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Abstract 
Metabolic reprogramming and altered energetics have 
become an emerging hallmark of cancer and an active 
area of basic, translational, and clinical cancer research 
in the recent decade. Development of effective antican-
cer therapeutics may depend on improved understand-
ing of the altered cancer metabolism compared to that 
of normal cells. Changes in glucose transport and gly-
colysis, which are drastically upregulated in most can-

cers and termed the Warburg effect, are one of major 
focuses of this new research area. By taking advantage 
of the new knowledge and understanding of cancer’s 
mechanisms, numerous therapeutic agents have been 
developed to target proteins and enzymes involved 
in glucose transport and metabolism, with promising 
results in cancer cells, animal tumor models and even 
clinical trials. It has also been hypothesized that target-
ing a pathway or a process, such as glucose transport 
or glucose metabolism, rather than a specific protein or 
enzyme in a signaling pathway may be more effective. 
This is based on the observation that cancer somehow 
can always bypass the inhibition of a target drug by 
switching to a redundant or compensatory pathway. 
In addition, cancer cells have higher dependence on 
glucose. This review will provide background informa-
tion on glucose transport and metabolism in cancer, 
and summarize new therapeutic developments in basic 
and translational research in these areas, with a focus 
on glucose transporter inhibitors and glycolysis inhibi-
tors. The daunting challenges facing both basic and 
clinical researchers of the field are also presented and 
discussed.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Reprogramming of metabolism has been rec-
ognized at the beginning of 21st century as an emerg-
ing hallmark of cancer. The Warburg effect is one of the 
major focuses in the reprogramming. We cannot fully 
understand or more effectively treat cancer without a 
better understanding of cancer metabolism. Targeting 
cancer metabolism, particularly glucose transport and 
glycolysis, has been shown to be effective in inhibiting 
cancer growth. This review summarizes recent pro-
gresses in developments of therapeutics inhibiting glu-
cose transporters and glycolytic enzymes, provides key 
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information associated with each inhibitor, discusses 
their promises and problems as well as future challeng-
es and directions of the basic and translational research 
of the field.
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INTRODUCTION
Cancer has long been considered a group of  diseases 
caused by genetic mutations and genetic mutations only. 
However, in recent decades, extensive biochemical and 
biological studies have convincingly demonstrated that 
cancers exhibit significantly reprogrammed metabolism, 
which plays important roles in tumorigenesis[1-6]. In some 
cases, altered metabolism may be not only the conse-
quence of  genetic mutations, but also a contributing 
factor or cause of  tumorigenesis[7-9]. Cancer metabolic 
reprogramming and altered energetics have been recog-
nized now as a hallmark of  cancer[10].

The importance of  metabolism in cancer was actu-
ally recognized long time ago. In the 1920s, the German 
biochemist Otto Warburg, studied glucose metabolism in 
cancer tissues. He found that, unlike in normal tissue, in-
cubated cancer samples always switched from mitochon-
drial oxidative phosphorylation (OXPHOS) to cytosolic 
glycolysis even when oxygen was abundant[11]. This phe-
nomenon of  so-called aerobic glycolysis has been known 
as the Warburg effect[12-15]. Warburg went so far as to 
claim that the altered glucose metabolism was the cause 
of  cancer. This hypothesis is called the Warburg theory 
of  cancer. He speculated that due to some mitochondrial 
dysfunctions, mitochondria could not synthesize ATP 
and thus cells must switch to cytosolic glycolysis, lead-
ing to cancer formation[14,16]. Biological studies in recent 
decades have found that Warburg’s view on the cause of  
the switch was largely incorrect: many cancers switch to 
glycolysis even without any mitochondrial defects. New 
biological and biochemical studies in the past decades re-
vealed that the switch from OXPHOS to glycolysis is not 
just for ATP synthesis but also for biomass synthesis[15,17], 
production of  NADPH[15,18], a reducing agent needed 
to remove reactive oxygen species (ROS) generated by 
cancer cells’ accelerated metabolism, as well as synthesis 
of  amino acids[15,19]. The Warburg effect appears to be a 
strategic move made by cancer cells to deal with multiple 
requirements for growth, survival, and proliferation in a 
microenvironment with numerous constraints.

Altered cancer metabolism has also been recognized 
as a potential target for cancer therapeutics. Glucose 
transport and glucose metabolism are significantly up-
regulated in cancer as revealed by the PET scan and 

other detection methods[20-24]. The reliance of  cancer cells 
on glucose indicates that they are addicted to the War-
burg effect or glucose[25-27]. As a result, cancer cells are 
more sensitive than normal cells to changes in glucose 
concentration and will die before normal cells[25-28]. The 
recognition of  this vulnerability in cancer cells has led 
to targeting glucose transport and metabolism as a new 
anticancer strategy. Furthermore, although targeted an-
ticancer drugs inhibit one or more proteins or enzymes, 
cancers demonstrate the ability to escape inhibition using 
redundant signaling pathway(s). It has been proposed 
that targeting a signaling pathway or a metabolic process, 
rather than a protein in a pathway, may be more effective 
in preventing drug resistance and prolonging treatment 
effectiveness[29,30]. Potential targets for this proposed new 
approach include glucose transport and glycolysis, the 
predominant glucose metabolic changes found in cancer 
cells.

It should be emphasized that targeting cancer metab-
olism is not an entirely novel strategy. Some of  the earli-
est chemotherapy drugs, such as methotrexate, also target 
metabolism and show significant efficacy[31-33]. As we have 
accumulated more knowledge about cancer metabolism, 
we should be able to develop more successful anti-can-
cer-metabolism drugs. In the following sections, recently 
developed glucose transport and glycolysis inhibitors will 
be described.

GLUCOSE TRANSPORT AND GLUCOSE 
METABOLISM IN CANCER CELLS–THE 
WARBURG EFFECT
In normal cells under aerobic conditions, OXPHOS is 
used to make ATP, the universal energy currency in all 
living organisms[34]. OXPHOS is used because it is the 
most efficient way for making ATP. For each molecule 
of  glucose, approximately 34 molecules of  ATP can 
be produced by OXPHOS[34]. However, OXPHOS can 
proceed only when oxygen is present and abundant, a 
condition called normoxia. When oxygen is lacking, a 
condition called hypoxia, cells are forced to shift to an-
aerobic glycolysis to maintain ATP synthesis and energy 
metabolism[35]. Due to rapid growth and proliferation, a 
large proportion of  the cancer cells in a tumor are in a 
hypoxic condition and thus use glycolysis to make ATP 
and other essential biomass molecules such as ribonucle-
otides. The phenomenon of  OXPHOS-to-glycolysis shift 
in cancer cells is called the Warburg effect[12-16]. Although 
the Warburg effect was observed more than 80 years ago, 
its interpretation is still controversial and evolving. War-
burg thought that the effect was caused by mitochondrial 
dysfunctions and the effect is a forced alternative strategy 
for ATP synthesis. However, research in recent decades 
largely disagrees with this interpretation. Recently, it has 
been found that the switch in cancer cells is primarily for 
the synthesis of  biomass (e.g., of  RNA precursor and 
others)[17], the reducing agent NADPH[18], which is need-
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ed for clearing ROS, and the amino acid serine[19]. ATP 
synthesis seems not to be a rate-limiting factor. This con-
clusion is very different from Warburg’s and is based on 
the observation that although cancer cells upregulate all 
glycolytic enzymes, they switch pyruvate kinase (PK), the 
last enzyme in the glycolytic pathway, from a form with 
higher higher activity (PKM1) to that with lower activ-
ity, PKM2[36-39]. This change suggests that cancer cells do 
not want all the glucose obtained from the upregulated 
glucose transport to be converted to pyruvate, but rather 
diverts some  glucose metabolic intermediates to other 
connected metabolic pathways, such as pentose phos-
phate pathway (PPP) for synthesis of  biomass and reduc-
ing agents[17-19,40]. This also suggests that ATP synthesis is 
not the top priority of  the upregulation of  glucose trans-
port and metabolism. On the other hand, since glycolysis 
is about 18 times less efficient compared to OXPHOS, 
cancer cells must drastically upregulate glycolysis to com-
pensate for the low ATP production.

ANTICANCER THERAPEUTICS 
TARGETING GLYCOLYSIS AND ITS 
CONNECTED PATHWAYS
Currently, the Warburg effect is a very active cancer 
research area[13]. Targeting glucose metabolism and 
transport, has been proposed as an effective anticancer 
strategy[1,3]. Glycolysis, the key process of  increased glu-
cose metabolism in cancer cells, has been targeted both in 
vitro and in vivo[3,41,42]. Glycolysis genes are overexpressed 
in various cancers[35]. In addition to higher potentials for 
invasiveness and metastasis[43], the glycolytic switch in 
cancer also increases cancer’s sensitivity to external inter-
ference because of  their higher dependence on aerobic 
glycolysis[25-28].

Glucose deprivation, a method traditionally used 
to reduce glucose concentration in cultured cells for 
metabolic studies, has been used frequently in cancer 
research[44-47]. Glucose deprivation limits glucose supply, 
forcing cancer cells to slow down proliferation or under-
go apoptosis[48-50]. Blocking glucose transport or glycolysis 
is similar to glucose deprivation, suggesting the possibil-
ity of  restricting glucose supply with glucose transport or 
glycolysis inhibitors as an anticancer strategy.

Various inhibitors of  glycolytic enzymes have shown 
significant anticancer efficacy. Most of  the reported 
glycolysis inhibitors are summarized (Table 1 and Fig-
ure 1). The enzymes targeted include hexokinase (HK), 
phosphofructokinase (PFK), pyruvate kinase (PK), lac-
tate dehydrogenase (LDH), and pyruvate dehydrogenase 
kinase (PDK). Related studies revealed that these inhibi-
tors induced apoptosis in cancer cells[51,52]. Moreover, in-
hibition of  glycolysis has been shown to overcome drug 
resistance in multiple cancer cells associated with mito-
chondrial respiratory defect and hypoxia[53]. Although 
numerous attempts to block glycolysis by using various 
inhibitors in cancer cells and in animal models have been 

made, developing clinically effective and safe glucose me-
tabolism-targeting therapeutics is still a challenging task.

Hexokinase (HK) as the first enzyme in glycolysis 
phosphorylates glucose to glucose-6-phophate (G6P) 
irreversibly, which is a rate-limiting step. In cancer cells, 
type II HK (HK2) is bound to mitochondria, facilitating 
a high glycolytic flux rate and preventing cancer cell from 
apoptosis[54]. HK2 is required for cancer initiation and 
maintenance and the systemic deletion of  HK2 is thera-
peutic in mice bearing tumors[55]. Thus, targeting HK2 
may be an effective anti-cancer strategy.

2-deoxy-D-glucose (2-DG) is one of  the most widely 
studied HK inhibitors. 2-DG is a glucose analog with 
a hydrogen group instead of  a hydroxyl group in posi-
tion 2 of  glucose. Due to its structural similarity, 2-DG 
competes with glucose and inhibits HK with a Ki of  0.25 
mmol/L[56]. The product 2-deoxy-D-glucose-6-phosphate 
made from 2-DG cannot be processed in the following 
glycolytic steps and therefore blocks glycolysis, leading 
to ATP depletion, cell cycle arrest and cell death[57,58]. 
Synergistic studies combining 2-DG and other anti-
cancer drugs, such as adriamycin and paclitaxel, indicated 
that 2-DG is effective in vivo in combination with other 
drugs[59]. 2-DG sensitizes glioblastoma cells to other anti-
cancer treatments and radiation[60-63]. Though effective, 
2-DG is relatively toxic with side effects when adminis-
tered to patients[61,64]. This is at least in part because 2-DG 
has to be used at high concentrations, around and higher 
than 5 mmol/L, in order to compete with blood glu-
cose[65].

3-bromopyruvate (3-BP) is another HK inhibitor 
which has been shown to inhibit the progression of  
tumors in vivo[66-68]. 3-BP also increases the total ROS in 
tumor cells[69,70]. A recent study demonstrated that 3-BP 
inactivates ABC transporters, restoring drug sensitivity in 
cancer cells[71]. 3-BP has also been studied in combination 
with various anti-cancer drugs for synergistic effects, and 
it has been found to be effective in vitro[72] and in vivo[73], 
although with some hepatotoxicity[74]. However, 3-BP in-
hibits other enzymes, such as GAPDH, as well[75]. Up to 
now, no clinical trials have been reported for 3-BP. This 
may be attributed to its low target specificity and rela-
tively high toxicity.

Lonidamine specifically inhibits mitochondria-bound 
HK2, which is present mostly in cancer cells but not in 
normal cells[76]. It effectively inhibits the cell growth, de-
creasing lactate and ATP generation, in cancer cells[77,78]. 
Meanwhile, the combination of  lonidamine with other 
anti-cancer agents reverts drug resistance and is effec-
tive in the treatment of  various cancer cells in both pre-
clinical and phase Ⅱ/Ⅲ studies[78-80]. However, the com-
bination of  lonidamine and epirubicine resulted in no 
improvement in patients’ survival[81]. Though lonidamine 
has been widely studied, its hepatotoxicity resulted in the 
termination of  several clinical trials[82,83]. These studies 
of  the HK2 inhibitors suggest that, although HK2 is a 
potential target, being the first and the rate-limiting step 
of  glycolysis, inhibition of  HK2 may result in severe side 
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5-triazolo-2-arylpyridazinone as a novel group of  in-
hibitors of  PFK2, with the lowest IC50 of  2.6 μmol/L. 
Although these inhibitors with extremely low IC50s are 
potent and promising in vitro, in vivo studies are required 
to assess their toxicity in animals.

3-phosphoglycerate dehydrogenase (PHGDH) cata-
lyzes the first step of  the serine biosynthesis pathway 
(Figure 1). The increased serine synthesis flux attributed 
to PHGDH is essential to the viability of  a subset of  
cancer cells in which the enzyme is overexpressed[19,93,94]. 
Through negative-selection RNAi screening using a hu-
man breast cancer xenograft model, Possemato et al[93] 
showed that PHGDH is required for tumorigenesis in 
vivo. Meanwhile, using a metabolomics approach with 
isotope labeling, Locasale et al[19] showed that glycolytic 
flux is diverted into amino acid (serine and glycine) me-
tabolism in cancer cells. This suggests that cancer cells 
use this specific pathway to promote oncogenesis. The 
PHGDH gene was found to be amplified recurrently in 
both breast cancers and melanoma[19,93,95]. In addition, the 
protein levels of  PHGDH are upregulated in 70% of  es-
trogen receptor (ER)-negative breast cancers[93]. Suppres-
sion of  PHGDH in cancer cell lines with overexpressed 
PHGDH, but not in these without, causes a reduction in 
serine synthesis as well as cell proliferation[19,93]. So far, no 
PHGDH inhibitors have been reported, although it ap-
pears to be a good target.

effects. However, the combination of  HK2 inhibitors 
and other anti-cancer drugs may still be an alternative ap-
proach for HK2-overexpressing tumors.

Phosphofructokinase (PFK) has two isoforms. PFK1 
promotes the chemical reaction of  fructose-6-phosphate 
(F6P) to fructose-1,6-bisphosphate (F-1,6-bisP), while 
PFK2 catalyzes the synthesis of  fructose-2,6-bisphosphte 
(F-2,6-biP) and reverses it back to F6P[84]. In tumor cells, 
PFK2 is ubiquitously and constitutively active to pro-
duce F-2,6-biP[85-87]. PFK2 is also inducible by hypoxia 
in vivo[86,88], which is known as a microenvironment for 
tumor cell[89]. Thus, targeting PFK may be a good anti-
cancer strategy.

3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) 
is the most specific known PFK2 inhibitor with a Ki of  
25 μmol/L[82,90]. 3PO suppresses glucose uptake and gly-
colytic flux in multiple cancer cell lines, with IC50 values 
ranging from 1.4 to 24 μmol/L[90]. Animal studies show 
that 3PO inhibits tumor growth in vivo[90]. In addition, a 
chromene derivative, N4A, mimics F6P and is a com-
petitive inhibitor of  PFK2, with a Ki of  1.29 μmol/L[91]. 
Its derivative, YZ9, has a Ki as low as 0.094 μmol/L[91]. 
These inhibitors were shown to inhibit the proliferation 
of  Hela cells (human cervical cancer cells) and T47D 
cells (human adenocarcinoma cells) in vitro[91]. Using high-
throughput screening and structure activity relationship 
(SAR) studies, Brooke et al[92] identified derivatives of  
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Figure 1  Glycolysis and inhibitors/activators of glycolysis 
as potential anti-cancer therapeutics. Glucose transporters 
and enzymes are shown in red and glycolytic intermediates 
are shown in blue. Inhibitors/activators are in black squares. 
PPP: Pentose phosphate pathway; OXPHOS: Oxidative phos-
phorylation; shown in green. GLUTs: Glucose transporters; 
HK: Hexokinase; GPI: Glucose-6-phosphate isomerase; PFK: 
Phosphofructokinase; ALD: Aldolase; GAPDH: Glyceraldehyde-
3-phosphate dehydrogenase; PGK: Phosphoglycerate kinase; 
PGAM1: Phosphoglycerate mutase 1; ENO: Elonase; PKM2: 
Pyruvate kinase M2; LDH: Lactate dehydrogenase; PDK: 
Pyruvate dehydrogenase kinase; PDH: Pyruvate dehydroge-
nase; G6PD: Glucose-6-phosphate dehydrogenase; TKTL1: 
Transketolase-like enzyme 1; PHGDH: Phosphoglycerate 
dehydrogenase; G6P: Glucose 6-phosphate; F6P: Fructose 
6-phosphate; F-1,6-bisP: Fructose 1,6-bisphosphate; 3-PG:  
3-phosphoglycerate; 2-PG: 2-phosphoglycerate; 6-P-glucono-
lactone: 6-phosphogluconolactone; Xylulose-5-P: D-xylulose-
5-phosphate; 2-DG: 2-deoxyglucose; 3-BP: 3-bromopyruvate; 
3PO: 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one; DCA: 
Dichloroacetate; 6-AN: 6-aminonicotinamide. 
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Phosphoglycerate mutase 1 (PGAM1) catalyzes 
3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG). 
In human cancer cells, loss of  TP53 leads to upregula-
tion of  PGAM1[96]. In addition, Tyr26 phosphorylation 
of  PGAM1 stabilizes the active conformation of  the en-
zyme[97]. These regulations of  PGAM1 contribute to the 
increased glycolysis and the rapid biosynthesis in cancer 
cells[96,97].

Inhibition of  PGAM1 by shRNA increased 3-PG and 
decreased 2-PG levels and inhibited the proliferation of  
cancer cells[96]. Through in situ proteome reactivity pro-
filing, PGAM1 inhibitor MJE3 was identified[98]. MJE3 
inhibits PGAM1 activity with an IC50 of  33 μmol/L and 
reduces the proliferation of  breast cancer cells in vitro[98]. 
PGMI-004A, an alizarin derivative, is another inhibi-
tor of  PGAM1 with an IC50 of  13 μmol/L, and it leads 
to significantly decreased glycolysis, pentose phosphate 
pathway (PPP) flux and biosynthesis, resulting in attenu-
ated cancer cell proliferation and tumor growth in vivo[96].

Pyruvate kinase (PK) irreversibly catalyzes the conver-
sion of  phosphoenolpyruvate (PEP) to pyruvate coupled 
with the generation of  ATP. PKM2 is the isoform highly 
expressed in embryonic cells and cancer cells during fast 
proliferation[99]. The switch of  PKM2 to PKM1 was able 
to inhibit tumor growth in vivo[36]. PKM2 is inactive as a 
dimer and highly active as a tetramer. Regulation of  the 
transition between the dimer and the tetramer forms de-
pends on the F-1,6 bisP level[100] or the phosphorylation 
of  tyrosine residue 105 of  PKM2, which is induced by 
oncogenic signals in cancer cells[38]. Meanwhile, PKM2 
activity is further influenced by serine and succinylami-
noimidazolecarboxamide ribose-5’-phosphate (SAICAR), 
which adds additional complexity to the regulation of  
PKM2 in cells and suggests that the modulation of  

PKM2 activity enables cancer cells to adapt their unique 
metabolic patterns to their specific pathological condi-
tions[38,101].

In tumor cells, the lower activity of  PKM2 results in 
accumulation of  upstream glycolytic metabolites for bio-
synthesis through PPP[37,102]. In addition, the presence of  
histidine-phosphorylated PGAM1 has been found to cor-
relate with the expression of  PKM2 in both cancer cell 
lines and tumors[103]. In fact, cancer cells with low PKM2 
activity allow PEP to transfer its phosphate group to the 
histidine of  PGAM1 and generate pyruvate. This alter-
nate glycolytic pathway bypasses the activity of  PKM2 
and decouples ATP production from pyruvate genera-
tion, facilitating the high rate of  glycolysis to support 
the biosynthesis observed in many proliferating cancer 
cells[103]. This decoupled ATP production also suggests 
that ATP may not be the limiting factor for fast prolifera-
tion in cancer cells because cancer cells have access to 
increased interstitial ATP[104-106].

Recently, Israelsen et al[107] demonstrated that PKM2 
is not necessary for the proliferation of  tumor cells and 
variable PKM2 expression was found in human tumors. 
These results suggest that varied PKM2 activity supports 
the different metabolic requirements of  various cancer 
cells, each with unique metabolic conditions[107]. Though 
the role of  varied expression of  the PKM2 isoform in 
cancer cells is still controversial, ongoing studies focus on 
both inhibitors and activators of  PKM2 to inhibit cancer 
cell growth both in vitro and in vivo.

Shikonin and alkannin are potent PKM2 inhibitors. 
Both compounds lower PKM2 activity and decrease 
glycolysis in MCF-7 human breast cancer cells and A549 
human lung cancer cells[108]. TT-232, a synthetic hepta-
peptide, interferes with the cellular location of  PKM2 in 
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Table 1  Glycolytic inhibitors and modulators

Compound name Target protein Status          Ref.

2-DG Inhibits HK Phase Ⅰ-completed (Jul 2008)
Phase Ⅰ/Ⅱ-terminated (Mar 2011)

NCT00096707
NCT00633087

3-BP Inhibits HK Pre-clinical [66-74]
Lonidamine Inhibits mitochondrial HK2 Phase Ⅱ/Ⅲ-terminated (Aug/Dec 2006) NCT00237536 

NCT00435448
3PO Inhibits PFK2 Pre-clinical [90]
N4A, YZ9 Inhibits PFK2 Pre-clinical [91]
PGMI-004A Inhibits PGAM1 Pre-clinical [96]
MJE3 Inhibits PGAM1 Pre-clinical [98]
TT-232 Inhibits PKM2 Phase Ⅱ-completed (Mar 2008)

Phase Ⅱ-terminated (Oct 2010)
NCT00422786
NCT00735332

Shikonin/alkannin Inhibits PKM2 Pre-clinical [108]
ML265 (TEPP-46) Activates PKM2 Pre-clinical [116,117]
FX11 Inhibits LDHA Pre-clinical [126]
Quinoline 3-sulfonamides Inhibit LDHA Pre-clinical [141]
DCA Inhibits PDK Phase Ⅰ-ongoing

Phase Ⅰ-ongoing
Phase Ⅱ-completed (Aug 2009)

NCT00566410
NCT01111097
NCT00540176

6-AN Inhibits G6PD Pre-clinical [159-161]
Oxythiamine Inhibits TKTL1 Pre-clinical [170-173]

2-DG: 2-deoxyglucose; 3-BP: 3-bromopyruvate; DCA: Dichloroacetate; 6-AN: 6-aminonicotinamide; HK: Hexokinase; PFK: Phosphofructokinase; PGAM: 
Phosphoglycerate mutase; PKM2: Pyruvate kinase M2; LDH: Lactate dehydrogenase; PDK: Pyruvate dehydrogenase kinase; G6PD: Glucose-6-phosphate 
dehydrogenase; TKTL1: Transketolase-like enzyme 1.
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tumor cells and induces apoptosis[109]. However, the selec-
tivity of  these inhibitors is not very high for PKM2 and 
side effects were observed[110,111]. 

In fact, PKM2 was found to be less active than 
PKM1[36], indicating that cancer cells prefer to use a less 
active PK to regulate glycolysis and balance their meta-
bolic needs. Thus, in order to inhibit cancer cell growth 
more effectively, activators, not inhibitors of  PKM2, 
should be used.

Activators of  PKM2, such as N, N’-diarylsulfon-
amides, thieno-pyrrole-pyridazinones and tetrahydroquin-
oline-6-sulfonamides, have been identified and studied 
through high throughput screening and SAR explora-
tion[112-114]. These compounds showed potent PKM2 
activation activity with a highest AC50 of  38 nmol/L[112]. 
Kung et al[115] reported a series of  quinolone sulfonamides 
with a unique allosteric binding mode, which activate 
PKM2 in A549 lung carcinoma cells. The activation of  
PKM2 reduces carbon flow to serine biosynthesis, which 
has been known to promote oncogenesis[19,115]. This study 
suggests that targeting PKM2 confers metabolic stress to 
cancer cells and attenuates the unique metabolic pattern 
of  cancer cells. Among these compounds, ML265 (or 
TEPP-46), a potent activator of  PKM2 with an AC50 of  
92 nmol/L, was found to activate PKM2 by inducing the 
tetramerization of  PKM2[116,117]. ML265 has been shown 
to reduce tumor size, weight, and occurrence in animal 
models[116,117]. Recently, Xu et al[118] described a structur-
ally novel series of  small molecule 3-(trifluoromethyl)-
1H-pyrazole-5-carboxamides as potent PKM2 activa-
tors in vitro. Moreover, Guo et al[119] identified 2-((1H-
benzo[d]imidazol-1-yl)methyl)-4H-pyrido (1,2-a) 
pyrimidin-4-ones as novel activators of  PKM2 with a 
unique binding mode. However, their results also sug-
gested that activation of  PKM2 alone was insufficient to 
significantly alter the cancer metabolism[119]. Although the 
complex roles of  PKM2 in tumorigenesis remain to be 
elucidated, potent and selective activators of  PKM2 may 
be valuable tools for solving the puzzle of  PKM2 and 
combating cancer.

Lactate dehydrogenase (LDH) catalyzes the chemical 
conversions of  pyruvate to lactate and NADH to NAD+ 
simultaneously. Upregulation of  LDHA under c-Myc 
control promotes aerobic glycolysis and the growth of  
tumor cells[120]. Increased expression of  LDHA was iden-
tified in clinical samples of  multiple tumor types[121,122]. 
Inhibition of  LDHA expression in fumarate hydratase 
deficient cells by RNA interference inhibited cell pro-
liferation and tumorigenesis in vivo[42,123]. Thus, LDHA 
is a potential anti-cancer target with multiple inhibitors 
already developed[124].

Oxamate competes with pyruvate for LDHA bind-
ing with a Ki of  136 μmol/L[125]. However, oxamate also 
works as an inhibitor of  aspartate aminotransferase with an 
even lower Ki of  28 μmol/L[125]. Thus, oxamate is a non-
specific inhibitor of  LDHA. FX-11,3-dihydroxy-6-methyl-
7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid, 
competing with NADH as a selective inhibitor of  LDHA, 

inhibited the growth of  xenograft tumors[126].
Galloflavin, a new LDHA inhibitor, reduced ATP 

generation, lactate production, and inhibited growth of  
human breast cancer cells. However, other mechanisms 
in addition to inhibition of  LDHA were involved in cell 
death induced by galloflavin[127]. Moorhouse et al[128] used 
a fragment-based click-chemistry-supported approach to 
synthesize a series of  bifunctional inhibitors of  LDHA. 
In this approach, the structures of  both natural substrates 
pyruvate and NADH were mimicked and linked together 
in a bifunctional inhibitor. The lead compound has an 
IC50 of  14.8 μmol/L. ARIAD Pharmaceuticals and Ge-
nentech recently have identified numerous LDHA inhibi-
tors[129-132], and Ward et al[133] have identified plant-derived 
human LDHA inhibitors through high-throughput 
screening. However, these inhibitors need to be tested in 
vitro and in vivo in due course. Ward et al[134] used fragment-
based lead generation as well as X-ray crystallography to 
develop very potent inhibitors of  LDHA. The lead com-
pound has a remarkable IC50 of  0.27 μmol/L. However, 
these potent LDHA inhibitors still need to be tested both 
in vitro and in vivo to demonstrate their potentials as anti-
cancer therapeutics.

Granchi et al[135] designed and synthesized a series 
of  N-hydroxyindole (NHI)-based compounds as com-
petitive human LDHA inhibitors. Some representative 
compounds were tested and shown to possess anti-prolif-
eration activity in multiple human cancer cell lines[136-138]. 
NHI-1, one of  these inhibitors, working with gem-
citabine is active against pancreatic cancer cells synergisti-
cally[139]. Interestingly, glycosylation of  these NHI-based 
LDHA inhibitors increased potencies and improved cell 
permeability in cancer cells[140]. Linking the glucose and 
the LDHA inhibitor facilitates the dual-targeting strategy.

Recently, Billiard et al[141] showed that quinoline 3-sul-
fonamides inhibit LDHA and reverse the Warburg effect 
(aerobic glycolysis) in multiple cancer cell lines. Interest-
ingly, compound 1, an LDHA inhibitor in this study, also 
activates PKM2, if  not directly, then at least in part due 
to the accumulation of  F-1,6-bisP caused by LDHA in-
hibition. Unfortunately, because of  low in vivo clearance 
rates and low oral bioavailability, the quinolone 3-sulfon-
amides are unsuitable for in vivo use[141]. In sum, though 
several LDHA inhibitors have been identified, further ef-
forts are needed to test their anti-cancer effects in vivo as 
well as in clinical trials.

Pyruvate dehydrogenase kinase (PDK) favors gly-
colysis over mitochondrial oxidative phosphorylation 
(OXPHOS) by blocking the activity of  pyruvate dehydro-
genase (PDH) by phosphorylating it[142]. Under normal 
oxygen pressures, pyruvate goes to mitochondria and 
is converted to acetyl-CoA in a step catalyzed by PDH. 
Acetyl-CoA is an important metabolite involved in the 
citric acid cycle and OXPHOS. In studies in cancer cells, 
PDK1 expression was induced by HIF-1 in hypoxic 
conditions and shown to lead to increased glycolysis and 
suppressed OXPHOS[143,144]. The expression of  PDK1 is 
associated with poor prognosis in head-and-neck squa-
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mous cancer[145]. Also, the upregulation of  PDK in cancer 
was associated with a more aggressive phenotype[146]. For 
these reasons, PDK has been considered an attractive and 
promising anti-cancer target.

Dichloroacetate (DCA), an analog of  pyruvate, has 
been identified as a PDK inhibitor and widely studied 
for its ability to inhibit lactate production and cancer 
growth[147-151]. DCA decreases lactate production by shift-
ing the pyruvate metabolism from glycolytic fermentation 
towards mitochondrial OXPHOS, and restores mito-
chondrial function, thus potentially restoring apoptosis-
induction, allowing cancer cells to undergo programmed 
cell death and shrink the tumor[53]. DCA’s research and 
clinical trials were based on the belief  that cancer cells’ 
mitochondrial function is abnormal and therefore cancer 
cell growth will be reduced by upregulating and normal-
izing their OXPHOS. DCA was shown to be effective in 
suppressing the growth of  cancer cells both in vitro and 
in vivo[152-155]. Several human clinical trials of  DCA started 
after the successful cell and animal studies and still on-
going. A phase II clinical trial for malignant glioblastoma 
has been completed and shows that DCA can be used 
safely in patients with glioblastoma, suggesting that DCA 
is a promising anti-cancer agent and inhibiting glycolysis 
is a potent and effective anti-cancer strategy[156] (Table 1). 
In addition, several clinical trials combining DCA and 
other anti-cancer drugs or therapies are in progress. On 
the other hand, human studies indicate that DCA’s anti-
cancer effects, if  any, may be cancer type-related. More 
basic biomedical studies need to be conducted on the 
compound before DCA’s anticancer activity can be better 
evaluated.

Pentose phosphate pathway (PPP), a metabolic path-
way branched off  from glycolysis, provides metabolic 
intermediates for biosynthesis and NADPH for clearing 
ROS in cells. At the first step of  PPP, glucose-6-phos-
phate dehydrogenase (G6PD) catalyzes the conversion 
of  G6P to 6-phophogluconolactone, coupled with 
generation of  NADPH. G6PD has been shown to be 
overexpressed in cancer cells[157,158]. Therefore, inhibition 
of  G6PH is an attractive strategy to alter cancer metabo-
lism and attenuate cancer growth. 6-aminonicotinamide 
(6-AN) is an inhibitor of  G6PD that induces oxidative 
stress and sensitizes cancer cells to drugs[159-161]. Recently, 
Preuss et al[162] used high-throughput screening to identify 
several hit compounds as novel inhibitors of  G6PD with 
IC50s of  < 4 μmol/L. These G6PD inhibitors reduced 
the viability of  MCF10-AT1 mammary carcinoma cells 
with an IC50 of  approximately 25 μmol/L compared to 
approximately 50 μmol/L for MCF10-A non-carcinoma 
cells[162]. However, its in vivo efficacy remains to be investi-
gated.

The enzyme transketolase (TKTL) is critical for both 
PPP and glycolysis[157,163]. Transketolase-like enzyme 
1 (TKTL1) has been shown to be increased in tumor 
cells[164-166]. Down-regulation of  TKTL1 inhibited cancer 
cell proliferation, tumor growth and metastasis[167-169]. 
Thus, inhibiting TKTL1 is a potential anti-cancer strate-

gy. Oxythiamine inhibits TKTL and the growth of  cancer 
cells both in vitro and in vivo[170,171]. Also, oxythiamine inter-
rupted signaling dynamics in pancreatic cancer cells[172], 
and attenuated tumor cell metastasis[173]. Further studies 
on oxythiamine are of  interest.

GLUCOSE TRANSPORTERS AND 
UPREGULATION OF GLUCOSE 
TRANSPORTERS IN CANCER
Up to 90% of  cancers demonstrate a phenotype of  
increased glucose uptake, as revealed by PET scan and 
other detection methods[21,23,174,175]. Cancer cells also show 
an increased dependence on glucose as a source of  en-
ergy and biosynthesis precursor for cell growth, while 
normal cells utilize lipids, amino acids and glucose in a 
more balanced fashion[25,43]. Increased glucose uptake in 
cancer is achieved primarily by upregulation of  glucose 
transporters (GLUTs)[176-179] although the recent finding 
that animal cells transformed with a mutated (oncogenic) 
KRas gene exhibit macropinocytosis[105] raises the pos-
sibility that macropinocytosis and other endocytosis may 
contribute significantly to glucose uptake in cancer cells. 
Current research finds that upregulation of  GLUTs can 
be attributed to oncogenic alterations in cancer cells[180].

GLUTs (SLC2A) are plasma membrane-associated 
transporters that facilitate glucose transport across the 
cell membrane down the glucose concentration gra-
dients[181]. Up to now, at least 14 different isoforms of  
GLUTs have been identified in human cells (Table 2)[182]. 
All GLUTs share a common and highly conserved (97%) 
transmembrane domain composed of  twelve membrane-
spanning helices with less conserved and asymmetric 
extracellular and cytoplasmic domains[183-185]. Different 
isoforms of  GLUTs are structurally and functionally re-
lated proteins and divided into 3 classes according to the 
similarity of  their amino acid sequences[182]. They are ex-
pressed in various cell types based on cells’ unique physi-
ological requirements for glucose (Table 2)[176]. This dif-
ferential need and thus transport of  glucose is achieved 
by varied affinities of  the GLUTs for glucose[176,186].

GLUTs that are most relevant to cancer are GLUT1 
and GLUT3[176,187,188]. GLUT1 is a basal glucose trans-
porter expressed in almost all cell types[189] and is up-
regulated in almost all cancer types examined[176-179]. 
PET scans and other analytical methods have revealed 
membranous overexpression of  GLUT1 and increase 
in glucose uptake by cancer cells[175]. GLUT1 expression 
level is correlated with the grade, proliferative activity, 
differentiation, and known prognostic markers in vari-
ous cancers[175,190-192]. Clinical studies also have shown that 
high levels of  GLUT1 expression correlates with poor 
prognosis and survival[192-195]. Normally, GLUT3 is ex-
pressed primarily in the tissues with high energy demand 
to supplement GLUT1[176,196]. GLUT3 is over-expressed 
in various cancers compared with their non-cancerous 
tissues[176,187,188,197]. GLUT2 is expressed in the liver, pan-
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creatic islet cells, and retina cells[176,198]. GLUT2 has low 
affinity and high capacity for glucose[199,200]. GLUT2 also 
has high affinity for fructose[201]. Abnormal levels of  
GLUT2 expression were detected in gastric, breast, and 
pancreatic cancers[202-204]. In addition, GLUT4, GLUT5 
and GLUT12 have been found to be abnormally ex-
pressed in various cancers[187,188,203,205,206].

Transport of  glucose from the extracellular space into 
the cytoplasm is the first rate-limiting step for glycolysis. 
Glucose metabolism is drastically upregulated in cancer.  
Thus, inhibition of  aerobic glycolysis by blocking glucose 
uptake may be more efficient than inhibiting glycolytic 
enzymes in cells. Therefore, GLUTs are potential targets 
for anti-cancer therapies. All known glucose transporters 
and their major characteristics are summarized in Table 2.

ANTICANCER THERAPEUTICS 
TARGETING GLUCOSE TRANSPORTERS
The rapid growth and proliferation of  cancer cells re-
quire a large amount of  fuel, primarily and preferentially 
glucose. Numerous clinical and basic science studies have 
shown that glucose transport is upregulated in various 
cancers, by overexpressing GLUTs[195,203,230-233]. Studies 
have identified GLUT1 and GLUT2 as the main glucose 
transporters in hundreds of  tumors[203]. GLUT1 expres-
sion was the most widely distributed, while GLUT2 
was mainly expressed in breast, colon, and liver carcino-
mas[203]. Upregulated GLUT3 protein expression was also 
detected in endometrial, breast and thyroid cancers[233,234]. 
Recently, constitutive cell membrane localization of  
GLUT4 was found in myeloma cells[235,236]. Because 
GLUTs increase glucose transport and enhance cancer 
cell growth, survival and drug resistance, they are good 
targets for cancer therapeutic intervention.

GLUT1 INHIBITORS
GLUT1 is the most widely expressed glucose trans-
porter in different types of  cancers[189,194,237,238]. However, 

GLUT1 was not targeted therapeutically until recently. 
This is not because GLUT1 is not a good target but be-
cause of  the lack of  specific and potent inhibitors. Anti-
GLUT1 antibody was shown to be effective in reducing 
cancer cell growth in vitro, and the antibody treatment 
also resulted in cell cycle arrest of  the cancer cells[239]. Be-
fore and after the report of  the GLUT1 antibody, several 
small molecule GLUT1 inhibitors have been reported.  
They will be described individually below.

WZB117
Liu et al[177] recently reported the identification of  a group 
of  novel small compounds that inhibit basal glucose trans-
port by cancer. WZB117 is one of  the small molecules that 
best inhibited GLUT1 and cancer cell growth in vitro and in 
vivo. Its anticancer efficacy and safety was demonstrated in 
a tumor model of  human A549 lung cancer cells in nude 
mice[28]. Daily intraperitoneal injection of  WZB117 at 10 
mg/kg reduced tumor size by more than 70%. Mechanism 
studies showed that WZB117 inhibited glucose transport 
in human red blood cells (RBC), in which GLUT1 is the 
only glucose transporter expressed[28]. This conclusively 
shows that WZB117 inhibits GLUT1. However, it is pres-
ently unclear if  WZB117 also inhibits other GLUTs. Com-
puter docking studies show that WZB117 binds directly 
to GLUT1 using three hydrogen bonds with amino acid 
residues Asn34, Arg126, and Trp412 of  the protein[28]. 
Treatment with WZB117 resulted in changes in levels of  
GLUT1 protein, intracellular ATP, and related metabolic 
enzymes such as AMPK in cancer cells, leading to cell-
cycle arrest, senescence, and necrosis in red blood cells and 
tumor cells (IC50 = 10 μmol/L). Synergistic effect with 
cisplatin and paclitaxel was also demonstrated[28]. A new 
generation of  GLUT1 inhibitors based on the structure of  
WZB117 but with higher potency and stability are being 
synthesized and tested.

STF-31 
A small molecule named STF-31 that selectively targets 
von Hippel-Lindau (VHL) -deficient renal cell carcinoma 
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Table 2  Expression of glucose transporters and their major characteristics

Protein Class Expression Affinity to glucose Major features Expression in cancer

GLUT1 Ⅰ Ubiquitous (abundant in brain and erythrocytes)[207] High[201,208,211] Constitutive basal glucose uptake[207] Over-expressed[176,203]

GLUT2 Ⅰ Liver, retina, pancreatic islet cells[176,198] Low[201,211] Glucose sensing, fructose transport[176,200] Abnormal[176,202-204]

GLUT3 Ⅰ Brain[196] High[201,211] Supplements GLUT1 in brain[176,196] Over-expressed[176,205]

GLUT4 Ⅰ Muscle, fat, heart[210] High[208,209,211] Insulin responsive[210] Abnormal[188]

GLUT5 Ⅱ Intestine, testis, kidney, erythrocytes[213,214] Very low[212] Fructose transport[212] Abnormal[176,203]

GLUT6 Ⅲ Spleen, leukocytes, brain[215] Low[215] Sub-cellular redistribution[216] UD[203]

GLUT7 Ⅱ Liver, intestine, colon, testis, prostate[216,217] High[217] Glucose and fructose transport[217] ND
GLUT8 Ⅲ Testis, brain[219] High[219] Sub-cellular redistribution, multisubstrates[216] Over-expressed[218]

GLUT9 Ⅱ Liver, kidney, pancreatic cells[220,222] High[221] Multisubstrates[216] UD[203]

GLUT10 Ⅲ Liver, pancreas[223] High[224] Glucose transport[224] ND
GLUT11 Ⅱ Heart, muscle[225] Low[225] Inhibited by fructose[225] ND
GLUT12 Ⅲ Heart, prostate, muscle, fat, intestine[226] High[227] Insulin-reponsive[226] Abnormal[206]

HMIT Ⅲ Brain[228] No H+/myo-inositol transport[228] ND
GLUT14 Ⅰ Testis[229] ND ND ND

GLUTs: Glucose transporters; HMIT: H+/myo-inositol transporter; ND: Not determined; UD: Undetectable. 
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(RCC) cells was reported by Chan et al[240]. They demon-
strated that STF-31 inhibits VHL-deficient cancer cells by 
inhibiting GLUT1. It was shown that daily intraperitoneal 
injection of  a soluble analogue of  STF-31 effectively re-
duced the growth of  tumors of  VHL-deficient RCC cells 
in nude mice[240]. STF-31 specifically targets RCCs be-
cause aberrant HIF stabilization regulated by VHL leads 
to diminished mitochondrial activity in these cells, caus-
ing them to become highly dependent on glucose uptake 
for glycolysis and ATP production. By directly binding 
GLUT1 and inhibiting glucose uptake, STF-31 targets an 
RCC-specific vulnerability with limited toxicity to normal 
kidney cells, which are strictly dependent on neither gly-
colysis nor GLUT1[240]. Nevertheless, the target spectrum 
of  STF-31 appears to be relatively narrow. The successful 
animal studies using WZB-117 and STF-31 show in vivo 
potential of  GLUT1-targeting.

Fasentin 
Fasentin was first identified as a compound that enhances 
the death receptor stimuli FAS-mediated cell death in 
FAS-resistant cancer cells in 2006[241]. Its mechanism of  
action was further delineated when altered expression of  
genes associated with nutrient and glucose deprivation 
were detected[242]. Culturing cells in low-glucose medium 
led to similar effects of  fasentin and sensitized cells to 
FAS, supporting the conjecture that fasentin inhibits glu-
cose uptake[242]. Computer docking studies suggest fasen-
tin interacts with a unique site on the intracellular domain 
of  GLUT1[242]. The role of  fasentin as a chemical sen-
sitizer through glucose transport inhibition was further 
supported by additional chemical studies[242]. However, no 
in vivo study has been reported for fasentin.

Apigenin 
Apigenin is a natural flavonoid compound existing abun-
dantly in common fruits and vegetables[243]. Previous 
studies have demonstrated apigenin’s anti-mutagenic, 
anti-oxidant, anti-cancer, and anti-inflammatory activi-
ties[244-247]. In a mechanism study, apigenin was shown to 
inhibit glucose uptake in a dose-dependent manner (in 
the 10-100 μmol/L range) in CD18 and S2-013 human 
pancreatic cancer cell lines[248]. Apigenin was determined 
to achieve this effect by inhibiting GLUT1 at both 
mRNA and protein levels[248]. This was further investi-
gated with PI3K inhibitors whose inhibitory effects on 
GLUT1 mRNA and protein expression are similar to api-
genin’s, suggesting that apigenin targets GLUT1 through 
a PI3K/Akt related pathway[248]. Thus, apigenin inhibits 
GLUT1 indirectly.

Genistein
Genistein, an isoflavone, is a natural product present in 
plants such as soybeans[249,250]. It is a known tyrosine ki-
nase inhibitor and has been shown to exhibit therapeutic 
effects against a variety of  health disorders such as obe-
sity, diabetes and cancer, making it a promising agent for 
the treatment of  metabolic diseases[251,252]. Genistein is 

also reported to be a potent inhibitor of  GLUT1[253,254]. 
It inhibits the transport of  hexose and dehydroascorbic 
acid through GLUT1 in human HL-60 cells in a dose-de-
pendent fashion[253]. Further investigation demonstrated 
that genistein binds to the external surface of  GLUT1, 
altering the binding of  glucose to the external surface site 
of  GLUT1[254]. However, genistein does not appear to be 
specific for GLUT1.

Oxime-based GLUT1 inhibitors
Recently, a group of  oxime-based GLUT1 inhibitors 
have been reported[255]. These compounds possess a 
basic chemical structure different from either phlor-
etin, WZB-117 or other reported GLUT1 inhibitors, 
and thus represent a novel group of  GLUT1 inhibitory 
compounds. Some of  these compounds are as potent as 
WZB117 in inhibiting glucose transport and cell prolif-
eration in cancer cells[255]. A detailed computer simula-
tion study revealed the potential binding site for these 
compounds on GLUT1, which appears to be consistent 
with that reported for 17β-estradiol and genistein[256]. The 
simulation result and basic structure of  these compounds 
provide bases for designing next generation GLUT1 in-
hibitors.

Pyrrolidinone-derived GLUT1 inhibitors
Using high-throughput screening coupled with ATP, 
cell cycle arrest, and lactate assays, two potent GLUT1 
inhibitory compounds were identified[257]. These com-
pounds inhibit glucose transport mediated by erythrocyte 
membrane-derived vesicles with Ki values of  1.2 and 0.8 
µmol/L, respectively[257]. These compounds are GLUT1 
inhibitors because only GLUT1 is expressed on eryth-
rocytes.  However, no in vivo study has been reported for 
these intriguing compounds.

GLUT2 INHIBITORS
Phloretin
Phloretin, a natural compound found in fruits such as ap-
ples and pears, is reported to be a GLUT2 inhibitor[258-260]. 
Phloretin has been shown to retard tumor growth both 
in vitro and in vivo and induce apoptosis in leukemia, mela-
noma, and colon cancer cells[261-263]. Results from human 
hepatocellular carcinoma HepG2 cells, which express 
high levels of  GLUT2, suggest that phloretin-induced 
apoptosis involves inhibition of  GLUT2-mediated glu-
cose transport[258]. Additional studies showed that the 
inhibitory properties of  phloretin on GLUT2 sensitize 
cancer cells to paclitaxel, illustrating the potential use of  
phloretin in cancer therapy[264].

Quercetin
Quercetin is a flavonoid compound in fruits, vegetables 
and grains. It was found to be an effective non-compet-
itive GLUT2 inhibitor in Xenopus oocytes with a Ki of  
22.8 μmol/L[265]. In rats administered glucose, quercetin 
inhibits glucose absorption through GLUT2[265]. Querce-
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tin was also suggested to reduce the risk of  lung cancer 
and other types of  cancer[266-268]. Quercetin aglycone was 
shown to affect some receptors associated with cancer 
development and modulate some signaling pathways in-
volved in inflammation and carcinogenesis[266], although 
no direct evidence links between inhibition of  GLUT2 
and cancer prevention. More studies are needed to ex-
plore the connection. Quercetin is likely to be a non-spe-
cific GLUT2 inhibitor since its anticancer activity cannot 
be completely explained by its GLUT2 inhibitory activity.

GLUT3 INHIBITORS
DNA-damaging anticancer agents
Some DNA-damaging anticancer agents including adria-
mycin, camptothecin and etoposide were reported to 
induce cancer cell death by reducing GLUT3 expression 
in HeLa cells[269]. Real-time PCR results in Hela cells and 
a tumorigenic HeLa cell hybrid showed that only the ex-
pression of  GLUT3, rather than GLUT1, was suppressed 
by these medicines[269]. Mechanism studies suggested that 
the suppression of  GLUT3 expression induced by DNA-
damaging agents was through the MEK-ERK pathway in 
a p53-independent manner[269].

GSK-3 inhibitors
Recently, certain glycogen synthase kinase-3 (GSK-3) 
inhibitors were identified as inhibitors of  GLUT3 ex-
pression in GLUT3-overexpressing tumorigenic HeLa 
hybride cells as compared with non-tumorigenic coun-
terparts that express GLUT1 alone[270]. These inhibitors 
decreased GLUT3 expression at the transcriptional level 
through NF-κB signaling in a p53-independent fashion, 
leading to apoptotic cell death[270]. Thus, GSK-3 inhibitors 
do not interact with GLUT3 protein directly but reduce 
GLUT3 expression levels. No small molecule inhibitors 
of  GLUT3 protein have been reported.

GLUT4 INHIBITORS
Ritonavir
Several HIV protease inhibitors were reported to exhibit 
inhibitory effects on GLUT4: the most potent is ritona-
vir[235,271,272]. The effects of  ritonavir against myeloma cells 
were investigated in vitro[235]. It was demonstrated that 
the inhibitory effects of  ritonavir were achieved by sup-
pressing the glucose consumption mediated by GLUT4 
in myeloma cells, which overexpress GLUT4, as well as 
localize it to the basal cell surface[235]. The specificity of  
ritonavir for GLUT4 was confirmed by artificially intro-
ducing GLUT1-mediated glucose uptake, which resulted 
in resistance to prolonged ritonavir treatment[235]. Half  of  
the cell death induced by ritonavir was seen at a concen-
tration of  20 µmol/L[235]. These and other study results 
highlight the therapeutic potential of  ritonavir in mediat-
ing GLUT4 inhibition in myeloma treatment[235,272]. Rito-
navir has also been investigated for treatment of  other 
types of  cancer[273-275] and undergone clinical trials (Clini-

calTrials.gov Identifier: NCT01009437, NCT01095094).

Silibinin
Silibinin, also known as silybin, is a natural flavonoid 
recently shown to be a GLUT4 inhibitor[276,277]. Kinetic 
analysis revealed that silybin is a competitive inhibitor 
of  GLUT4, modulating glucose transport in CHO cells 
with a Ki of  60 μmol/L[276]. Inhibitory effects of  silibinin 
on cancer growth have been demonstrated in preclinical 
models[278,279] and tested in clinical Phase I[280,281] and Phase 
Ⅱ trials (ClinicalTrials.gov Identifier: NCT00487721) 
for prostate cancer, indicating the relative safety of  this 
anticancer agent. Because of  its relatively weak GLUT4 
inhibitory activity, silibinin’s anticancer effects are likely to 
be elicited from multiple mechanisms.

From the studies cited above, it can be concluded that 
GLUTs are rate-limiting for glycolysis in specific tumor 
contexts. The identification and targeting of  upregulated 
GLUTs in different tumors provide a promising ap-
proach to block glucose-regulated cancer metabolism and 
thus inhibit cancer growth. Key information for all the 
GLUT inhibitors described above is summarized in Table 
3.

FUTURE DIRECTIONS AND CHALLENGES 
From numerous examples cited in this review, it can be 
concluded that targeting glucose transport and metabo-
lism offers several advantages: (1) It targets a protein, 
enzyme or process that is significantly altered or upregu-
lated in cancer compared to those in normal cells. The 
differences between cancer and normal cells potentially 
provides a therapeutic window by which cancer cells can 
be effectively inhibited without harming patients’ normal 
cells; (2) Targeting GLUTs is equivalent to inhibiting the 
entire process of  glycolysis, leaving cancer cells fewer 
options for production of  sufficient amount of  ATP, 
NADPH, serine, etc. It may also be harder for cancer cells 
to bypass GLUT inhibition, leading to stronger and lon-
ger-lasting inhibition. To compensate for the shortage of  
glucose, cancer cells will have to use either other glucose 
transport mechanisms or other energy molecules, such 
as glutamine for biosynthesis and energy. Although this 
is possible, it is more difficult than merely bypassing the 
inhibition of  a single enzyme in the middle of  a signaling 
pathway; and (3) Cancer cells are addicted to glucose[25,27], 
and thus more sensitive to glucose concentration changes 
triggered by GLUT inhibition than are normal cells. Can-
cer cells more readily enter cell cycle arrest or apoptose 
from glucose shortage[28].

However, there are also some weaknesses associ-
ated with the strategy of  glucose transport inhibition. 
These include: (1) GLUTs are expressed by both cancer 
and normal cells. Inhibiting cancer cells’ GLUTs inevi-
tably inhibits normal cells that also use GLUTs for their 
functions. The identification of  a therapeutic window 
is absolutely essential for the success of  this anticancer 
strategy. Fortunately, key organs in the body such as the 
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brain and heart can use ketone bodies as a substitute for 
glucose[282,283]. Therefore, GLUT inhibition should not 
result in significant energy shortage for these vital organs; 
and (2) Cancer cells’ reliance on glucose is not absolute. 
Some cancer cells use glutamine[284,285] and others can shift 
from glucose metabolism to glutamine metabolism[286,287], 
bypassing glucose transport inhibition. Drugs targeting 
other metabolic pathways such as glutamine transport/
metabolism or targeting cancer cell growth signaling may 
be used together with GLUT inhibitors to shut down 
cancer cells’ energy metabolism and cell growth more ef-
fectively, leading to cancer cell death. These approaches 
need to be tested in cancer cells first and then in animal 
tumor models.

Recently, we have observed that our GLUT1 inhibi-
tor WZB-117[28] more effectively inhibits cancer cell lines 
that express the wild type KRas gene (KRaswt cells) than 
KRasmut cancer cell lines (unpublished observations). 
Although the reason for the difference is unclear, we 
speculate this may be associated with the “leakiness” of  
cancer cells to extracellular glucose and ATP. We base 
this on a recent finding published in a 2013 Nature paper 
that KRasmut genotype is associated with a phenotype 
of  macropinocytosis[105], a type of  endocytosis that non-
specifically takes up extracellular molecules as large as 
proteins[288]. In theory, KRasmut-induced macropinocytosis 
should be able to take up glucose or ATP as well. Thus, 
to further enhance cancer treatment efficacy by GLUT 
inhibitors, it is imperative to ascertain not only which 
GLUT is upregulated in the targeted cancer, but also the 
genotype (such as KRas status) of  the cancer. We also 
observed that WZB-117 was less effective in cancer cell 
lines with higher glycogen content (unpublished observa-
tion). It is possible that higher intracellular glycogen con-
tent confers some degree of  resistance to glucose trans-
port inhibitors. In theory, a longer duration of  GLUT 
inhibition should be able to exhaust intracellular glycogen 
storage and change GLUT1 inhibitor-insensitive cells into 
sensitive ones. These new findings may enhance GLUT 
inhibitors’ success in treating specific cancer types.

In summary, glucose transport and glycolysis inhibi-

tors have been shown to be promising anti-cancer agents 
that warrant further basic science and clinical investiga-
tion. Improvement in inhibitor’s efficacy (IC50), selectivity 
of  the target, and identification of  therapeutic windows 
while taking cancers’ specific genotype and phenotype 
into account, are needed for such inhibitors to become 
effective anti-cancer therapeutics.
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