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Abstract
BACKGROUND 
The pathogenesis of ulcerative colitis (UC) is complex, and recent therapeutic 
advances remain unable to fully alleviate the condition.

AIM 
To inform the development of novel UC treatments, bioinformatics was used to 
explore the autophagy-related pathogenesis associated with the active phase of 
UC.

METHODS 
The GEO database was searched for UC-related datasets that included healthy 
controls who met the screening criteria. Differential analysis was conducted to 
obtain differentially expressed genes (DEGs). Au-tophagy-related targets were 
collected and intersected with the DEGs to identiy differentially expressed au-
tophagy-related genes (DEARGs) associated with active UC. DEARGs were then 
subjected to KEGG, GO, and DisGeNET disease enrichment analyses using R 
software. Differential analysis of immune infiltrating cells was performed using 
the CiberSort algorithm. The least absolute shrinkage and selection operator al-
gorithm and protein-protein interaction network were used to narrow down the 
DEARGs, and the top five targets in the Dgree ranking were designated as core 
targets.

RESULTS 
A total of 4822 DEGs were obtained, of which 58 were classified as DEARGs. 

https://www.f6publishing.com
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SERPINA1, BAG3, HSPA5, CASP1, and CX3CL1 were identified as core targets. GO enrichment analysis revealed 
that DEARGs were primarily enriched in processes related to autophagy regulation and macroautophagy. KEGG 
enrichment analysis showed that DEARGs were predominantly associated with NOD-like receptor signaling and 
other signaling pathways. Disease enrichment analysis indicated that DEARGs were significantly linked to diseases 
such as malignant glioma and middle cerebral artery occlusion. Immune infiltration analysis demonstrated a 
higher presence of immune cells like activated memory CD4 T cells and follicular helper T cells in active UC pa-
tients than in healthy controls.

CONCLUSION 
Autophagy is closely related to the active phase of UC and the potential targets obtained from the analysis in this 
study may provide new insight into the treatment of active UC patients.

Key Words: Ulcerative colitis; Autophagy; Bioinformatic; Targets; Pathogenesis

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study used bioinformatics to explore the autophagy-related pathogenesis of ulcerative colitis (UC) during its 
active phase. A total of 58 differentially expressed autophagy-related genes (DEARGs) were found in gene expression 
datasets from UC patients and healthy controls. Of these, SERPINA1, BAG3, HSPA5, CASP1, and CX3CL1 were identified 
as core targets. Enrichment analysis highlighted the involvement of DEARGs in autophagy regulation, and macroautophagy, 
in addition to NOD-like receptor signaling and other pathways. These DEARGs were also shown to be associated with 
diseases like malignant glioma and middle cerebral artery occlusion. Immune infiltration analysis revealed an increased 
presence of immune cells, including activated memory CD4 T cells and follicular helper T cells in active UC pa-tients than 
in healthy controls. This study suggests that autophagy plays a significant role in the active phase of UC and identifies 
potential targets for novel UC treatments.

Citation: Gong ZZ, Li T, Yan H, Xu MH, Lian Y, Yang YX, Wei W, Liu T. Exploring the autophagy-related pathogenesis of active 
ulcerative colitis. World J Clin Cases 2024; 12(9): 1622-1633
URL: https://www.wjgnet.com/2307-8960/full/v12/i9/1622.htm
DOI: https://dx.doi.org/10.12998/wjcc.v12.i9.1622

INTRODUCTION
Ulcerative colitis (UC) is a chronic, recurrent inflammatory disease in humans that profoundly affects normal functioning
[1]. It has both active and remission phases that are classified according to disease severity. UC is characterized by sym-
ptoms such as weight loss, diarrhea, rectal bleeding, abdominal pain, and inflammation of the mucous membranes that 
extend from the rectum to the distal part of the colon[2]. Approximately 5 million people are affected by UC worldwide 
and recent studies indicate that the incidence is increasing[3]. UC is thought to result from a combination of genetic and 
environmental factors and is closely linked to compromised intestinal epithelial barriers, a dysregulated microbiome, and 
impaired immune responses[3].

Autophagy is a finely coordinated process that segregates misfolded proteins, damaged or aged organelles, and 
mutated proteins into double-membrane vesicles called autophagosomes. The autophagosomes later merge with lyso-
somes and degrade these components[4]. Three main forms of autophagy have been described to date: microautophagy, 
chaperone-mediated autophagy, and macroautophagy[5]. Autophagy is shown to be a key mediator in the pathophy-
siological processes of UC. From a physiological perspective, autophagy plays a critical role in maintaining intestinal 
balance, regulating interactions between gut microbiota and both the innate and adaptive immune systems, and pro-
tecting the host against intestinal pathogens[5]. Autophagy also reduces endoplasmic reticulum stress associated with 
diverse inflammatory and immune disorders[6], helping to restore gut homeostasis. For example, estrogen-related re-
ceptor alpha (ESRRa) contributes to maintaining intestinal balance by activating autophagy and regulating the gut micro-
biome, thereby protecting the host from inflammation and mitochondrial dysfunction[7]. Meanwhile, autotaxin (ATX) 
inhibits autophagy through the mTOR pathway, causing significant damage to the intestinal epithelial barrier of colitis 
patients[8]. During intestinal inflammation, specific bacterial species in the microbiome, including adherent invasive 
Escherichia coli, can adhere to intestinal epithelial cells and evade autophagic elimination by phagocytic macrophages[9]. 
The situational or excessive induction of autophagy can adversely impact cells by initiating autophagic cell death. The 
lack of erbin, a protein essential for epithelial cell polarity, markedly worsens the initiation of autophagic processes and 
autophagic cell death in mice with DSS-induced colitis[10]. Damage to intestinal epithelial cells initiates inflammation 
and intensifies the severity of UC symptoms[11].

Given the importance of autophagy in preserving intestinal balance and the role of autophagy dysfunction in UC 
development, identifying autophagy-related disease predictors is essential for the design of new UC treatments. The 
current study uses bioinformatics to define gene expression patterns associated with the autophagy-related pathogenesis 

https://www.wjgnet.com/2307-8960/full/v12/i9/1622.htm
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Figure 1 Study flow chart. HAD: Human Autophagy Database; GEO: Gene Expression Omnibus database; UC: Ulcerative colitis; DEGs: Differentially expressed 
genes; DEARGs: Differentially expressed autophagy-related genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; PPI: Protein-Protein 
Interaction; LASSO: Least absolute shrinkage and selection operator.

of active UC (Figure 1).

MATERIALS AND METHODS
Identification of active UC targets and difference analysis
Datasets related to active UC which included normal control and active UC samples and had a sample size > 30 were 
obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds/). The selected data set was normalized and the 
“limma” package was downloaded using “Bioconductor.” R 4.3.1 software was then used to perform differential gene 
analysis on targets identified in the dataset. A |log FC| ≥ 0.585 and an adj. P < 0.05 were used to obtain differentially 
expressed genes (DEGs).

Acquisition of differentially expressed autophagy-related genes in patients with active UC
To obtain differentially expressed autophagy-related genes (DEARGs), autophagy-related genes were downloaded from 
the Human Autophagy Database (http://www.autophagy.lu/). Using the “Venn Diagram” package in R, autophagy-
related targets were intersected with the DEGs, identifying DEARGs as the central targets for further analysis. DEARG 
heat maps were generated using the “limma” and “pheatmap” packages.

Analysis of immune cell infiltration
The immune microenvironment is typically composed of immune cells, inflammatory cells, fibroblasts, and mesenchymal 
stem cells, along with various cytokines and chemokines. Assessing immune cell infiltration is vital for predicting disease 
progression and treatment response. Several methods exist to analyze immune cell infiltration, including CiberSort, an 
inverse convolution algorithm developed by BinderG. This method calculates the cellular composition of complex tissues 
based on normalized gene expression data, allowing specific cell types to be quantified. The CiberSort deconvolution 
algorithm was used with 100 simulations and subsequent analyses were conducted with a significance threshold of P < 
0.05 to determine the proportion of immune cells in different samples. The results were visualized using the “ggpubr” 
package in R.

Assessment of biological variables associated with the DEARGs
Gene ontology (GO) analysis categorizes genes into biological processes (BP), molecular functions (MF), and cellular 
components (CC), which help to inform their biological functions. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a database that integrates genomic, chemical, and systemic information. It is often used for the functional 

https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
http://www.autophagy.lu/
http://www.autophagy.lu/
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Figure 2 Intersection of autophagy-related targets and differentially expressed genes. There are 4821 differentially expressed genes and 232 
autophagy-related targets. A total of 58 differentially expressed autophagy-related genes intersected. DEGs: Differentially expressed genes.

annotation of genes to understand their associated activities and pathways of action. To further understand the target 
functions of autophagy in patients with active UC and the associated signaling pathways, the “clusterProfiler” package 
was downloaded from Bioconductor, and GO and KEGG enrichment analysis of the DEARGs was conducted using R. 
The “clusterProfiler” package was downloaded from “Bioconductor” and the DEARGs were analyzed by GO and KEGG 
enrichment analysis using R with a threshold value of P < 0.05.

Analysis of disease enrichment in DisGeNET
To explore the role of autophagy in UC-related diseases, DEARGs were input into the Metascape platform (https://
metascape.org/) using “H. sapiens” as the species setting for both “Input” and “Analysis.” The “Summary of enrichment 
analysis in DisGeNET” was then exported.

Construction of the least absolute shrinkage and selection operator al-gorithm and protein-protein interaction network
For more precise identification of the core targets, the least absolute shrinkage and selection operator (LASSO) algorithm 
was used along with the construction of a protein-protein interaction (PPI) network to refine DEARG selection and pre-
dict key biomarkers. The LASSO algorithm is more effective than ordinary least squares estimation at extracting essential 
variables and simplifying the model, particularly when using multiple variables. PPI analysis helps identify inter-actions 
among DEARGs and refine the selection.

The LASSO algorithm was used for DEARG validation and feature gene selection using the “glmnet” package in R. 
The identified genes were then uploaded to the String database (https://cn.string-db.org/) with a “minimum required 
interaction score” of 0.15 and the results were imported into Cytoscape 3.9.1. To further refine the selection, the “Cyto-
NCA” plugin was used to rank the targets based on degree values, selecting the top five as core targets.

RESULTS
Acquisition of DEGs
GEO database screening identified two UC-related datasets: GSE87466 and GSE53306. GSE53306 includes data on differ-
ential gene expression between the active and quiescent stages of UC, providing insight into the disease characteristics. 
The dataset, which has information on 40 individuals, including 16 active UC cases and 12 normal controls, was pub-
lished on December 13, 2014, and last updated on December 22, 2017. GSE87466 includes data on gene expression in mu-
cosal biopsies from adult patients with moderate to severe active UC. The dataset has information on 87 UC active 
samples and 21 normal control samples and was first published on September 29, 2016, and last updated on March 2, 
2019. The datasets were downloaded and exported, the data were de-duplicated and normalized, and differential analysis 
was conducted with R software using GSE87466 and GSE53306 as the base and supplemental datasets, respectively. 
GPL13158 and GPL14951 were used as the platform files. This analysis yielded 4,822 DEGs from the GSE87466 and 
GSE53306 datasets.

DEARG acquisition
A total of 232 autophagy-related genes were obtained from the Human Autophagy Database (http://www.autophagy.
lu/). These autophagy-related genes were intersected with the DEGs, resulting in 58 DEARGs (Figure 2). R was then used 
to analyze the DEARGs and generate heat map and volcano map (Figure 3).

Analysis of immune cell infiltration
The Cibersort algorithm was used to evaluate immune cell infiltration in two distinct immune states. The following 
immune cell types were more abundant in active UC cases than in healthy controls: activated memory CD4 T cells, fo-

https://metascape.org/
https://metascape.org/
https://cn.string-db.org/
https://cn.string-db.org/
http://www.autophagy.lu/
http://www.autophagy.lu/
http://www.autophagy.lu/
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Figure 3 Volcano map and heat map showing expression of the differentially expressed autophagy-related genes. A: The downregulated 
targets are represented by green dots, the upregulated targets are represented by red dots, and the black dots indicate no significant difference in expression 
between active ulcerative colitis patients and healthy controls. Heat map showing expression of the differentially expressed autophagy-related genes; B: The blue 
color indicates low expression, while the red color indicates high expression.

llicular helper T cells, γδ T cells, M0 macrophages, M1 macrophages, activated dendritic cells, activated mast cells, and 
neutrophils. The “ggpubr” package in R was used to visualize the differential analysis results of immune cell infiltration 
in each sample. A P < 0.05 was considered statistically significant.

The following immune cell types were significantly higher in the UC group than in the healthy control group: activated 
memory CD4 T cells (P < 0.001), follicular helper T cells (P < 0.05), gamma delta T cells (P < 0.05), M0 macrophages (P < 
0.001), M1 macrophages (P < 0.001), activated dendritic cells (P < 0.001), activated mast cells (P < 0.001), and neutrophils 
(P <0.001). Meanwhile, CD8 T cells (P < 0.05), resting memory CD4 T cells (P < 0.05), regulatory T cells (Tregs) (P < 0.001), 
activated NK cells (P < 0.01), monocytes (P < 0.01), M2 macrophages (P < 0.001), resting dendritic cells (P < 0.05), and 
resting mast cells (P < 0.001) were significantly higher in the healthy control group than in the active UC group. No sig-
nificant differences were observed in naive B cells, memory B cells, plasma cells, naive CD4 T cells, resting NK cells, and 
eosinophils between active UC cases and healthy controls (Figure 4).



Gong ZZ et al. Autophagy in active UC

WJCC https://www.wjgnet.com 1627 March 26, 2024 Volume 12 Issue 9

Figure 4  Proportion of immune cells in samples from the active ulcerative colitis group and healthy controls.

Biological variables related to the DEARGs
BP analysis revealed that the DEARGs were primarily associated with the regulation of autophagy, macroautophagy, 
autophagosome assembly, autophagosome organization, and vacuole organization. CC analysis showed that the DE-
ARGs were primarily enriched in autophagosomes, phagophore assembly sites, and phagophore assembly site mem-
branes. MF analysis found that DEARGs were mainly involved in chaperone binding, ubiquitin protein ligase binding, 
and heat shock protein binding (Figure 5A). KEGG enrichment analysis indicated that the DEARGs were predominantly 
enriched in autophagy-animal, autophagy-other, lipid and atherosclerosis, protein processing in the endoplasmic reti-
culum, and influenza A-related pathways (Figure 5B).

DisGeNET disease enrichment analysis
The Metascape “Summary of enrichment analysis in DisGeNET” revealed that the DEARGs were mainly enriched in 
malignant glioma, middle cerebral artery occlusion, infection, glomerulonephritis, and other diseases (Figure 6).

Construction of the LASSO algorithm and PPI
The LASSO algorithm narrowed the range of DEARGs and identified 13 targets: proliferation and apoptosis adaptor 
protein 15 (PEA15), heat shock 70-kDa protein 5 (HSPA5), caspase 1 (CASP1), serine protease inhibitor A1 (SERPINA1), 
C-X3-C chemokine ligand 1 (CX3CL1), Bcl2-associated athanogene 3 (BAG3), tumor protein p53 inducible nuclear protein 
2 (TP53INP2), and peroxisomal biogenesis factor 14 (PEX14) (Figure 7). Their relationships were further established using 
the String database. The Cytoscape 3.9.1 software “CytoNCA” plug-in was used to sort the 13 targets according to their 
degree values, and the top five were selected as the core targets. The Fold Change (logFC) of these targets was obtained 
from the difference analysis results. All five were up-regulated and had the following parameters: SERPINA1 (logFC = 
1.051), BAG3 (logFC = 0.661), HSPA5 (logFC = 0.790), CASP1 (logFC = 1.231), and CX3CL1 (logFC = 0.837) (Figure 8).

DISCUSSION
The current study identified HSPA5, CASP1, SERPINA1, CX3CL1, and BAG3 as core autophagy-related targets in active 
UC, all of which were upregulated during the disease. Key signaling pathways linked to these targets included auto-
phagy in animals, other autophagy pathways, and lipid and atherosclerosis pathways. DisGeNET enrichment analysis 
found that middle cerebral artery occlusion, glomerulonephritis, and active UC were interrelated risk factors associated 
with autophagy. Active UC patients were found to have significantly higher counts of activated memory CD4 T cells, 
follicular helper T cells, gamma delta T cells, M0 macrophages, M1 macrophages, activated dendritic cells, mast cells, and 
neutrophils than healthy controls.

The results, including those predicted using core targeting and immune infiltration analysis, are supported by existing 
literature. R-HSPA5 is a specific form of HSPA5 that is localized in the endoplasmic reticulum (ER) and shown to play a 
critical role in autophagy-mediated lysosomal protein hydrolysis. Significant overexpression of HSPA5 mRNA and pro-
tein is found in UC patient tissues[12-14]. CASP1 expression in macrophages impairs autophagy, triggering inflammatory 
vesicle activation, a key factor associated with diseases such as active UC[15]. Activated CASP1 is critical for DSS-induced 
colitis[16-18]. Soendergaard et al[19] identified SERPINA1 as a potential biomarker of mild to moderate UC activity. Ele-
vated CX3CL1 levels interact with CX3CR1, inhibiting autophagy in Kupffer cells[20]. CX3CL1 induces the infiltration 
and activation of CX3CR1-expressing cells, stimulating iNOS expression, a key mediator in DSS-induced colitis. These 
findings suggest that CX3CL1 may have potential for use in UC treatments[21,22]. Effector memory CD4 T cells induce 
IL-7 expression, leading to inflammation in the lamina propria of the intestinal mucosa[23]. During UC pathogenesis, Tfh 
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Figure 5 Results of gene ontology enrichment analysis. A: The blue part represents biological processes, the yellow part represents cellular components 
and the green part represents molecular functions. the height of the bar in the inner circle is proportional to the degree of enrichment. Results of Kyoto Encyclopedia 
of Genes and Genomes enrichment analysis; B: The horizontal coordinate is the number of enriched differentially expressed autophagy-related genes and the color 
of the node changes from red to purple according to the adjustment.
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Figure 6 Validation of core targets in DisGeNET. The more yellow the color of the bar, the higher the correlation.

Figure 7 Results of least absolute shrinkage and selection operator regression model. A: Cross-validation error curve; B: Least absolute shrinkage 
and selection operator regression coefficient path plot.

cell functional abnormalities and imbalances disrupt the immune barrier of the intestinal mucosa, triggering immune 
disorders and the development of UC[24]. Inagaki-Ohara et al[25] found that UC naturally occurs in γδ T-cell-deficient 
mice. Mast cells (MC), commonly found in capillaries of the intestinal mucosa, are increased in inflammatory bowel 
disease (IBD) patients. They contain basophilic granules that release inflammatory factors during stress[26,27]. The IL-33/
ST2 pathway, together with IgE signaling, mediates MC degranulation, inducing the release of inflammatory factors and 
initiating a cascade response[28]. Reduced NK cell levels affect mucosal flora responses, resulting in immune abnor-
malities and inflammatory changes in the colon[29]. Cherfane et al[30] identified an association between the number of 
peripheral blood mononuclear cells in UC patients and disease activity, suggesting that monocyte count could serve as a 
potential UC biomarker. The Th1/Th2 cell imbalance, along with the overexpression and activation of co-stimulatory 
molecules on dendritic cells, can trigger monocyte migration to the intestine, causing inflammation and potential damage 
to the intestinal mucosa[31,32].

The disease enrichment analysis results discussed here are confirmed by prior studies. Different stages of IBD are 
linked to the development of thrombosis, with IBD episodes or activity serving as a primary risk factor[33]. The predicted 
core genes are critical to the pathogenesis+ADs- hSPA5, for example, offering neuroprotection in ischemic strokes[34]. 
BAG3 overexpression is shown to improve neurological outcomes associated with middle cerebral artery embolism in 
mice, reducing infarct volume and enhancing cell survival by activating autophagy and inhibiting apoptosis[35]. Ische-
mia-induced neuronal autophagy is shown to exacerbate microglial inflammation post-stroke, possibly due to the re-
duced CX3CL1 expression in autophagic neurons[36]. Growing evidence suggests that autophagy plays a role in renal 
disease pathogenesis[37,38]. Glomerulonephritis emergence or exacerbation often coincides with IBD and subsides fo-
llowing effective IBD treatment[39]. CX3CL1 and CXCL10, induced by the core targets in this study, initiate activated 
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Figure 8 The five core targets and their relationship. The greener the color of the node, the higher the value of the degree, and the more important the 
relationship.

leukocyte infiltration into glomerular cells[40-42]. The NLRP3-ASC-caspase-1 inflammasome mitigates glomerular dys-
function by producing IL-1[43,44].

CONCLUSION
In summary, HSPA5, CASP1, SERPINA1, CX3CL1, and BAG3 were identified as core autophagy-related targets that are 
upregulated in active UC patients. These targets are associated with key signaling pathways, including autophagy in ani-
mals, other autophagy pathways, and lipid and atherosclerosis pathways. DisGeNET enrichment analysis also revealed a 
significant connection between middle cerebral artery occlusion, glomerulonephritis, and the autophagy-related patho-
genesis of active UC. In addition, active UC patients exhibited significantly higher counts of various immune cells than 
healthy controls, indicating the occurrence of immune dysregulation. These findings provide valuable insight into the 
role of autophagy in UC pathogenesis and have potential implications for the development of novel targeted the-rapies.

ARTICLE HIGHLIGHTS
Research background
The etiology of ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), remains poorly understood. The 
pathogenesis of UC is complex and is influenced by genetic, environmental, and immune-related factors. While some 
recent progress has been made in the development of effective UC treatments, few patients experience complete relief of 
their symptoms. Thus, finding new therapeutic avenues to improve UC patient quality of life remains an urgent need. 
Autophagy is a cellular self-degradation and repair process that can help remove harmful proteins and organelles from 
cells and maintain intracellular homeostasis. Recent studies suggest that autophagy may play a key role in the patho-
genesis and progression of IBD.

Research motivation
The motivation of this study was to provide an in-depth investigation of the autophagy-related pathogenesis of active 
phase UC. Bioinformatics analysis was used to better understand whether autophagy plays a key role in active UC and 
which autophagy-related genes may contribute to the disease process.

Research objectives
This study sought to provide new ideas and potential therapeutic targets for the treatment of active UC to better 
understand the pathogenesis of the disease and improve clinical symptoms.

Research methods
A bioinformatics approach was used to compare gene expression data between patients with active UC and healthy 
controls to identify core genes associated with autophagy and to obtain more information about the role of autophagy in 
this disease.
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Research results
HSPA5, CASP1, SERPINA1, CX3CL1, and BAG3 were identified as core targets associated with autophagy-related 
pathogenesis in active UC, all of which were upregulated. Key signaling pathways linked to these targets include 
autophagy in animals, other autophagy pathways, and lipids and atherosclerosis pathways. DisGeNET enrichment ana-
lysis showed that middle cerebral artery occlusion, glomerulonephritis, and active UC were interrelated risk factors 
associated with autophagy. Active UC patients had significantly higher counts of activated memory CD4 T cells, follicular 
helper T cells, gamma delta T cells, M0 macrophages, M1 macrophages, activated dendritic cells, mast cells, and neu-
trophils than healthy controls.

Research conclusions
HSPA5, CASP1, SERPINA1, CX3CL1, and BAG3 were identified as core autophagy-related targets in active UC patients, 
all of which were upregulated. These targets are associated with key signaling pathways, including autophagy in 
animals, other autophagy pathways, and lipid and atherosclerosis pathways. DisGeNET enrichment analysis revealed a 
significant connection between middle cerebral artery occlusion, glomerulonephritis, and the autophagy-related patho-
genesis of active UC. In addition, active UC patients had significantly elevated counts of various immune cells, indicating 
that immune function is dysregulated. These findings provide valuable insight into the role of autophagy in UC 
pathogenesis and could be used to inform the development of targeted therapeutic interventions.

Research perspectives
Future research in this field should focus on better understanding the molecular mechanisms by which HSPA5, CASP1, 
SERPINA1, CX3CL1, and BAG3 contribute to autophagy in patients with active UC. Investigating the specific roles of 
these core targets in UC pathogenesis and their interactions with the identified key signaling molecules should be a 
priority. Interventions that target the core autophagy-related genes and pathways could offer promising treatment op-
tions for active UC patients. It is also important to further explore the immune dysregulation observed in UC patients, 
particularly the elevated immune cell counts, to understand better the inflammatory processes involved and inform the 
development of immunomodulatory strategies to manage UC.
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