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Abstract
High glucose (HG) culture conditions in vitro and persistent exposure to hy-
perglycemia in diabetes patients are detrimental to stem cells, analogous to any 
other cell type in our body. It interferes with diverse signaling pathways, i.e. 
mammalian target of rapamycin (mTOR)-phosphoinositide 3-kinase (PI3K)-Akt 
signaling, to impact physiological cellular functions, leading to low cell survival 
and higher cell apoptosis rates. While elucidating the underlying mechanism re-
sponsible for the apoptosis of adipose tissue-derived mesenchymal stem cells 
(MSCs), a recent study has shown that HG culture conditions dysregulate mTOR-
PI3K-Akt signaling in addition to mitochondrial malfunctioning due to defective 
mitochondrial membrane potential (MtMP) that lowers ATP production. This 
organelle-level dysfunction energy-starves the cells and increases oxidative stress 
and ultrastructural abnormalities. Disruption of the mitochondrial electron 
transport chain produces an altered mitochondrial NAD+/NADH redox state as 
evidenced by a low NAD+/NADH ratio that primarily contributes to the reduced 
cell survival in HG. Some previous studies have also reported altered mito-
chondrial membrane polarity (causing hyperpolarization) and reduced mito-
chondrial cell mass, leading to perturbed mitochondrial homeostasis. The hostile 
microenvironment created by HG exposure creates structural and functional 
changes in the mitochondria, altering their bioenergetics and reducing their ca-
pacity to produce ATP. These are significant data, as MSCs are extensively stu-
died for tissue regeneration and restoring their normal functioning in cell-based 
therapy. Therefore, MSCs from hyperglycemic donors should be cautiously used 
in clinical settings for cell-based therapy due to concerns of their poor sur-vival 
rates and increased rates of post engraftment proliferation. As hypergly-cemia 
alters the bioenergetics of donor MSCs, rectifying the loss of MtMP may be an 
excellent target for future research to restore the normal functioning of MSCs in 
hyperglycemic patients.

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v16.i3.237
mailto:kh.haider@sr.edu.sa
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Core Tip: High glucose (HG) conditions, seen in vitro as well as in diabetic patients, adversely affect stem cells by disrupting 
mammalian target of rapamycin-phosphoinositide 3-kinase-Akt signaling, resulting in reduced cell survival and increased 
apoptosis. A recent study of adipose tissue-derived mesenchymal stem cells (MSCs) found dysregulation of this signaling 
pathway and defective mitochondrial membrane potential (MtMP) under HG conditions. This leads to decreased ATP 
production, heightened oxidative stress, and structural abnormalities, causing diminished cell survival. Altered mitochondrial 
NAD+/NADH redox state and disrupted mitochondrial homeostasis worsen the hostile microenvironment induced by HG 
exposure. These findings are a note of caution for using MSCs from hyperglycemic donors in cell-based therapy owing to 
their poor survival and proliferation rates. Future research targeting MtMP restoration may enhance the therapeutic efficacy 
of MSCs in hyperglycemic patients.

Citation: Mateen MA, Alaagib N, Haider KH. High glucose microenvironment and human mesenchymal stem cell behavior. World J 
Stem Cells 2024; 16(3): 237-244
URL: https://www.wjgnet.com/1948-0210/full/v16/i3/237.htm
DOI: https://dx.doi.org/10.4252/wjsc.v16.i3.237

INTRODUCTION
Chronic exposure to a high glucose (HG) microenvironment in vitro and in vivo is detrimental to cells and has phy-
siological and pathological consequences (Figure 1). At the cellular level, the damaging effects of HG exposure for a 
prolonged period can cause glucose cytotoxicity that invariably affects every body cell, encompassing red blood cells to 
stem cells[1-3].

Insulin resistance, pancreatic beta cell damage, and decreased insulin production lead to hyperglycemia that drastically 
affects the whole body at the organ and cellular levels. An uncontrolled hyperglycemic state leads to chronic systemic 
inflammation that brings about morphological and functional changes in the body cells, including stem cells[4]. This 
persistent uncontrolled hyperglycemia also produces changes in the bone marrow (BM) microenvironment that cause 
functional impairment of stem cells[5]. Nguyen et al[6] reported a reduced proliferation rate and increased expression of 
stress-associated genes, activating transcription factor 4, and C/EBP homologous protein in mesenchymal stem cells 
(MSCs). On the same note, Kim et al[7] reported defective osteogenic differentiation but an increased adipogenic differen-
tiation rate in BM-derived MSCs. MSCs from streptozotocin (STZ)-induced diabetic rats have a slow proliferation rate 
and poor myogenic potential[8]. These studies show that hyperglycemia causes changes in progenitor cell biology and 
affects their normal behavior and functions during tissue repair[9]. Hence, attempts have been made in some cases to 
predifferentiate MSCs into insulin-producing cells before transplantation in hyperglycemic experimental animal models
[10].

Antihyperglycemic therapy to regain glucose homeostasis can also interfere with the quality and efficacy of MSC 
treatment. Hsiao et al[11] reported that metformin caused apoptosis of MSCs via the AMP-activated protein kinase 
(AMPK)-mammalian target of rapamycin (mTOR) pathway. Interestingly, the authors observed that hyperglycemia 
protected cells from metformin-induced apoptosis. In another study involving a rat model of diabetic cardiomyopathy, 
Ammar et al[12] observed impaired angiogenesis and higher myocardial fibrosis in response to concomitant treatment 
with metformin and MSCs compared to MSCs treated animals. These data were attributed to impaired MSC functionality 
in the presence of metformin treatment.

HG CULTURE- AND HYPERGLYCEMIA-INDUCED SIGNALING
Hyperglycemic conditions in vivo are simulated in vitro by culturing the cells in HG conditions to study the effects of 
hyperglycemia. HG culture conditions have been shown to cause rapid cellular dysfunction by promoting transcriptional 
changes[13]. Some of the essential mechanisms involved therein include the formation of advanced glycation products 
(AGEs), PKC activation, mTOR/Akt dysregulation, etc, that lead to elevated reactive oxygen species (ROS) stress, in-
creased pro-inflammatory cytokines production, growth factors, abnormally high gas transmitters, altered cell bioener-
getics, etc.

For example, Aguiari et al[14] reported that muscle-derived stem cells and adipose tissue-derived stem cells under HG 
culture conditions preferentially adopted adipogenic phenotype in response to ROS accumulation and activation of PKC-
β in the cells. They supported their findings by treating the cells with oxidizing agents and silencing PKC-β in the cells to 
inhibit their adipogenic differentiation. In a subsequent study, culture of human aortic endothelial cells in HG was re-

https://www.wjgnet.com/1948-0210/full/v16/i3/237.htm
https://dx.doi.org/10.4252/wjsc.v16.i3.237
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Figure 1 Glucotoxicity in mesenchymal stem cells exposed to high glucose culture conditions and hyperglycemia. AGE: Advanced glycation 
end product; AMPK: AMP-activated protein kinase; CXCR: C-X-C chemokine receptor type 4; drp1: Dynamin-related protein 1; fis1: Fission protein 1. mfn1: Mitofusin 
1; MSC: Mesenchymal stem cell; mTOR: Mammalian target of rapamycin; PI3K: Phosphoinositide 3-kinase; ROS: Reactive oxygen species; TNF: Tumor necrosis 
factor; TSC1: Tuberous sclerosis 1.

ported to cause significant pathway changes during the first 4 h, with distinct clusters of genes showing altered transcrip-
tional profiles unique to HG conditions[13]. Temporal co-expression and causal network analysis showed a relationship 
between type 2 diabetes mellitus and activation of growth factor signaling pathways, including signal transducer and 
activator of transcription 3 and nuclear factor-kappa B. On the same note, MSCs in HG culture undergo senescence 
mediated by Akt/mTOR dysregulation[3]. However, some studies report that for the detrimental effects of HG culture 
conditions, the cells may need persistent long-term exposure because they may resist short-term exposure to HG culture 
conditions[15]. It is interesting to note that MSCs from healthy donors had shorter doubling time under HG culture 
conditions compared with MSCs from diabetic donors, thus implying that the difference in their responsiveness is more a 
function of the pathophysiology of diabetes. On the same note, changes observed in diabetes donor-derived MSCs 
respiration capacity were responsible for their compromised cellular functions[6]. There is reportedly a decreased an-
giogenic paracrine activity, which was evident from reduced secretion of pro-angiogenic growth factors, i.e. vascular 
endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang-1), and Ang-2, and VEGF-C in the HG MSCs[7].

Chronic HG culture conditions also drive glycation reactions through the receptor for advanced glycation end products 
(AGEs), resulting in the formation of AGEs and endogenous inflammatory mediators[16,17]. It has been reported that 
stimulation with AGE-bovine serum albumin induced the generation of ROS and attenuated the proliferation and 
migration of MSCs via activation of the ROS-p38 mediated pathway[18]. Another study reported that HG reduced the 
regeneration ability of BM-MSCs through the activation of glycogen synthase kinase-3beta, which plays a vital role in 
inhibiting the proliferation of BM-MSCs via the inhibition of C-X-C chemokine receptor type 4[19].

Continuing their efforts to study the effects of hyperglycemia on MSC functionality, Abu-El-Rub et al[20] reported 
interesting comparative data in vitro by culturing human adipose tissue-derived MSCs (AD-MSCs) under low glucose 
and HG conditions in a parallel set of experiments. It is pertinent to mention that the authors used in vitro culture 
conditions for exposure to HG. Hence, the term “hyperglycemia” in the aims, conclusion, and elsewhere in the ma-
nuscript does not reflect the experimental design. The authors have primarily focused on three endpoints, cell viability, 
cell apoptosis, and mitochondrial energetics, to share their findings supported by some mechanistic studies that will be 
discussed in the following sections.

CELL VIABILITY AND APOPTOSIS
In addition to cellular dysfunction and suppression of proliferation, an HG microenvironment activates signaling 
pathways that direct MSC apoptosis. However, these signaling pathways need to be studied and established further. 
Change of tumor necrosis factor-α expression significantly affected MSC proliferation and death in an STZ-induced type 1 
diabetic mouse model[21]. In contrast, in another interesting study, human BM-MSCs in diabetic serum showed increased 
cellular death and decreased angiogenic response caused by the induction of autophagy signaling with a high level of p62 
expression[22].
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Endoplasmic reticulum stress-induced autophagy is another mechanism contributing to the inactivation of mTOR, 
which was shown to reduce p-S6 (a marker of mTOR activity)[23]. Building on these data, Abu-El-Rub et al[20] revealed 
higher apoptosis in human AD-MSCs (hAD-MSCs) cultured in HG using low glucose culture as the control. Elucidating 
the mechanism causing poor survival of MSCs in an HG microenvironment via impairment of the phosphoinositide 3-
kinase (PI3K)/mTOR axis, they found significantly increased tuberous sclerosis 1 (TSC1) protein. It is now well es-
tablished that mTOR is an essential regulator of mitochondrial dynamics via generating the required mitochondrial 
potential to produce ATP[24]. As a part of the mechanism, TSC1 binding inactivates mTOR, while PI3K, a known acti-
vator of mTOR, is needed to remove the inhibitory effects of TSC1[25]. Furthermore, the downregulation of mTOR 
significantly reduced complex I, IV, and V in HG-cultured hAD-MSCs. These molecular data suggest an impact on 
mitochondrial oxidative phosphorylation and induction of mitophagy and massive oxidative stress[26]. Although data 
from the Abu-El-Rub et al[20] provide a better understanding of the activation of proapoptotic signaling in hAD-MSCs in 
the HG microenvironment, it would have been interesting to see if similar signaling was activated in MSCs from other 
tissue sources as well as from other species to delineate any tissue or species-specific differential responsiveness to HG 
culture conditions. Also, the mechanistic data would have been more convincing if the authors had used gain-of-function 
and loss-of-function studies to establish a causal relationship between mTOR, PI3K, Akt, and TSC1. There is no mention 
of TSC2, which forms a physical and functional complex in vivo[27]. The evidence is based on western blotting alone, 
showing TSC1 expression with simultaneous loss of PI3K and mTOR in HG-cultured cells. There needs to be more 
evidence to prove their dependence/relationship with each other. Intriguingly, the authors designed the studies for 
stipulated time points of 3, 7, and 14 d; they provided data only for the day 7 time point. It would have been interesting to 
include day 3 and day 14 data in the results or at least as supplementary data to show how early these molecular and 
organelle-level changes occurred and continued in the HG culture. Similarly, it would have been interesting if the cells 
were returned to normoglycemic conditions at each time point to observe any possible reversibility of the changes at each 
time point. There are better methods to observe cell viability than the trypan blue dye exclusion method to exclude 
researcher bias. Another mechanism suggested by the authors for MSCs’ low viability was the drop in NAD+/NADH 
ratio in hAD-MSCs, correlated with impairment of the inner mitochondrial membrane potential (MtMP) that is discussed 
in the next section.

MITOCHONDRIAL CHANGES IN RESPONSE TO HYPERGLYCEMIC MICROENVIRONMENT
Before discussing the impairment of MtMP as a part of the cell’s response to hyperglycemia, readers need to understand 
the basic functioning of mitochondria. A continual, uninterrupted energy supply is critical for cellular processes, i.e. 
growth, repair, maintenance, etc, for which robust intracellular mechanisms are in place[28]. Mitochondria play a crucial 
role in supporting these cellular functions with ATP production during normal mitochondrial bioenergetics, along with 
contributing to other processes such as aging, ion homeostasis, and apoptosis[29]. The mitochondrial intermembranous 
space houses the enzymes involved in the electron transport chain, capturing energy carried by electrons in NADH and 
FADH2 to generate ATP. The flux of electrons creates a stable MtMP facilitated by proton pumps, i.e. complexes I, III, and 
IV. Contingent upon the cell’s energy needs, mitochondria undergo fusion or fission such that the process stimulates and 
inhibits ATP synthesis, respectively[30]. At the molecular level, AMPK enables mitochondrial fusion via mitofusin 1 
(Mfn1), Mfn2, and optic atrophy 1, while dynamin-related protein 1 (Drp1) and fission protein 1 control mitochondrial 
fission. More recent studies have shown that mitochondrial functions go far beyond energy-producing organelle, i.e. cell 
differentiation and their regenerative potential[31-33].

HG culture conditions in vitro and hyperglycemia in diabetes patients cause mitochondrial dysfunction because of 
altered MtMP, thus lowering ATP production. A low NAD+/NADH ratio is observed in cardiac dysfunction in diabetic 
hearts. At the same time, it also changes mitochondrial membrane polarity and reduces mitochondrial cell mass, leading 
to perturbed mitochondrial homeostasis in human mononuclear cells[34,35]. Hyperglycemia also causes mitochondrial 
fragmentation with upregulation of Drp1 (promoting fission) or downregulation of Mfn1/2 (inhibiting fusion), thus 
further reducing mitochondrial ATP synthesis[35]. It creates structural and functional changes in the mitochondria, 
altering their bioenergetics and thus jeopardizing their survival[36-38]. There is also an increase in ROS stress in the 
cytosol and mitochondria[39]. Abu-El-Rub et al[20] have attributed reduced NAD+/NADH ratio in hAD-MSCs exposed 
to an HG environment as responsible for driving the cells toward apoptosis via dysregulation of mitochondrial complexes 
I, IV, and V. They have supported their findings with MtMP changes in hAD-MSCs assessed by the MtMP assay kit. All 
these factors confirm dysfunction in mitochondrial bioenergetics in the cells, resulting in low survival and higher 
apoptosis in HG culture conditions. Table 1 summarizes some of the studies from the published literature reporting the 
effect of HG culture conditions.

One of the main limitations of the proposed mechanism is that there needs to be an attempt to extrapolate these data in 
vivo using experimental animal models. This is important before use as a novel target to improve the survival of MSC in 
diabetic patients. Moreover, it would have been interesting if the authors had used cellular preconditioning using precon-
ditioning mimetics or a subcellular preconditioning approach to stabilize the MtMP, which can enhance cell survival and 
reduce apoptosis in HG culture conditions[43-45]. The authors have already successfully used subcellular precondi-
tioning for cytoprotection of donor stem cells for heart-cell therapy to enhance their post engraftment survival[46,47]. 
Underscoring the mechanism, the authors have shown that mito-Cx43 gene targeting was cytoprotective via a shift of 
mitochondrial Bak and Bcl-xL balance.
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Table 1 Summary of some studies from the published literature reporting the effect of high glucose culture conditions

Ref. Cell type and 
source

Glucose 
concentration 
used

Mechanism Findings

Zhang et al[19], 
2016

Rat BM-MSCs HG: 16.5 mM vs 
NG: 5.5 mM

Activation of GSK3β and 
suppression of CXCR-4, β-
catenin, LEF-1, and cyclin D1 
under HG culture conditions

The study related HG culture with the activation of GSK3β to 
affect the proliferation and migration of BM-MSCs in HG culture. 
The proliferation and migration ability of the cells were 
suppressed in HG culture. HG activated GSK3β but suppressed 
CXCR-4, β-catenin, LEF-1, and cyclin D1. Inhibition of GSK3β by 
lithium chloride led to increased levels of β-catenin, LEF-1, cyclin 
D1, and CXCR-4 expression

Abu-El-Rub et 
al[20], 2023

hAD-MSCs HG: 25 mM vs 
NG: 5.5 mM

Altered mitochondrial 
membrane potential, Low 
NAD+/NADH pool, reduced 
mTOR and PI3K

HG culture for 7 d showed reduced cell viability compared to NG 
cultured control. HG culture significantly reduced the 
mitochondrial membrane potential and NAD+/NADH ratio, 
showing dysregulated mitochondrial function. PI3K protein 
expression significantly decreased in HG-cultured cells MSCs 
with increased TSC1 and downregulation of mTOR protein. 
Mitochondrial complexes I, IV, and V were reduced in HG, 
leading to poor survival of MSCs in HG

Li et al[37], 2007 Human BM-
MSCs

HG: 25 mM vs 
NG: 5.6 mM

Molecular mechanism not 
explored

The effect of HG culture on human MSC in vitro was assessed 
using telomerase-immortalized MSC (hMSC-TERT) and primary 
MSC (hMSC). HG increased hMSC-TERT proliferation in long-
term studies, while it remained unchanged for hMSCs. Apoptosis 
was not influenced by HG in both cell types. Moreover, HG 
culture conditions supported osteogenic differentiation of the 
cells

Hankamolsiri et 
al[40], 2016

Human BM-
MSCs and 
MSCs from 
gestational 
tissues

HG: 25 mM vs 
NG: 5.5 mM

HG-induced the expression 
of adipogenic gene PPARγ 
and LPL in BM-MSCs, as 
well as ADIPOQ and LPL 
genes in gestational tissue-
derived MSCs

No change in surface markers’ expression. HG reduced prolif-
eration but enhanced adipogenic differentiation of all MSCs 
examined. The expression of some adipogenic genes were also 
upregulated when MSCs were cultured in HG. Although HG 
transiently reduced some osteogenic genes, its effect on the 
osteogenic differentiation rate of the MSCs was not demonstrated

Al-Qarakhli et 
al[41], 2019 

Rat BM-MSCs HG: 25 mM vs 
NG: 5.5 mM

HG culture conditions 
significantly reduced 
telomere length at 50 PDs 
and 100 PDs. Also attribute it 
to IGFs, TGF-β1, and BMPs

HG and NG cultured cells had similar morphology and growth 
characteristics. HG-cultured cells proliferated beyond 50 
doublings, although with signs of senescence. The osteogenic and 
adipogenic differentiation rates were significantly reduced in 
HG-cultured cells. The effect of HG was more pronounced in 
advanced PDs

Khasawneh et al
[42], 2023

Human AD-
MSCs

HG: 25 mM vs 
NG: 5.5 mM

Reduced AMPK and PFK-1 Immunomodulation potential was lost in the hAD-MSCs under 
HG conditions and were detectable by immune cells. These 
changes were mediated by low IDO, IL-10, and complement 
factor H. AMPK and PFK-1, integral glycolysis regulators, were 
reduced in HG-cultured MSCs. These findings show the 
possibility of an immunomodulatory shift in MSCs under HG, 
leading to poor survival of the cells

ADIPOQ: Adiponectin; AMPK: AMP-activated protein kinase; BM: Bone marrow; BMP: Bone morphogenic proteins; CXCR4: C-X-C chemokine receptor 
type 4; GSK-3β: Glycogen synthase kinase-3β; hAD-MSCs: Human adipose tissue-derived mesenchymal stem cells; HG: High glucose; IDO: Indoleamine 
2,3-dioxygenase; IGF: Insulin-like growth factor; IL: Interleukin; LEF-1: Lymphoid enhancer binding factor-1; LPL: Lipoprotein lipase; MSC: Mesenchymal 
stem cell; mTOR: Mammalian target of rapamycin; NAD: Nicotinamide adenine dinucleotide; NG: Normal glucose; PD: Population doubling; PFK-1: 
Phosphofructokinase-1; PI3K: Phosphoinositide 3-kinase; PPARγ: Peroxisome proliferator-activated receptor gamma; TGF-β1: Transforming growth factor-
β1; TSC1: Tuberous sclerosis 1.

CONCLUSION
In conclusion, it is evident that HG conditions have detrimental effects on different cell types, including cancer cells, and 
may also change their normal functions, i.e. migration potential and invasiveness[1,2,48-50]. Hence, understanding the 
mechanism of apoptosis by chronic exposure to HG, both in vitro and in vivo, will help efforts to combine preconditioning 
strategies, especially the subcellular preconditioning approach. That will go a long way in promoting donor cell post 
engraftment survival in diabetes patients and vice versa in clinical settings wherein MSCs have already progressed to 
advanced phases of assessment[51,52].
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