
a potential strategy to prevent Dox-induced cardiotoxic-
ity. Future research should aim to determine the optimal 
regimen of fasting, confirmation that this regimen does 
not interfere with the antitumor properties of Dox, as well 
as the underlying mechanisms exerting the cardioprotec-
tive effects. 

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Doxorubicin (Dox)-induced cardiotoxicity remains 
a significant cause of morbidity and mortality in cancer 
survivors, despite the intensive investigation of poten-
tial protective strategies. Studies have shown that short-
term fasting induces cardioprotective effects against Dox-
induced injury. Importantly, evidence suggests that fasting 
may enhance the antitumor effects of Dox. Thus, short-
term fasting may be a feasible practice that can easily be 
incorporated into the treatment plans of cancer patients. 
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INTRODUCTION
Doxorubicin (Dox) is one of  the most effective chemo-
therapeutic agents currently used in the treatment of  hae-
matological malignancies and solid tumors such as breast 
cancer. It is a quinone-containing anthracycline antibiotic. 
Its mechanism of  antitumor activity has been shown to 
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Abstract
Doxorubicin (Dox) is one of the most effective chemo-
therapeutic agents used in the treatment of several types 
of cancer. However the use is limited by cardiotoxicity. 
Despite extensive investigation into the mechanisms of 
toxicity and preventative strategies, Dox-induced car-
diotoxicity still remains a major cause of morbidity and 
mortality in cancer survivors. Thus, continued research 
into preventative strategies is vital. Short-term fasting 
has proven to be cardioprotective against a variety of in-
sults. Despite the potential, only a few studies have been 
conducted investigating its ability to prevent Dox-induced 
cardiotoxicity. However, all show proof-of-principle that 
short-term fasting is cardioprotective against Dox. Fast-
ing affects a plethora of cellular processes making it dif-
ficult to discern the mechanism(s) translating fasting to 
cardioprotection, but may involve suppression of insulin 
and insulin-like growth factor-1 signaling with stimulated 
autophagy. It is likely that additional mechanisms also 
contribute. Importantly, the literature suggests that fast-
ing may enhance the antitumor activity of Dox. Thus, 
fasting is a regimen that warrants further investigation as 
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involve binding to topoisomerase-Ⅱ α, thereby resulting 
in DNA strand breaks and apoptosis[1]. Despite its effec-
tiveness, its use is limited due to cardiotoxicity. In animal 
models, Dox has been shown to be hepatotoxic as well, 
but in humans it is the cardiotoxicity which primarily lim-
its its use[2,3]. High cumulative doses of  Dox are the most 
powerful predictor of  Dox-induced congestive heart 
failure[4]. One early study reported that 4% of  patients 
receiving a dose of  500-550 mg/m2 and 18% and 36% 
of  patients receiving 551 mg/m2 or higher, respectively, 
experienced heart failure, which is often refractory to 
conventional therapy[4,5]. The clinical outcome for these 
patients is poor[4]. A variety of  approaches to prevent car-
diotoxicity have been tested, however, their efficacy has 
been limited[4]. Thus, continued investigation of  viable 
strategies to protect the heart from Dox-induced toxicity 
is of  vital importance.

MECHANISMS OF DOX-INDUCED 
CARDIOTOXICITY
Mechanisms of  Dox-induced cardiotoxicity have not 
been clearly elucidated, but have been shown to involve 
oxidative stress, mitochondrial dysfunction, and apop-
tosis. For example, Dox treatment has been shown to 
increase mitochondrial depolarization, fission, and ROS 
production while decreasing the rate of  ATP synthesis 
and content[6-10]. Lipid peroxidation, reduced aconitase ac-
tivity (a marker of  oxidative stress), and alterations in the 
expression and activity of  antioxidant enzymes, such as 
superoxide dismutase (SOD), are also evident[11,12]. Oxi-
dative stress and mitochondrial dysfunction can induce 
apoptosis which leads to loss of  post-mitotic myocytes 
and altered cardiac function[8,13,14]. It has long been known 
that Dox can induce oxidative stress via semiquinone 
redox cycling, however it is unclear if  this is the specific 
mechanism of  cardiotoxicity since ROS scavengers failed 
to prevent cardiac toxicity in several studies[15,16]. Recently, 
topoisomerase-Ⅱ β has been shown to be a molecular 
target of  Dox in cardiomyocytes[17]. Cardiac myocytes 
do not express topoisomerase-Ⅱ a, the molecular tar-
get in tumor cells[18]. Zhang et al[17] demonstrated that 
cardiomyocyte-specific deletion of  topoisomerase-Ⅱ 
β prevented Dox-induced cardiotoxicity. Furthermore, 
the deletion prevented Dox-induced DNA damage and 
transcriptional changes that are responsible for impaired 
mitochondrial biogenesis, ROS formation, and apoptosis. 
Thus, the mechanism of  Dox-induced cardiotoxicity may 
involve molecular targeting of  topoisomerase-Ⅱ β as 
well as the potential contribution of  semiquinone redox 
cycling. 

PROTECTIVE STRATEGIES AGAINST 
DOX-INDUCED CARDIOTOXICITY
Currently, available therapies to effectively prevent car-
diotoxicity in patients treated with Dox are limited. Thus, 

the first line of  defense is to limit the cumulative dose of  
Dox. However, lowering cumulative dose may translate to 
reduced treatment efficacy[19]. Another strategy to protect 
against cardiotoxicity has been to alter the mode of  de-
livery of  Dox, such as encapsulation in liposomes, which 
aims to target the delivery to the tumor, thereby, reducing 
plasma concentrations of  Dox. The United States Food 
and Drug Administration has approved one liposomal 
doxorubicin, Doxil[19]. Shorter-term clinical trials have 
shown that liposomal doxorubicin can reduce early car-
diotoxicity while having the same antineoplastic efficacy 
as conventional doxorubicin[19]. Although, liposomal 
doxorubicin has shown promise in reducing cardiotoxic-
ity, currently, it is still mainstream to use conventional 
Dox. Utilizing antioxidants or iron chelators to reduce 
Dox-induced oxidative stress has been another tested 
strategy, but with limited success[19]. Dexrazoxane, an iron 
chelating agent, has shown the most promise in reducing 
oxidative stress and cardiotoxicity, however, with some 
limitations. Most studies have shown that Dexrazoxane 
is safe, however, some have shown that dexrazoxane may 
cause myelosuppression and also increase the risk of  sec-
ond malignancies[20,21]. Furthermore, it has been shown 
that the efficacy of  dexrazoxane may vary between 
sexes, with less benefit in males[19,22]. Despite extensive 
investigation and numerous tested strategies to prevent 
cardiotoxicity, success has been limited. Dox-induced car-
diotoxicity still remains a major cause of  morbidity and 
mortality in cancer survivors[19]. Thus, exploration of  ad-
ditional strategies to prevent Dox-induced cardiotoxicity 
is paramount. 

A cardioprotective strategy that warrants further 
exploration is fasting. Fasting and/or caloric restriction 
(CR) has been shown to protect the heart from a variety 
of  conditions and insults. For example, intermittent fast-
ing protects the heart from ischemic damage and attenu-
ates post-MI cardiac remodeling[23]. Furthermore, calorie 
restriction has proven protective against coronary artery 
disease, the process of  aging on the cardiovascular system, 
as well as drug toxicities, including doxorubicin-induced 
cardiotoxicity[24-27]. Mitra et al[26] demonstrated that 40+ 
days of  a 35% calorie restricted diet lead to 100% protec-
tion against Dox-induced cardiotoxicity and death while 
all of  the rodents administered with Dox in the ad libitum 
fed group died. However, long term CR regimens, such as 
this, are not feasible in cancer patients since they typically 
suffer from malnutrition and other complications. There-
fore, short-term fasting may be an alternative approach. 
Indeed, Raffaghello et al[28] reported that 48-60 h of  com-
plete fasting prevented organ toxicity induced by chemo-
therapy in various species of  female mice, however, eto-
poside rather than Dox was used in the study. Kawaguchi 
et al[29] demonstrated that 48 h of  complete fasting prior 
to Dox administration mitigated the Dox-induced impair-
ment in cardiac function in adult GFP-LC-3 transgenic 
mice, as determined by left ventricular ejection fraction 
(LVEF), systolic pressure (LVSP), end diastolic pressure 
(LVEDP), and +dP/dt. Microscopy revealed attenuation 
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of  LV dilatation, myocardial atrophy, and fibrosis[29]. In 
vitro, a caloric restriction mimetic, 2-deoxyglucose (2-DG), 
was shown to exhibit cardioprotective properties against 
Dox using neonatal rat cardiomyocytes isolated from 0-2 
d old Harlan Sprague-Dawley rat neonates[30]. Thus, the 
literature supports that fasting may be an effective regi-
men to protect against Dox-induced cardiotoxicity. 

Unpublished data from our laboratory (Table 1) may 
also suggest that short-term fasting may provide car-
dioprotection against Dox. Six-week old male F344 rats 
were treated with a single injection of  Dox (20 mg/kg) 
or saline. Tissues were harvested for analysis 24-h post 
injection with the aim of  determining the effects of  Dox 
on the mitochondrial dynamics and mitophagy machin-
ery. In order to remove the external variable of  Dox-
induced anorexia, we fasted both groups of  animals upon 
treatment. Studies have shown that animals treated with 
Dox reduce their food and water intake by up to 70% 
for several days[31]. Using this experimental design, the 
results were unexpected. Dox did not affect any markers 
of  oxidative stress or apoptosis that were assessed in the 
heart. Dox did not affect aconitase activity, superoxide 
dismutase (SOD) activity, nor the protein content of  cy-
tosolic SOD1 and mitochondrial SOD2. Expression and 
activation of  caspase-12, caspase-9, and caspase-8 were 
assessed via Western analysis, as well as caspase-3 and 
-9 enzyme activities, and were not affected by Dox. As 
previously mentioned, the original aim of  the study was 
to investigate the effects of  Dox on the mitochondrial 
dynamics and mitophagy machinery with the hypothesis 
that Dox treatment would increase the protein content 
of  FIS1 and DRP1 (fission regulators) and decrease the 
content of  MFN1, MFN2 and OPA1 (fusion regulators) 
thus favoring mitochondrial fission, which is most often 
associated with oxidative stress, mitochondrial dysfunc-
tion and apoptosis[32-34]. Under the current fasting condi-
tions, Dox did not affect the content of  any of  these 
primary regulators. Regulators of  mitophagy were also 

assessed. Dox did not affect the content of  PINK1, Par-
kin, or p62 (a marker of  mitophagy) under these fasting 
conditions. We do know that Dox exerted a biological 
effect in these animals since many of  these variables were 
altered in the liver. Furthermore, the treatment signifi-
cantly affected the proteome lysine acetylation status in 
the heart, inducing deacetylation (Figure 1), although the 
significance of  this observation is currently unknown. 
Because previously published studies have reported that 
acute Dox treatment does affect many of  these variables 
and processes[8-11,35-37], we believe that complete fasting of  
the animals in our study may have exerted an unintended 
cardioprotective effect against the Dox-induced insult. 
However, further investigation is required to confirm our 
interpretation of  the data. Although this work was done 
using an acute model of  Dox cardiotoxicity, since short-
term fasting may be able to protect against the high dose 
used in the acute model, it is likely that it may also be 
protective against lower doses used in chronic models of  
Dox cardiotoxicity which mimics more closely the clinical 
use of  Dox in patients. In summary, short-term fasting 
may extend similar benefits as longer term CR in regards 
to cardioprotection against Dox-induced injury. 

MECHANISM OF FASTING-INDUCED 
CARDIOPROTECTION AGAINST DOX 
TOXICITY
Fasting and caloric deprivation affect a plethora of  cellu-
lar processes such as mitochondrial dynamics and biogen-
esis, energy metabolism, oxidative stress, autophagy, and 
survival signaling pathways, thus making it difficult to dis-
cern the mechanism(s) responsible for the cardioprotec-
tion[38-42]. Kawaguchi et al[29] concluded that the protection 
against Dox-induced injury extended by 48-h of  fasting 
prior to treatment was due to restoration of  autophagy. 
Autophagy is a conserved process among eukaryotic cells 
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Table 1 Summary of unpublished data

Dependent variable Control (mean ± SEM) Dox (mean ± SEM) P  value

Aconitase activity (nmol/min per milligram protein) 14.46 ± 3.68   23.74 ± 3.25   0.08
SOD activity (units/mg protein)   0.026 ± 0.003     0.026 ± 0.002   0.904
SOD1 content    1025 ± 110.2      949 ± 91.6   0.603
SOD2 content   275.6 ± 23.25     288.1 ± 23.71   0.715
Procaspase-12 content 36.90 ± 6.14   24.28 ± 4.19   0.1
Procaspase-9 content 28.59 ± 1.57   25.33 ± 3.61   0.5
Procaspase-8 content   68.10 ± 11.90   82.90 ± 0.93   0.34
Caspase-3 activity (arbitrary OD/mg protein)   0.951 ± 0.676     0.490 ± 0.295   0.524
Caspase-9 activity (arbitrary OD/mg protein)   1.084 ± 0.809     0.462 ± 0.255   0.451 
FIS1 content 563.6 ± 76.6   474.3 ± 68.8   0.4
DRP1 content 1294.9 ± 109.8 1187.5 ± 73.5   0.421
MFN1 content 5443.5 ± 786.8   4607.8 ± 627.0   0.417
MFN2 content 2001.5 ± 456.8   2053.6 ± 330.2   0.926
OPA1 content 6019.5 ± 739.3   6143.6 ± 601.0   0.897
PINK1 content 3343.0 ± 206.9   3422.0 ± 263.4   0.824
Parkin content   4192.0 ± 1009.0     4157.0 ± 1629.0   0.986
p62 content 1895.7 ± 272.7   1896.7 ± 252.2   0.998

Protein content determined by Western blot (units are “normalized OD”). SOD: Superoxide dismutase.



that sequesters cellular material via formation of  a multi-
membrane-bound vacuole, an autophagosome, followed 
by degradation of  the material via fusion of  the autopha-
gosome with a lysosome[43]. Autophagy can enhance cel-
lular function and survival by degrading damaged or un-
wanted proteins and organelles such as mitochondria, as 
well as by modulating apoptosis[44]. Indeed, stimulation of  
autophagy has been shown to be cardioprotective from a 
variety of  damaging stimuli[44]. Kawaguchi et al[29] reported 
that the inhibition of  autophagy by Dox was due to inhi-
bition of  AMP-activated protein kinase (AMPK). Prior 
fasting prevented the Dox-induced inhibition of  AMPK. 
Although fasting was able to reverse the effects of  Dox 
on autophagy, no experimental methods were employed 
to identify restoration of  autophagy as the underly-
ing factor for cardioprotection. Furthermore, no other 
processes known to be affected by fasting were assessed 
in the study. Moreover, several studies have shown that 
stimulation of  autophagy contributes to Dox-induced 
cardiotoxicity and protection is provided via inhibition of  
autophagy[43]. Thus the role of  autophagy in Dox-induced 
cardiotoxicity, whether protective or pathological, is still 
under question. Therefore, the underlying mechanism(s) 
of  fasting-induced cardioprotection against Dox remains 
to be determined and is likely due to a combination of  
mechanisms[30]. 

EFFECTS OF FASTING ON TUMOR CELL 
KILLING
It is critical that a potential cardioprotective agent or regi-
men does not interfere with the goal of  cancer treatment. 
CR has long been shown to have antineoplastic effects. 
CR can slow the intrinsic rate of  aging and prevent the 
onset of  age-related pathologies, including cancer[45,46]. 
Furthermore, CR mimetics, such as 2-DG, have been 
shown to inhibit tumor growth[47]. Moreover, 2-DG has 
been shown to enhance the antitumor efficacy of  Dox 
both in vitro and in vivo[48,49]. Short-term (48-60 h) fast-

ing was shown to enhance death of  cancer cells, prevent 
organ toxicity, and increase survival in chemotherapy 
treated mice, however the chemotherapy tested was eto-
poside, not Dox[28]. Interestingly, Raffaghello et al[28] noted 
that fasting longer than 60 h worsened outcomes. Thus, 
there may be a window of  optimal duration of  fasting 
to maximize beneficial effects. Many of  the benefits of  
fasting and caloric restriction have been shown to be, at 
least in part, due to decreased circulating levels of  insulin 
and reduced insulin-like growth factor-1 receptor (IGF-
1R) signaling[50,51]. Seventy-two hours of  fasting reduced 
circulating IGF-1 by 70% and increased the level of  the 
IFG-1 binding protein (IGFBP) by 11x[52]. Survival time, 
after Dox treatment, was extended by delaying metasta-
sis of  highly aggressive melanoma and prevented Dox-
induced toxicity in liver-specific IGF-1-deficient (LID) 
mice compared to non-LID mice[52]. Ninety days after 
inoculation with the melanoma cancer cells, all non-LID 
mice that were treated with Dox had died from either 
cancer metastases or Dox toxicity. 60% of  LID mice 
treated with Dox were cancer-free with no signs of  toxic-
ity[52]. Thus, the evidence supports that fasting may be a 
safe regimen to use in conjunction with Dox in order to 
prevent cardiotoxicity. 

CONCLUSION
In conclusion, Dox-induced cardiotoxicity remains a 
significant cause of  morbidity and mortality in cancer 
survivors despite the intensive investigation of  potential 
protective strategies. Studies have shown that short-term 
fasting induces cardioprotective effects against Dox-in-
duced injury. Importantly, evidence suggests that fasting 
may enhance the antitumor effects of  Dox. It seems that 
short-term fasting would be a feasible practice that can 
easily be incorporated into the treatment plans of  cancer 
patients. Thus, short-term fasting is a strategy warrant-
ing further exploration. Further studies, both preclinical 
and clinical, should reveal the optimal regimen of  fasting, 
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confirmation that this regimen does not interfere with 
the antitumor properties of  Dox, as well as the underly-
ing mechanisms exerting the cardioprotective effects. 
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