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Abstract
Mesenchymal stromal/stem cells (MSCs) have garnered significant attention in 
the field of regenerative medicine due to their remarkable therapeutic potential. 
MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse 
functions in tissue repair and recovery in various organs. These cells are charac-
terized by easy accessibility, few ethical concerns, and adaptability to in vitro 
cultures, making them a valuable resource for cell therapy in several clinical 
conditions. Over the years, it has been shown that the true therapeutic power of 
MSCs lies not in cell engraftment and replacement but in their ability to produce 
critical paracrine factors, including cytokines, growth factors, and exosomes 
(EXOs), which modulate the tissue microenvironment and facilitate repair and 
regeneration processes. Consequently, MSC-derived products, such as condi-
tioned media and EXOs, are now being extensively evaluated for their potential 
medical applications, offering advantages over the long-term use of whole MSCs. 
However, the efficacy of MSC-based treatments varies in clinical trials due to both 
intrinsic differences resulting from the choice of diverse cell sources and non-
standardized production methods. To address these concerns and to enhance 
MSC therapeutic potential, researchers have explored many priming strategies, 
including exposure to inflammatory molecules, hypoxic conditions, and three-
dimensional culture techniques. These approaches have optimized MSC secretion 
of functional factors, empowering them with enhanced immunomodulatory, 
angiogenic, and regenerative properties tailored to specific medical conditions. In 
fact, various priming strategies show promise in the treatment of numerous 
diseases, from immune-related disorders to acute injuries and cancer. Currently, 
in order to exploit the full therapeutic potential of MSC therapy, the most 
important challenge is to optimize the modulation of MSCs to obtain adapted cell 
therapy for specific clinical disorders. In other words, to unlock the complete 
potential of MSCs in regenerative medicine, it is crucial to identify the most 
suitable tissue source and develop in vitro manipulation protocols specific to the 
type of disease being treated.

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v16.i1.7
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Core Tip: Mesenchymal stromal/stem cells (MSCs) offer important therapeutic effects in the field of regenerative medicine. 
Their key role lies in the production of paracrine factors that modulate tissue environments and allow their repair following 
insults. Recently, MSC-derived products such as exosomes and conditioned media are replacing whole MSCs in clinical 
applications. In this regard, to optimize the results of MSC-based treatment, researchers have explored priming strategies in 
order to enhance MSC properties. Realizing the full potential of MSC therapy depends on identifying the right tissue source 
and developing priming strategies specific to the disease being treated.
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INTRODUCTION
Over the years, mesenchymal stromal/stem cells (MSCs) have emerged as an important therapeutic tool in the field of 
regenerative medicine[1-4]. These versatile multipotent adult stromal/stem cells play a crucial role in maintaining tissue 
homeostasis under both physiological and pathological conditions. In fact, MSCs possess the remarkable ability to 
influence their surroundings by differentiating, attracting supporting cells, and orchestrating central processes for tissue 
regeneration[5,6]. Together, the multifaceted potential of MSCs shed light on their role as key regulatory elements in the 
complex mechanisms governing tissue repair/recovery in several tissues, including the intestine[7], skin[8], and skeletal 
muscle[6], where MSCs exhibit diverse functions, either supporting high cellular turnover or facilitating regeneration 
following injury.

These discoveries offer a strong motivation for investigating the potential of MSCs as a cellular therapeutic product to 
enhance tissue injury responses in various diseases[9-14]. MSCs show high accessibility, minimal ethics-related concerns, 
and great adaptability to in vitro cultures for expansion[15]. Moreover, these cells possess immune privilege attributed to 
their low expression of CD40, CD80, CD86, and major histocompatibility complex I (MHC I), along with the absence of 
MHC II expression[16,17]. These attributes make these cells a highly valuable resource for developing new cell therapies 
in the field of regenerative medicine.

MSCs are present in various tissues, including bone marrow[18], adipose tissue[19], umbilical cord[14], dental pulp
[20], and placenta[21]. In these diverse tissue environments, MSCs interact with different cell types, such as epithelial 
cells, endothelial cells, immune cells, and stromal cells, showing immunomodulatory, angiogenic, pro-trophic, and anti-
oxidative properties[22-25]. Their adaptability and therapeutic potential make them promising candidates for addressing 
a wide range of clinical disorders, including cardiovascular, neurodegenerative, immune, lung, liver, kidney, and 
orthopedic diseases. Notably, it has become increasingly evident that the true therapeutic power of MSC therapies lies 
not in engraftment and cell replacement but rather in their ability to produce critical paracrine factors that modulate the 
tissue microenvironment and facilitate repair and regeneration processes. Indeed, these cells are able to produce crucial 
functional factors, such as cytokines, growth factors, and exosomes (EXOs), which can mediate their therapeutic effects
[26-28]. Hence, given the regenerative potential and trophic properties inherent in certain MSC-derived products, such as 
the conditioned medium and/or EXOs, these products have arisen as potential therapeutic tools with a wide range of 
applications. Consequently, they are undergoing extensive evaluation for potential medical use[9,12,29-32]. The clinical 
utilization of MSC-derived products must be considered for their advantages, particularly in contrast to concerns related 
to the prolonged use of MSCs and the associated risks of infectious disease transmission, such as viruses present in 
transplanted allogeneic cells[33].

However, the therapeutic landscape of MSCs is not without its challenges and controversies. The efficacy of MSC-
based treatments has yielded variable results in clinical trials, reflecting the complexity of intrinsic differences between 
cell-based products and a lack of standardized methods for MSC production that affects their potency[34-39]. The effects 
of MSCs vary based on the tissue source and the methods employed in their production and administration[35,40,41]. 
Several studies have demonstrated that the composition of the MSC secretome can be modulated through the precondi-
tioning of MSCs with cytokine treatments and hypoxia. Additionally, cultivating MSCs under specific culture systems, 
such as three-dimensional (3D) conditions, also influences their secretome. In response to MSC “priming”, the production 
of factors is switched towards a greater functional phenotype that results in an increase in MSC therapeutic effects[3,27,
42].

The field of research on MSCs is still very complex and is constantly evolving, emphasizing that the road to consol-
idating the use of MSCs as an effective cell therapy for various pathologies is still quite long. In this regard, promising 
approaches are being studied, among which MSC priming certainly represents one of the most hopeful strategies.

https://www.wjgnet.com/1948-0210/full/v16/i1/7.htm
https://dx.doi.org/10.4252/wjsc.v16.i1.7
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PRIMING STRATEGIES TO POTENTIATE THE THERAPEUTIC EFFECTS OF MSCs
In the last decade, the concept of priming or preconditioning MSCs has gained credibility as a means to enhance MSC 
therapeutic potential by modulating the secretion of paracrine factors and tailoring their actions to specific medical 
conditions[3,27]. Similar to immune cells[43], MSCs have been shown to memorize a stimulus after transitioning to a new 
environment[44]. In this regard, MSCs can be primed to generate a short-term-memory effect and, mimicking microenvir-
onmental stimuli, this strategy may be used in vitro to avoid the need for in vivo activation of the MSCs when aiming 
towards specific therapeutic activities. This approach has been widely explored in the context of immunomodulation[45,
46], tissue regeneration[47,48], and even cancer interactions[49], with each priming strategy offering a unique set of 
advantages and applications.

One of the principal priming strategies involves exposing MSCs to inflammatory molecules. Numerous studies reveal 
that the immunosuppressive properties of MSCs are not intrinsic but require priming by inflammatory factors. In fact, 
depending on the specific inflammatory conditions, the MSC phenotype can be polarized into MSC type 1, characterized 
by pro-inflammatory properties, or MSC type 2, with immunosuppressive capabilities[50]. Various strategies have been 
implemented to modulate and enhance the secretion of immunomodulatory molecules in MSCs. The treatment of MSCs 
with inflammatory cytokines, including interferon-γ, interleukin (IL)-1α/β, IL-6, tumor necrosis factor (TNF)-α, and IL-17, 
is shown to significantly enhance their immunomodulatory properties. This priming approach increases the production 
and secretion of key functional factors such as hepatocyte growth factor (HGF), transforming growth factor (TGF)-β, IL-6, 
prostaglandin E2 (PGE2), leukemia inhibitory factor (LIF), granulocyte colony-stimulating factor, IL-10, macrophage 
inflammatory protein (MIP)-1α, indoleamine 2,3-dioxygenase (IDO), intercellular adhesion molecule, programmed death 
ligand (PDL)1-2, monocyte chemoattractant protein (MCP)-1, monokine induced by interferon-gamma, interferon-
gamma-inducible protein 10, and MIP-1β. These factors, in turn, empower MSCs with enhanced paracrine immunomodu-
latory properties, making them potent inhibitors of T cell proliferation and activators of anti-inflammatory M2 
macrophage polarization[27]. Moreover, treatment with inflammatory cytokines is shown to improve the immunomodu-
latory capabilities of extracellular vesicles (EVs) derived from MSCs, further highlighting the versatility of this priming 
strategy in the context of immunoregulation[45,51].

Priming with hypoxia represents another pivotal approach to enhancing MSC functionality. Hypoxic preconditioning 
of MSCs is shown to stimulate the secretion of essential growth factors, such as vascular endothelial growth factor (VEGF) 
and HGF, which are crucial for angiogenesis and tissue regeneration[52]. Under hypoxic conditions, MSCs activate 
signaling pathways, including the HIF-1α-GRP78-Akt axis, leading to the overproduction of pro-angiogenic factors[53]. 
This approach yields significant benefits in various acute injuries, including ischemia-reperfusion injury (IRI), renal 
injury, and myocardial infarction[3]. Moreover, hypoxic preconditioning is effective in promoting hepatic tissue 
regeneration, with increased expression of factors such as HGF and VEGF[48,54]. This is particularly advantageous in 
cases of liver injury and fibrosis. Hypoxic MSCs also exhibit the ability to secrete functional EVs capable of stimulating 
tissue remodeling, contributing to tissue repair in cerebral tissue[55]. In addition, hypoxic MSC-derived EVs show 
enhanced activity both in vitro and in vivo, especially in promoting angiogenesis on human brain microvascular 
endothelial cells. Interestingly, this effect appears to be mediated by microRNA (miRNA)-612[56]. Therefore, several 
functional factors produced by hypoxia-primed MSCs are found to play a crucial role in stimulating angiogenic and 
regenerative activities, making this priming strategy a valuable tool to enhance MSC therapeutic effects for tissue 
recovery after acute injury.

Priming through 3D culture techniques offers an alternative approach to enhancing MSC therapeutic properties. This 
strategy involves the generation of MSC spheroids, which closely mimic the in vivo MSC niche and boost the functional 
phenotypic profile of MSCs. These spheroids exhibit superior trophic and immunomodulatory functionalities, driven by 
the paracrine secretion of functional factors with anti-inflammatory, angiogenic, anti-fibrotic, anti-apoptotic, and 
mitogenic properties[30,51,57-59]. Comparative studies show that 3D culture of MSCs can modify their transcriptome 
profile, leading to the overexpression of genes that regulate proliferation, differentiation, immunomodulation, and 
angiogenic processes[60]. These spheroids are found to secrete a plethora of regenerative and immunomodulatory factors, 
including stromal cell-derived factor-1α, growth-regulated oncogene α, MCP-1/3, IL-4, IL-10, EGF, LIF, placental growth 
factor-1, VEGF-A/D, HGF, insulin-like growth factor 1, TNFAIP6, stanniocalcin 1, PDGFB, TGF-β, PGE2, and IDO. Such 
factors are involved in promoting tissue repair and regeneration, making 3D-cultured MSCs valuable for various applic-
ations in regenerative medicine[27].

PRIMING STRATEGIES TO IMPROVE THE CLINICAL APPLICATION OF MSCs
The application of these priming strategies is not limited to basic research. They have found practical utility in the 
treatment of various clinical conditions (Table 1). For instance, in the context of chronic immune-related disorders, MSCs 
primed with pro-inflammatory cytokines demonstrate enhanced immunomodulatory properties, making them more 
effective in diseases such as colitis, autoimmune encephalomyelitis, and graft-versus-host disease (GVHD)[61,66,102]. 
Notably, the priming of MSCs with IL-1β shows promise in alleviating the side effects of sepsis, primarily by inducing 
macrophage polarization toward an anti-inflammatory M2 phenotype[103]. Similarly, the use of TNF-α-primed MSCs 
attenuates symptoms of GVHD and peritonitis, with a demonstrated reduction in pro-inflammatory cytokines and an 
increase in anti-inflammatory factors[67]. Moreover, the efficacy of MSCs primed with 3D culture conditions is evident in 
the treatment of diseases characterized by unresolved inflammation, as these spheroids overexpress TSG-6 and exhibit a 
more significant impact in reducing inflammation[92].
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Table 1 Main priming strategies of mesenchymal stromal/stem cells and their application in various disease models

MSCs Priming treatments Model/disease Therapeutic effects Ref.
Priming with inflammatory 
molecules

BM-MSCs IFN-γ In vivo model of chronic colitis Attenuation of inflammation [61]

UC-MSCs TNF-α In vivo model of intrauterine 
adhesion

Reduction of inflammation and 
endometrium fibrosis

[62]

BM-MSCs IFN-γ In vivo models of acute radiation 
syndrome

Protection from radiation-induced 
lethality

[63]

UC-MSCs IL-1β In vivo model of chronic colitis Attenuation of inflammation [64]

BM-MSCs IL-25 In vivo model of chronic colitis Attenuation of inflammation [65]

BM-MSCs and CB-MSCs IFN-γ In vivo model of GVHD Reduction of the symptoms of 
GVHD

[66]

UC-MSCs IFN-γ; TNF-α In vivo model of GVHD Reduction of the clinical 
symptoms

[67]

BM-MSCs IL-6 In vivo model of liver fibrosis Reduction of liver injury [68]

UC-MSCs IL-1β In vivo model of sepsis Increase in survival rate [69]

CB-MSCs IFN-γ In vivo model of acute kidney 
injury

Reduction of kidney injury [70]

AdMSCs TNF-α In vivo model of wound healing Acceleration of wound closure 
and angiogenesis

[71]

Priming with hypoxia

BM-MSCs Hypoxia In vivo model of traumatic brain 
injury

Improved neurogenesis and 
cognitive function

[47]

AdMSCs Hypoxia In vivo model of hepatectomy Enhanced liver regeneration [48]

UC-MSCs Hypoxia In vivo model of spinal cord injury Improved axonal preservation [52]

AdMSCs Hypoxia In vivo model of hindlimb 
ischemia

Improvement of angiogenesis [53]

BM-MSCs Hypoxia In vivo model of hepatectomy Enhanced liver regeneration [54]

BM-MSCs Hypoxia In vivo model of pulmonary 
fibrosis

Increased survival rate [72]

BM-MSCs Hypoxia In vivo model of hindlimb 
ischemia

Improvement of angiogenesis [73]

AdMSCs Hypoxia In vivo model of hindlimb 
ischemia

Improvement of functional 
recovery

[74]

BM-MSCs Hypoxia In vivo model of radiation-
induced lung injury

Improvement of antioxidant 
ability

[75]

BM-MSCs Hypoxia In vivo model of lung IRI Attenuation of lung injury [76]

AdMSCs Hypoxia In vivo model of acute kidney 
injury

Improvement of renal function [77]

AdMSCs Hypoxia In vivo model of acute kidney 
injury

Attenuation of kidney injury [78]

PMSCs Hypoxia In vivo model of scar formation Reduction of scar formation [79]

AF-MSCs Hypoxia In vivo model of wound healing Acceleration of wound healing [80]

BM-MSCs Hypoxia In vivo model of wound healing Acceleration of wound healing [81]

BM-MSCs Hypoxia In vivo model of hindlimb 
ischemia

Improvement of muscle fiber 
regeneration

[82]

DP-MSCs Hypoxia In vivo model of dental pulp 
injury

Regeneration of dental pulp [83]

BM-MSCs Hypoxia In vivo model of cerebral ischemia Enhanced angiogenesis and 
neurogenesis

[84]
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BM-MSCs Hypoxia In vivo model of ischemic cortex Reduction of infarct volume [85]

BM-MSCs Hypoxia In vivo model of myocardial 
infarction

Reduction of cardiac fibrosis [86]

BM-MSCs Hypoxia In vivo model of myocardial 
infarction

Improvement cardiac functions [87]

BM-MSCs Hypoxia In vivo model of myocardial 
infarction

Prevention of apoptosis in 
cardiomyocytes

[88]

BM-MSCs Hypoxia In vivo model of myocardial 
infarction

Increased cardiomyocyte prolif-
eration and function

[89]

BM-MSCs Hypoxia In vivo model of myocardial 
infarction

Improved cardiac repair [90]

BM-MSCs Hypoxia In vivo IRI model of myocardium Reduction of IRI [91]

Priming with 3D culture

BM-MSCs 3D culture In vivo model of peritonitis Attenuation of inflammation [92]

UC-MSCs 3D culture In vivo model of arthritis Attenuation of systemic arthritic 
manifestations

[93]

CB-MSCs 3D culture In vivo model of hindlimb 
ischemia

Improvement of cell survival and 
angiogenesis

[94]

AdMSCs 3D culture In vivo model of hindlimb 
ischemia

Improvement of angiogenesis [95]

AdMSCs 3D culture In vivo model of acute kidney 
injury

Amelioration of renal function [96]

AdMSCs 3D culture In vivo model of disc degeneration Induction of disc repair [97]

BM-MSCs 3D culture In vivo model of  
bilateral calvarial defects

Induction of bone regeneration [98]

SMSCs 3D cultures In vivo model of osteochondral 
defects

Induction of cartilage regeneration [99]

BM-MSCs 3D culture In vivo model of myocardial 
infarction

Promotion of cardiac repair [100]

BM-MSCs 3D cultures In vivo model of myocardial 
infarction

Improvement of cardiac function [101]

MSCs: Mesenchymal stromal/stem cells; BM-MSCs: Bone marrow-derived mesenchymal stromal/stem cells; UC-MSCs: Umbilical cord-derived 
mesenchymal stromal/stem cells; AdMSCs: Adipose-derived mesenchymal stromal/stem cells; CB-MSCs: Cord blood-derived mesenchymal stromal/stem 
cells; DP-MSCs: Dental pulp-derived mesenchymal stromal/stem cells; PMSCs: Placenta-derived mesenchymal stem cells; AF-MSCs: Amniotic fluid 
derived mesenchymal stromal/stem cells; SMSCs: Synovial derived mesenchymal stromal/stem cells; GVHD: Graft-versus-host disease; IRI: Ischemia-
reperfusion injury; IFN: Interferon; TNF: Tumor necrosis factor; IL: Interleukin; 3D: Three-dimensional.

The therapeutic potential of MSCs also extends to the treatment of acute injuries, where priming strategies can play a 
crucial role in boosting their regenerative capabilities. For instance, in cases of acute myocardial injury, hypoxic precondi-
tioning significantly improves blood flow recovery, influences heart remodeling, and enhances the regeneration of 
ischemic tissues[87,88]. These effects are attributed to the increased production of pro-survival and pro-angiogenic factors 
by hypoxia-primed MSCs, including HIF-1α, ANGPT1, VEGF, Flk-1, Bcl-2, and Bcl-xL[87]. Hypoxic MSCs demonstrate 
enhanced integration into damaged tissues, with improved survival, proliferation, and regenerative effects[74]. In 
parallel, 3D-cultured MSCs show potential in both bone and cartilage repair, highlighting their capacity to stimulate 
tissue regeneration across various contexts[98,99].

In recent years, the interaction between MSCs and cancer has also garnered considerable attention. Indeed, MSCs 
represent a crucial actor in the tumor microenvironment due to their ability to modulate the function/survival of both 
immune cells and tumor cells, with the final effects of promoting or inhibiting cancer[104]. Numerous studies have 
investigated the molecular mechanisms involved in the MSC-based modulation of tumor immunity, revealing that MSCs 
might either support or suppress tumor progression since many MSC factors can be produced differently in the tumor 
microenvironment[104-106]. For instance, the cross-talk between MSCs and M1/M2 macrophages plays a pivotal role in 
regulating tumor progression[107]. MSCs are shown to promote the shift from anti-tumorigenic M1 macrophages to pro-
tumorigenic M2 macrophages, contributing to immune evasion and tumor growth[108]. Moreover, the capacity of MSCs 
to express immune checkpoint molecules, including PDL1, further intensifies their role in immunosuppression, 
facilitating the evasion of host immune responses by cancer cells[109]. On the other hand, various studies indicate that 
utilizing MSC-derived EVs housing anti-tumorigenic miRNAs might offer a novel therapeutic opportunity for MSC-
based tumor therapy[110].
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Figure 1 Schematic representation of the enhanced therapeutic effects of mesenchymal stromal/stem cells after priming. Mesenchymal 
stromal/stem cells can be activated through various stimuli to increase the production of functional factors. Depending on the type of priming employed, different 
effects can be achieved, such as immunoinhibition, induction of angiogenesis, and cellular proliferation, which can be exploited for tissue repair/regeneration following 
injury. Conversely, when different effects are induced by diverse priming strategies, such as immunostimulation, inhibition of proliferation, and induction of apoptosis, 
these effects can be harnessed for anticancer treatment. MSC: Mesenchymal stromal/stem cell.

In summary, priming strategies represent a versatile approach to managing the therapeutic potential of MSCs, tailoring 
their secreted factors and interactions to diverse clinical conditions. These strategies show great promise in regenerative 
medicine, immune-related disorders, and the complex interplay between MSCs and cancer (Figure 1). Through exposure 
to inflammatory molecules, hypoxic environments, 3D culture conditions, or other new priming strategies, MSCs can be 
transformed into highly specialized therapeutic tools, extending the possibilities for their application in various clinical 
settings and expanding our understanding of the dynamic role of MSCs in health and disease. The ongoing research in 
this field promises further advancements in the optimization of MSC-based therapies, offering new hope for patients 
suffering from a wide range of pathologies.

DISCUSSION
While research on MSCs is booming, as are their clinical applications, it is becoming increasingly important to understand 
the multiple properties of MSCs and how these can be optimally modulated to achieve the desired therapeutic effects. 
The use of MSC therapy, unfortunately, suffers from intrinsic biological variability, both due to the source and inter-
subject variability. On the other hand, these therapies might prove to be decisive in the treatment of certain so-called 
multifactorial pathologies where multiple molecular targets are involved, as in the case of inflammatory-related diseases
[111], including Alzheimer’s and Parkinson’s diseases[112,113], cancer[114], IRI[13,115], and others. Due to the ability of 
MSCs to produce multiple functional factors capable of acting simultaneously on multiple targets, cell therapies based on 
the use of MSCs might be successful in the treatment of some such acute and chronic diseases for which effective 
treatments are currently lacking (Figure 2).

However, to achieve this goal, it will be necessary to understand how to modulate MSCs according to the specific 
dysfunction to be treated. In fact, while MSC immune inhibitory and pro-angiogenic effects may be suitable for various 
diseases in the field of regenerative medicine, the same properties might be disadvantageous in the treatment of some 
tumors. In the case of immune-mediated diseases such as GVHD or liver cirrhosis, MSCs with pronounced immunomod-
ulatory capabilities might show enhanced therapeutic efficacy. Also, in the context of wound healing, MSCs displaying a 
well-balanced array of therapeutic attributes, encompassing immunomodulation, trophic stimulation, and angiogenic 
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Figure 2 Important factors affecting the heterogeneity of mesenchymal stromal/stem cell clinical effects and potential strategies for 
improving mesenchymal stromal/stem cells-based therapies. A: Mesenchymal stromal/stem cells (MSCs) can be isolated from many tissues but have 
mainly been harvested from bone marrow, dental pulp, adipose and placental tissue. Different tissue sources can affect the MSC phenotype and properties[41]. There 
is the need to establish the best source for MSCs to obtain, without invasiveness, effective cells for therapeutic use; B: The manipulation of MSCs prior to use can 
influence MSC clinical potency[3] and direct their use towards specific pathological conditions; C: The above-mentioned strategies might be very useful for the 
optimization of MSC-based therapies for several multitarget diseases for which effective treatments are currently lacking. MSC: Mesenchymal stromal/stem cell.

promotion, may be more efficacious.

CONCLUSION
It is true that MSCs from various sources possess unique therapeutic properties, but it is unthinkable that they can be 
extracted from any tissue and used as they are for various types of diseases. The only way to build an effective cell 
therapy based on MSCs is to first establish the most suitable source in terms of therapeutic efficacy with the least invasive 
strategy required for their isolation. Subsequently, appropriate in vitro manipulation strategies should be studied to 
promote their expansion and trigger specific therapeutic functions in order to establish MSC manipulation protocols 
specific to the type of disease to be treated. Our future goal should be to unlock the full potential of MSCs, fostering a 
deeper appreciation of their remarkable therapeutic capabilities and actively contributing to the ongoing progress of 
regenerative medicine.
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