient information must be handled securely to protect 
confidentiality. Additionally, ensuring model transparency is essential, as clinicians need to understand the decision-
making process of the machine learning model to trust its predictions. Furthermore, the potential biases embedded in the 
training data used for these models must be carefully examined and mitigated to avoid disproportionate effects on certain 
patient populations. By discussing these ethical considerations, the application of machine learning in predicting post-LT 
MACE can be approached with a well-rounded perspective that prioritizes patient privacy, model transparency, and 
fairness in healthcare outcomes.

This study is subject to several limitations. The retrospective design introduces inherent biases and data limitations. 
Significantly, a notable portion of the excluded patients, marked by a substantial volume of missing data, underwent LT 
with increased celerity attributed to higher MELD scores, and this resulted in an incomplete pre-LT clinical or 
cardiological evaluation. Second, the single-center setting may limit the generalizability of the findings to broader patient 
populations. Third, it is important to note that, while the machine learning model provides valuable predictive insights, it 
should serve as an aid to clinical judgment rather than a replacement, as it is better suited to predict a general rather than 
an individual risk of MACE. Additionally, the exclusion of certain patient groups based on specific criteria may impact 
the model’s applicability in real-world scenarios. Finally, while the SHAP framework offers insights into feature 
importance, further investigation is needed to establish clinical relevance. While the study presents a robust predictive 
model, these limitations should be taken into consideration when interpreting and applying its results; future research 
with a view to external validation and improvement of clinical utility will be welcome.

The uncertainty surrounding the positive or negative outcomes of noninvasive tests and the prevalence of blood type 
O as risk factors for MACE highlights a critical aspect of machine learning model interpretability - it is advisable to avoid 
overestimating the significance and generalization of such information. The limitation of many models, including 
XGBoost, is the absence of clarity on why negative noninvasive cardiac stress testing correlates with a reduced risk of 
MACE. While these models excel at identifying statistical patterns, they often fall short in providing explicit explanations 
for correlations, lacking inherent insights into the biological or clinical reasons behind observed associations. Comple-
mentary research to unravel the biological significance of these correlations is required, emphasizing the distinction 
between mathematical patterns and causal relationships.

In this context, we can only speculate about these variables. Blood type O has shown a negative association with 
myocardial infarction[61-63], adding an intriguing dimension to the findings of the machine learning model. In patients 
with ESLD, distinguishing whether chronotropic incompetence results from cirrhosis-related autonomic dysfunction or is 
solely due to a beta-blocker effect is challenging. This ambiguity leads to numerous false negatives in stress testing, 
potentially influencing the negative association observed between stress testing and MACE[64]. One particularly 
intriguing discovery was the correlation between liver function markers and MACE - arguably the most noteworthy 
among these variables. Often, liver function is underestimated, and its impact on MACE may be overlooked, with 
attention primarily directed at the heart. Emphasizing the evaluation of both cardiac and hepatic aspects is crucial in pre-
LT cardiac assessments[65].

The meticulous evaluation of pre-LT factors, incorporation of advanced machine learning techniques, and the 
demonstrated superior performance of the XGBoost model in predicting MACE distinguish this study. The model 
developed outperforms existing risk prediction tools, such as the CVROLT and CAR-OLT scores, and adds significant 
value to the relevant and current discussion on this topic. Additionally, the insights from this research not only contribute 
to the current knowledge but also pave the way for more accurate and tailored risk predictions in the context of LT.

CONCLUSION
In conclusion, the outcomes produced by our developed machine learning model are consistent with findings reported in 
prior literature. The calibration analysis indicates that our efforts to prevent overfitting and data leakage have indeed 
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been successful, suggesting that results are likely to remain stable when the model is applied to prospective data. 
Moreover, we have integrated the model into a user-friendly MACE prediction calculator which is now available online. 
This implementation will enable us to conduct a more comprehensive assessment of its prospective impact on prognosis.

With the increasing volume of LT procedures, the machine learning model presented herein can serve as a valuable 
resource for patient counseling, shared clinical decision-making with patient consent, quality improvement, and 
development of risk-reduction strategies. Further validation and application of this machine learning model in other 
registries and patient populations are essential to better understand its external validity in patients undergoing LT across 
multiple major transplantation-capable tertiary referral centers.

ARTICLE HIGHLIGHTS
Research background
The landscape of liver transplant (LT) candidates has evolved, with an aging and increasingly morbid population, often 
linked to metabolic-associated fatty liver disease (MAFLD). MAFLD’s rise as a cause of cirrhosis raises concerns about a 
subsequent increase in major adverse cardiovascular events (MACE) post-LT, a critical complication negatively impacting 
prognosis. This study is prompted by the growing incidence of post-LT MACE, particularly within the first 6 months, and 
the complex interplay of traditional and nontraditional cardiovascular risk factors in this vulnerable population. The 
prevalence shift toward MAFLD as a leading indication for LT necessitates a thorough pre-LT cardiac assessment, 
demanding a reconsideration of existing noninvasive strategies’ reliability. The pressing need for an alternative approach 
to predict post-LT MACE accurately propels the exploration of machine learning as a transformative tool to navigate the 
challenges posed by conventional models.

Research motivation
Motivating this research is the imperative to address the limitations of current cardiovascular risk stratification models 
for LT candidates, especially those with end-stage liver disease. Traditional models exhibit constraints related to 
assumptions of linear relationships and limited variables, leading to unreliable predictions. The inadequacy of existing 
noninvasive strategies and the absence of effective models for accurate cardiovascular risk stratification in LT candidates 
underscore the urgency for a paradigm shift. The study is driven by the aspiration to introduce machine learning as an 
innovative and more effective approach, leveraging its capacity to discern intricate patterns and relationships within 
datasets. The ultimate goal is to revolutionize risk prediction, enabling clinicians to identify high-risk individuals with 
precision, thus optimizing patient care strategies.

Research objectives
The primary objective of this study is to assess the feasibility and accuracy of implementing a machine learning model to 
predict MACE post-LT. Focusing on a specific regional cohort, the study aims to revolutionize risk assessment by moving 
beyond the limitations of conventional statistical models. Realizing this objective involves scrutinizing the potential of 
machine learning techniques to forecast post-LT MACE with enhanced precision. By leveraging advanced computational 
models, the research seeks to provide a comprehensive evaluation of the predictive capabilities, enabling the early identi-
fication of individuals at elevated risk. The ultimate significance lies in facilitating early intervention strategies and 
refining patient care in the context of the evolving landscape of LT candidates.

Research methods
This retrospective cohort study, approved by the Research Ethics Committee, delves into the cardiovascular risks 
following LT. Employing a comprehensive approach, medical records from Irmandade Santa Casa de Misericórdia de 
Porto Alegre were scrutinized for patients undergoing their first LT between 2001 and 2011 due to cirrhosis. Rigorous 
inclusion and exclusion criteria were applied, focusing on patients above 18 years of age with complete records, cardiac 
evaluation pre-LT, and no retransplantation. Data encompassed pre-LT, perioperative, and post-LT periods, with the 
primary outcome being in-hospital MACE. Statistical analyses, including frequency, means, standard deviation, Pearson’s 
χ2 test, and linear model analysis of variance, were executed using R software. The study introduces a machine learning 
paradigm, leveraging the XGBoost model, known for handling imbalanced datasets. Feature engineering involved a two-
step imputation process, incorporating patient demographics, medical history, and cardiac evaluations. Model training 
incorporated regularization and early-stop techniques, aiming to prevent overfitting. Hyperparameter optimization using 
the Optuna package and performance evaluation metrics, including area under the receiver operating characteristic curve 
(AUROC) and area under the precision-recall curve, ensured robustness. Calibration, model explanation through Shapley 
additive explanations values, and adherence to the Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis statement further enriched the methodological rigor, ultimately culminating in web 
deployment and code availability for transparency and accessibility.

Research results
The study involved 662 LT patients, with 82 exclusions based on specific criteria. The final dataset included 537 samples, 
with 23 in-hospital MACE cases. The XGBoost model demonstrated substantial predictive capability, achieving an 
AUROC of 0.89. Precision, recall, and F1-score for the negative class were 0.89, 0.80, and 0.84, respectively. The overall 
incidence of MACE was 4.46%, with observed rates for stroke, new-onset heart failure, severe arrhythmia, and 
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myocardial infarction. The model achieved optimal calibration using the isotonic method with a Brier score of 0.100. 
Feature importance analysis revealed key predictors, including negative noninvasive cardiac stress testing, use of a 
nonselective beta-blocker, direct bilirubin levels, blood type O, and dynamic alterations on myocardial perfusion scinti-
graphy. The findings contribute a valuable machine learning model for predicting post-LT MACE, offering insights into 
specific risk factors and enhancing precision in identifying at-risk individuals. Remaining challenges involve addressing 
potential variability in feature impact across patients and further validation in diverse cohorts.

Research conclusions
This study pioneers a novel approach in assessing in-hospital post-LT MACE. The research introduces a machine 
learning-based risk stratification model, surpassing the predictive performance of existing models, particularly 
demonstrating an impressive area under the curve of 0.89 using the XGBoost model. The optimized clinical model 
considers recipient-related factors and provides valuable insights into predicting MACE, crucial for addressing the 
leading cause of post-LT mortality. The use of machine learning techniques, specifically XGBoost, brings substantial 
improvements over traditional models, enhancing risk stratification accuracy. This study highlights the importance of 
comprehensive pre-LT evaluation, considering a wide array of cardiovascular risk factors.

Research perspectives
Future research should focus on refining and expanding the machine learning model’s application, considering external 
validation in diverse patient populations and healthcare settings. Addressing ethical implications and ensuring 
transparency in model application are imperative for integrating machine learning predictions into clinical practice. The 
study suggests the need for continued exploration into the biological significance of identified predictors, such as the 
intriguing correlation between blood type O and reduced MACE risk. The model’s implementation in a user-friendly 
MACE prediction calculator opens avenues for prospective impact assessment, counseling, shared decision-making, and 
risk reduction strategies in the growing landscape of LT procedures. External validation and application in various 
transplantation-capable centers will enhance understanding of the model’s broader utility.
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