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Abstract
Lysosomal acid lipase (LAL) cleaves cholesteryl esters 
(CE) and triglycerides (TG) to generate cholesterol 
and free fatty acid in lysosomes of cells. The down-
stream metabolic products of fatty acids are ligands 
for activation of peroxisome proliferator-activated re-
ceptor gamma (PPARγ). Accumulation of CEs and TGs 
is resulted from lack of functional LAL in lysosomes 
of cells, especially in myeloid cells. One characteristic 
phenotype in LAL knock-out (lal-/- ) mice is systemic 
elevation of myeloid-derived suppressive cells (MDSCs). 
MDSCs infiltrate into multiple distal organs, alter T cell 
development, and suppress T cell proliferation and lym-
phokine production in lal-/-  mice, which lead to severe 
pathogeneses in multiple organs. The gene transcrip-
tional profile analysis in MDSCs from the bone marrow 
has identified multiple defects responsible for MDSCs 
malformation and malfunction in lal-/-  mice, including G 
protein signaling, cell cycles, glycolysis metabolism, mi-

tochondrial bioenergetics, mTOR pathway etc. In a sep-
arate gene transcriptional profile analysis in the lung of 
lal-/-  mice, matrix metalloproteinase 12 (MMP12) and 
apoptosis inhibitor 6 (Api6) are highly overexpressed 
due to lack of ligand synthesis for PPARγ. PPARγ nega-
tively regulates MMP12 and Api6. Blocking the PPAR 
signaling by overexpression of a dominant negative 
PPARγ (dnPPARγ) form, or overexpressing MMP12 
or Api6 in myeloid or lung epithelial cells in inducible 
transgenic mouse models results in elevated MDSCs 
and inflammation-induced tumorigenesis. These stud-
ies demonstrate that LAL and its downstream effectors 
are critical for MDSCs development, differentiation and 
malfunction.
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Core tip: Neutral lipid metabolism is essential for my-
eloid cell proliferation and differentiation. This review 
summarizes the most recent discoveries that lysosomal 
acid lipase (LAL), an enzyme hydrolysing cholesteryl es-
ters and triglycerides in lysosomes, plays a critical role 
in myeloid-derived suppressive cells (MDSCs) develop-
ment, differentiation, and immune suppressive function. 
Both LAL knock-out and myeloid specific rescue of LAL 
knock-out mice are used in the studies. Doxycycline-in-
ducible bitransgenic mouse models of LAL downstream 
genes are also generated to study MDSCs malformation 
and malfunction. The molecular pathways/mechanisms 
to connect LAL and MDSCs are characterized by micro-
array analyses of gene transcriptional profiles. 
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HISTORY OF LYSOSOMAL ACID LIPASE
Lysosomal acid lipase (LAL) cleaves cholesteryl esters 
(CE) and triglycerides (TG) in cell lysosomes. Muta-
tion in the LAL gene results in Wolman disease (WD) 
of  early infantile onset, and cholesteryl ester storage 
disease (CESD) of  late onset. WD was first described 
by Dr. Wolman[1] in 1956 as severe malnutrition, hepa-
tosplenomegaly, calcified adrenal glands, and death of  
children within the first few months of  life. Affected 
WD infants display massive accumulations of  CE and 
TG in the lysosomes of  hepatocytes and Kupffer cells, 
as well as in macrophages throughout the viscera, which 
lead to liver failure, severe hepatosplenomegaly, steator-
rhea, pulmonary fibrosis[2,3], and adrenal calcification and 
insufficiency[4,5]. Lipid engorged macrophages in intes-
tinal villi lead to severe malabsorption and cachexia[2,4]. 
The average life span of  WD is 3.5 mo[6]. CESD was 
initially described by Fredrickson, Schiff, Langeron, and 
Infante and their colleagues in 1967[7-10] and named by 
Partin and Schubert based on phenotype that exhibited 
hepatomegaly with increased hepatic levels of  cholesteryl 
esters in 1969. CESD can be a more indolent progressive 
disease, which shows microvesicular steatosis leading to 
fibrosis and cirrhosis in the liver, increases atherosclerosis 
and premature demise[11-13]. Wolman disease and CESD 
result from allelic mutations at the LAL locus on human 
chromosome 10q23.2-q23.3 and are autosomal recessive 
traits. The gene spans 45 kb, has 10 exons, and contains 
no unusual structures, except for a large intron 3. The 
LIPA mutations found in Wolman disease include dele-
tions and insertions that lead to premature stop codons 
and the consequent loss of  LAL protein and activity[14]. 
The mutations found in CESD are usually missense mu-
tations, either heteroallelic or homoallelic with another 
mutant LIPA gene[14]. 

Recently, some evidence started to emerge, show-
ing altered mononuclear phagocyte differentiation [in-
creased CD14+CD16+ and CD14+CD33+ cells, subsets 
of  human myeloid-derived suppressive cells, or myeloid-
derived suppressive cells (MDSCs)] in humans that were 
heterozygote carriers of  LAL mutations[15]. Furthermore, 
patients with mutations in the LAL gene have been 
reported to be associated with carcinogenesis[16]. These 
clinical observations support the extensive characteriza-
tion in animal models as described below.

LAL PROPERTIES 
LAL is a key player in the modulation of  cholesterol 
metabolism in all cells. On the surface membranes of  
various cells, there are multiple receptors that can deliver 
LDL-bound cholesteryl esters/triglycerides to lysosomes, 
but LAL is the only lipase in the lysosomes that hydro-
lyzes cholesteryl esters and triglycerides. Once cleaved by 

LAL, the free cholesterol and fatty acids enter the cytosol 
from lysosome. In LAL deficiency, cholesteryl esters and 
triglycerides cannot be cleaved; therefore, free cholesterol 
and fatty acids cannot leave the lysosome[17,18]. Cells sense 
this as an intracellular (cytosolic) cholesterol deficiency, 
and the cholesterol biosynthetic pathway is up-regulated 
to compensate.

Synthesized in the rough endoplasmic reticulum, LAL 
is a typical soluble lysosomal hydrolase, which is co-trans-
lationally glycosylated when it emerges into the endo-
plasmic reticulum lumen[18,19]. Following the removal of  
the leader sequence (21 amino acids), LAL is decorated 
with oligosaccharides that are remodeled during transit 
through the Golgi apparatus. The N-linked oligosac-
charides are remodeled from high mannosyl to complex 
forms, with a mannose 6-phosphate being added, which 
serves as the lysosomal sorting targeting signal. The 
mannose 6-phosphate receptor system is used to deliver 
the newly synthesized LAL to the lysosome. LAL is not 
known to require cofactors for optimal hydrolysis, and it 
functions as a monomer. Unmodified mature protein (378 
amino acids) has a predicted molecular weight approxi-
mately 42.5 kDa. Different molecular weights have been 
reported for purified human LAL[20-24]. Occupancy of  the 
LAL N-glycosylation is essential for enzyme stability, i.e., 
protection from rapid degradation[25]. 

LAL has significant similarity to other acidic lipases, 
for example, lingual lipase and gastric lipases that cleave 
similar substrates in the stomach. However, LAL is dis-
tinct from other lipases, including hormone-sensitive 
lipase, pancreatic lysophospholipid lipase, lecithin cho-
lesterol acyl transferase, lipoprotein lipase, hepatic lipase, 
and pancreatic lipase[26]. All such lipases share a motif, 
Gly-X-Ser-X-Gly, that is an essential pentapeptide in the 
active site[27,28]. This pentapeptide occurs twice in LAL at 
serine 99 and serine 153, and specific mutation of  serine 
153 identified this residue as important to catalytic activ-
ity[23]. Like other lipases, LAL also has a catalytic triad of  
Ser153, Asp423 and His353

[27]. 

GENE KNOCK-OUT PHENOTYPES AND 
MDSCS IN MICE
A Lipa knock-out mouse (lal-/-) has been created to 
understand the functional roles of  LAL in disease patho-
physiology, lipid metabolism, and therapeutic approach-
es[29,30]. The lal-/- phenotype resembles human CESD. It’
s histopathologic and biochemical phenotypes are similar 
to human WD. The lal-/- mice are normal appearing at 
birth, but develop liver enlargement by 4 wk and have 
a grossly enlarged abdomen with hepatosplenomegaly, 
lymph node enlargement, and intestinal villus infiltration 
by foamy macrophages by 16 wk. Massive accumulation 
of  CE and TG and macrophage storage develops in these 
and other organs[29,31-34]. Enzyme therapy has been studied 
in this model using human recombinant LAL (rhLAL) 
produced in several different eukaryotic systems[24,35,36]. 
These studies clearly show the potential for correction of  
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the manifestations if  enzyme therapy is begun early in the 
course of  the disease[36,37]. 

Many phenotypes of  seemingly unrelated diseases in 
various organs co-exist in lal-/- mice. Therefore, these dis-
eases must share common cellular and molecular mecha-
nisms that link these pathological processes. Extensive 
characterization of  lal-/- mice shows that elevation of  
systemic MDSCs is a major manifestation in association 
with most of  the pathogenic conditions (e.g., > 70% in the 
bone marrow and > 40% in the blood), suggesting that 
MDSCs play a central role in mediating LAL deficiency-
induced pathogenic progression[29,31-34,36,38-41]. MDSCs 
was originally identified in tumor pathogenesis[42]. Recent 
studied have linked this cell population to many other 
chronic inflammatory diseases[43-50]. MDSCs are a mixture 
of  myeloid cells that express CD11b and Gr-1 antigens 
in mice. In certain disease conditions (cancer), MDSCs 
are categorized into granulocytic (CD11b+, Ly6G+) and 
monocytic (CD11b+Ly6C+) MDSC[51]. Interestingly, most 
gated lal-/- CD11b+ cells show Ly6C+ and Ly6G+ double 
positive, making them CD11b+Ly6C+ Ly6G+ cells[34]. Nor-
mally, healthy immature myeloid lineage cells differentiate 
into dendritic cells (DCs), macrophages, or granulocytes 
in response to environmental changes. However, this pro-
cess is blocked by LAL deficiency, leading to accumula-
tion and expansion of  MDSCs with immune suppressive 
function[51-53]. This is similar to what has been observed in 
the tumor environment[54]. It is conceivable that through 
paracrine and autocrine mechanisms, abnormally elevated 
MDSCs generate and secrete growth factors, chemokines 
and cytokines to influence cell differentiation, cell prolif-
eration, cell apoptosis and gene expression in residing or-

gan tissues, contributing to the physiological progression 
of  various diseases. Direct cell-cell contact by MDSCs and 
other cells through the juxtacrine mechanism also contrib-
utes to this pathogenic process.

The functional roles of  LAL in myeloid cells have 
been specifically evaluated by creating a myeloid-specific 
doxycycline-inducible c-fms-rtTA/(tetO)7-CMV-hLAL; 
lal-/- triple mouse model, in which human LAL is ex-
pressed in myeloid cells under the control of  the 7.2 kb 
c-fms promoter/intron2 regulatory sequence in lal-/- 
mice[32,34,55]. The hLAL expression in myeloid lineage cells 
in this triple mouse model significantly reduced systemic 
MDSCs accumulation[34], reversed aberrant gene expres-
sion, and ameliorated pathogenic phenotypes[32]. There-
fore, the normal biological function of  myeloid cells 
requires normal neutral lipid metabolism (Figure 1).

MDSCS DIFFERENTIATION AND 
DEVELOPMENT
The myeloid linage cells undergo the sequentially dif-
ferentiated and proliferated from hematopoietic stem 
cells through an increasingly lineage-restricted intermedi-
ate progenitors including common myeloid progenitors 
(CMPs) and granulocyte-macrophage progenitors (GMPs) 
in the bone marrow[56,57]. The number and frequency of  
primitive LSK (Lin-/Sca-1+/c-kit+), CMP, and GMP 
populations in the bone marrow, systemic myeloid cell 
distribution are changed in lal-/- mice, leading to an ex-
pansion in CD11b+/Gr-1+ MDSCs[41]. Both increased 
proliferation and decreased apoptosis contribute to the 
expansion of  MDSCs in lal-/- mice. Lal-/- mice also 
display increased numbers of  high proliferative potential 
colony-forming cells (HPP-CFC), colony-forming unite 
of  granulocyte and macrophage progenitor cells (CFU-
GM), colony-forming unite of  granulocytes (CFU-G) 
and colony-forming unite of  macrophages (CFU-M) col-
onies from cultured bone marrow cells. When lal-/- bone 
marrow cells are transplanted into wild type mice, the 
donor CD11b+/GR-1+ myeloid cells in the blood, spleen, 
lung and bone marrow of  recipient mice are increased, 
confirming that the MDSCs increase is primarily due to 
the intrinsic defect in myeloid lineage progenitor cells. In 
addition to the intrinsic progenitor problem, the environ-
ment in lal-/- mice also contributes to myeloid cell hyper-
expansion, since the donor CD11b+/GR-1+ myeloid cell 
population in lal-/- recipient mice that are transplanted 
with wild type bone marrow cells is expanded. There-
fore, the lal-/- environment does not normally support 
hematopoiesis. Deregulated bone marrow progenitor cell 
differentiation is a primary cause for expansion of  lal-/- 
MDSCs, which is attributed to both cell-autonomous and 
environmental factors. Taken together, LAL expression 
in myeloid lineage cells is critical to maintain hemato-
poiesis and myelopoiesis. After MDSCs infiltration into 
distal organs, at least two mechanisms can explain how 
the cell-autonomous defect and environmental factors 
influence each other. Firstly, MDSCs and other regional 
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Figure 1  The functional role of Lysosomal acid lipase in myeloid lineage 
cells. In the wild type mice, the CD11b+Ly6G+ cells are myeloid lineage precur-
sors for monocytes/macrophages, neutrophils, and dendritic cells, which partici-
pate in the normal physiological functions of the distal organs (e.g., lung, liver, 
etc.), such as clearance of invading pathogens. The lysosomal acid lipase (LAL) 
activity is essential for normal myeloid lineage cell development, differentiation 
and function. LAL deficiency leads to neutral lipid accumulation in myeloid cells 
and blocks CD11b+Ly6G+ cells from further differentiation into mature myeloid 
lineage cells. The accumulated CD11b+Ly6G+ cells possess various malfunc-
tions that participate in the pathogenic conditions in the residing organs. MD-
SCs: Myeloid-derived suppressive cells.
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the blockage of  T cell development initially occurs at 
the DN3 to DN4 transition (Figure 3)[33]. Decrease of  T 
cell development and maturation was also observed in 
lal-/- mice due to the defects in lymphoid progenitors in 
the bone marrow chimeras study. This notion has been 
supported by the bone marrow profile analysis, in which 
common lymphoid progenitor development is blocked in 
the bone marrow of  lal-/- mice[33,41]. 

In addition to the above intrinsic defect, extensive 
analyses have revealed a second mechanism that con-
tributes to systemic reduction of  T cell populations. 
Strikingly, LAL deficiency dramatically increases MDSCs 
expansion and infiltration in the thymus and the spleen 
of  lal-/- mice, leading to neutral lipid accumulation and 
abnormal organization of  the thymus and spleen[33]. In-
filtration of  MDSCs in these important T cell organs af-
fects T cell development, differentiation and maturation. 
Functional analyses have shown that MDSCs from lal-/- 
mice strongly inhibit proliferation and function of  T cells 
(Figure 3)[34,40,41].  

Direct connection between LAL in MDSCs and T 
cell abnormalities comes from the c-fms-rtTA/(tetO)7-
CMV-hLAL;lal-/- triple mouse study. MDSCs expansion 
and infiltration into the thymus and spleen are reduced 
in this mouse model. This leads to restoration of  T cell 
proliferation in the spleen and normal T cell develop-
ment in the thymus[34]. Stat3 and NFκB p65 signaling 
play a critical role in lal-/- MDSCs immune suppressive 
function[34]. The above observations are further proved 
by an MDSCs depletion study, in which anti-Gr-1 
antibody treatment recovers T cell numbers in lal-/- 
mice[34]. lal-/- MDSCs also inhibits T cell lymphokine 
production, which is resulted from inactivation of  the 
pZAP-70/Syk intracellular signaling, loss of  expression 
of  TCR ξ chain and CD69, a failure to respond to TCR 
stimulation[33]. These defects can also be reversed by my-
eloid hLAL expression[34]. Lastly, Treg cells inhibit CD4+ 
T cell lymphokine production and proliferation[60]. LAL 
deficiency substantially increases CD4+FoxP3+ Treg cells 
in lal-/-mice[33].

cells in distal organs influence each other by the paracrine 
mechanism as both sides secrete cytokines and chemo-
kines. Secondly, MDSCs and other cells can influence 
each other by direct contact (juxtacrine mechanism). 
Starting at the GMP stage, hLAL expression in myeloid 
cells reverses abnormal myeloid development in the bone 
marrow, and reduces systemic expansion of  MDSCs in 
c-fms-rtTA/(tetO)7-CMV-hLAL; lal-/- triple mice. In 
addition, differentiation from Lin- progenitor cells to 
CD11b+GR-1+ cells is abnormally increased in lal-/- mice 
(Figure 2). This further supports that the cell-autono-
mous effect of  MDSCs expansion in lal-/- mice. Myeloid 
hLAL expression in c-fms-rtTA/(tetO)7-CMV-hLAL; 
lal-/- triple mice successfully reverses this abnormality[32]. 
The environmental effects on MDSCs malformation are 
further supported by an observation that when the Stat3 
pathway is overly activated in lung epithelial cells[58], se-
cretion of  Stat3-induced pro-inflammatory cytokines in 
epithelial cells reversed mature myeloid lineage cells to 
MDSCs[59]. 

MDSCS IMMUNOSUPPRESSION
In contrast to myeloid lineage cells, T cells are systemi-
cally decreased in lal-/- mice. Lal-/- T cells behave abnor-
mally. In response to stimulation of  anti-CD3 plus anti-
CD28 antibodies, or phorbol-12-myristate-13-acetate 
(agonist to activate PKC) and ionomycin (calcium iono-
phore), there is severely diminished T cell proliferation, 
decreased CD69 expression, and decreased expression 
of  T cell lymphokines. LAL deficiency does not drive 
effector T cells into either Th1 or Th2 status[33]. The thy-
mus is the most important organ for T cell development, 
which is divided into different developmental stages that 
are marked by CD4

-CD8
- double negative (DN) 1 to 4 

stages, CD4
+CD8+ double positive (DP) stage and CD4+ 

or CD8+ single positive (SP) stage. The earliest stage for 
thymocyte paucity appears at the DN4 (CD25-CD44-) 
stage in the lal-/- thymus. After this developmental point, 
thymocytes are declining at all stages, suggesting that 

Lin- CMP GMP
CD11b/
Ly6G

Mac

PMN

DCsLAL KO

Figure 2  Lysosomal acid lipase is required for normal myeloid lineage 
cell development and differentiation. Lysosomal acid lipase (LAL) deficiency 
leads to increased myeloid-derived suppressive cells differentiation from Lin- 
progenitor cells in the bone barrow, and decreased differentiation to mature 
macrophages, neutrophils, and dendritic cells in other compartments. Lin-: 
Lineage negative progenitor; CMP: Common myeloid progenitor; GMP: Gran-
ulocyte-macrophage progenitor; Mac: Macrophage; PMN: Polymorphonuclear 
cell, or neutrophil; DC: Dendritic cell.

LAL KO
MDSCs

Infiltration

Thymus Spleen

T cell maturation
CD4+ T cells↓
CD8+ T cells↓T cell development

DN1   DN2   DN3  DN4   DP   SP

Figure 3  Lysosomal acid lipase is required for normal T cell development 
and differentiation. Lysosomal acid lipase (LAL) deficiency can cause the 
intrinsic defect in T cell development, starting at the double negative 3 (DN3) 
stage. In addition, myeloid-derived suppressive cells infiltrate into the thymus 
and spleen, resulting in blockage of normal T cell development, differentiation, 
and maturation. DN: CD4 and CD8 double negative; DP: CD4 and CD8 double 
positive; SP: CD4 or CD8 single positive.
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GENE PROFILES IN LAL DEFICIENCY-
INDUCED MDSCS 
Since LAL controls homeostasis and development of  
MDSCs, which have profound pathogenic impact on 
various disease development, it is essential to identify 
the intrinsic defects that are involved in the MDSCs ho-
meostasis and function for future targeting. In a compre-
hensive gene transcriptional profile study by Affymetrix 
GeneChip microarray analysis, multiple pathways have 
been revealed in lal-/- bone marrow MDSCs. Below are 
lists of  some major (but not limited) changed pathways 
in lal-/- MDSCs.

Genes of G-protein superfamily 
Expression changes of  both large and small GTPases 
have been detected in lal-/- MDSCs, which have diverse 
functions in cells[61,62]. They include: (1) Rab GTPases, 
which control vesicle formation, receptor internaliza-
tion, and trafficking to the nucleus, lysosome and plasma 
membrane. Rab GTPases regulate cellular proliferation, 
apoptosis and migration by integrating signaling path-
ways; (2) Rho GTPases, which organize actin cytoskel-
eton, cell adhesion and cell motility[63]; and (3) Ras GT-
Pases mediate cell-cycle entry, cell growth, cell survival, 
cell growth and cellular metabolism by phosphorylating 
transcription factors through activation of  the Raf/Mek/
Erk pathway. Activation of  Erk and p38 phosphorylation 
has been observed in lal-/- MDSCs[41].

Histone cluster genes and cell cycle genes
Cell cycle regulating genes are upregulated in lal-/- MD-
SCs. They include: (1) Histone-variants cluster genes, 
which favor the epigenetic microenvironment change 
to promote MDSCs expansion. Histone-variants ex-
change also contributes to formation of  centromeric 
and telomeric chromatin during cell cycles. Indeed, G1/
M phases of  lal-/- MDSCs are increased in a cell cycle 
analysis[64]; (2) Cell cycle related genes[65], including Cdk1, 
Cdk2, Cdk5, Cdk9, and all Cdk regulatory cyclins (A, B, 
D, E-type), suggesting constitutive mitogenic signaling 
and defective responses to anti-mitogenic signals; and (3) 
Ubiquitination and proteasome enzymes/protein factors, 
which direct proteins to proteolysis within proteasome 
for recycling[66].

Metabolism and bioenergetics
Bioenergetic and metabolic genes are abnormally up-
regulated in lal-/- MDSCs, which control mitochondrial 
oxidative phosphorylation and energy (ATP production) 
for cellular activities. These include: (1) lactate dehydroge-
nase A and B, which produce large quantities of  secreted 
lactate, suggesting that lal-/- MDSCs use an aerobic gly-
colysis; (2) nitric oxide/reactive oxygen species (ROS) 
production genes, glutathione peroxidase/glutathione 
reductase genes, and glucose 6-phosphate dehydrogenase 
gene, which are involved in production of  ROS. The 
concentration of  ROS is significantly increased in lal-/- 

MDSCs; (3) enzymes and proteins in glycolysis and citric 
acid cycles; and (4) respiratory chain proteins (NADH 
dehydrogenases, cytochrome proteins, ATPases and mi-
tochondrial ribosomal proteins).

The mTOR pathway in LAL deficiency induced MDSCs
PI3K/thymoma viral proto-oncogene (AKT)/mam-
malian target of  rapamycin (mTOR) is activated in lal-/- 
MDSCs[64]. mTOR is a lysosomal membrane-bound 
protein, which controls apoptosis, promotes influx of  
glucose and amino acids into the cells, stimulates ATP 
production[67], contributes to cell growth, cell cycle en-
try, cell survival, and cell motility[68,69]. Lack of  the LAL 
activity changes lipid composition and dynamics on the 
lysosomal membrane that potentially influence endo-
membrane trafficking and stimulate the mTOR activity, 
which in turn coordinates the cellular metabolism[64,69,70]. 
It has been demonstrated that mTOR plays a critical role 
in modulating cellular immune functions[71,72], activation 
of  the mTOR pathway contributes to lal-/- MDSCs pro-
duction and function[40]. mTOR is the catalytic subunit of  
two distinctive complexes; mTOR complex 1 (mTORC1) 
and mTOR complex (mTORC2). mTORC1 contains 
unique regulatory associated proteins of  mTOR (RAP-
TOR) while mTORC2 contains rapamycin-insensitive 
companion of  mTOR (RICTOR)[67,72-75]. Inhibition of  
mTOR and associated proteins (Raptor, Rictor, and 
Akt1) corrects lal-/- MDSCs development, increased cell 
proliferation, decreased cellular apoptosis, and immune 
suppression in association with decreased ROS produc-
tion, recovery from impairment of  the mitochondrial 
membrane potential, increased ATP synthesis, and in-
creased cell cycling. Potentially, the mTOR pathway can 
serve as a target to modulate the emergence of  MDSCs 
in various pathophysiologic states where these cells play 
an immunosuppressive role (Figure 4).

The Stat3 and NFκB pathways
Although upregulation of  Signal Transducer and Activa-
tor of  Transcription (Stat) family members and NFκB 
family members are not detected by microarray analysis, 
phosphorylation of  Stat3 and NFκB has been detected in 
expanded lal-/- MDSCs[34,41]. Activation of  Stat3 directly 
leads to MDSCs expansion in vivo[58,59].

STUDY OF LAL DOWNSTREAM GENES
The gene profile study in the lung of  lal-/- mice by Af-
fymetrix GeneChip microarray analysis has also been 
performed. This is because the lung is a lipid rich organ 
and highly responsive to inflammation. Neutral lipids 
account for 10% of  the composition of  pulmonary sur-
factant that protects alveoli from collapse during respira-
tory cycles[76]. LAL deficiency results in massive myeloid 
cell infiltration, hyperplasia and emphysema in the lal-/- 
lung[32,39]. Comparison between the changed gene lists of  
bone marrow MDSCs and the whole lung by Affymetrix 
GeneChip microarray analyses reveals a few overlapping 
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genes. Therefore, LAL performs differential roles in dif-
ferent compartments. LAL exerts its biological effects 
through its downstream genes. In order to fully under-
stand the LAL functions, it is necessary and essential to 
characterize its downstream genes. From the whole lung 
gene list, the two most up-regulated genes matrix metal 
proteinase 12 (MMP12) and apoptosis inhibitor 6 (Api6) 
are characterized extensively. The functional role of  LAL 
downstream effector peroxisome proliferator-activated 
receptor gamma (PPARγ) has also been studied in depth. 
Figure 5 shows the relationship between LAL and its 
downstream effectors.

PPARγ  
Involvement of  the receptor network in the metabolic 
programming of  myeloid lineage cells is essential to 
the innate immune system[77,78]. PPARγ is of  high inter-
est for several reasons. Firstly, the metabolites of  LAL 
hydrolysis, 9-hydroxyoctadecanoic acids (9-HODE) or 
13-HODE from linoleic acid, serve as ligands for PPARγ. 
Upon binding to the ligands, PPAR interacts with the 
retinoid X receptor (RXR) to form the PPARγ/RXR di-
mer on target genes. Secondly, PPARγ plays an important 
role in anti-inflammation of  various tissues[77,79,80]. It has 
been shown that PPARγ agonists suppress gene expres-
sion of  inflammatory cytokines[79]. In the lal-/- lung, these 
pro-inflammatory cytokines are up-regulated (Figure 5)[39]. 
Therefore, LAL deficiency causes inactivation of  PPARγ 
by depleting ligand production. Using the lung as a 
model system, reintroduction of  LAL downstream meta-
bolic derivative 9-HODE (a natural occurring ligand for 
PPARγ) and a synthetic ligand compound ciglitazone for 
PPARγ improves the inflammatory status and pathogen-

esis in the lal-/- lung. Therefore, the ligands/PPARγ axis 
controls inflammation-triggered elevated gene expression 
and pathogenesis in the lal-/- mice[31]. 

To directly evaluate functional role of  LAL down-
stream effector PPARγ in myeloid cells, dominant nega-
tive PPARγ (dnPPARγ) is overexpressed in a myeloid-
specific c-fms-rtTA/(TetO)7-CMV-dnPPARγ bitransgenic 
mouse model[81]. In this bitransgenic system, total num-
bers and frequencies of  LK, LSK, CMP and GMP pro-
genitor cells in the bone marrow are abnormally elevated. 
DnPPARγ overexpression leads to up-regulation of  IL-
1β, IL-6 and TNFα in the blood plasma. MDSCs from 
this bitransgenic mouse model inhibit the proliferation 
and lymphokine production of  wild type CD4+ T cells 
in vitro. Both CD4+ and CD8+ T cell populations are 
decreased in doxycycline-induced dnPPARγ expressed 
mice. Bone marrow transplantation reveals that a myeloid 
autonomous defect is responsible for MDSC expansion, 
immunosuppression and tumorigenesis in this myeloid-
specifically expressed dnPPARγ bitransgenic mice. Mul-
tiple forms of  carcinoma and sarcoma in various organs 
(the lung, liver, spleen and lymph nodes) are observed 
in this mouse model. Therefore, the LAL/hormonal li-
gands/PPARγ axis is critical to control inflammation and 
the induction of  various tumors. Disruption of  this path-
way in myeloid cells, either by blocking ligand synthesis 
(as in lal -/- mice), or inhibition of  PPARγ (as in c-fms-
rtTA/(TetO)7-CMV-dnPPARγ bitransgenic mice) can 
initiate up-regulation of  inflammatory molecules which 
cause hematopoietic progenitors skewing towards my-
eloid lineage expansion to form MDSCs.

LAL KO
mTORC1
mTORC2

Cell cycle entry

Aerobic glycolysis

ATP production

ROS production
Mitochondrial

oxidative
phosphorylation

Glucose up-take Mitochondrial
damage

Lysosome

Figure 4  Lysosomal acid lipase deficiency induces overactivation of the 
mTOR pathway in myeloid-derived suppressive cells. Lysosomal acid lipase 
(LAL) is a lysosome-associated enzyme. LAL deficiency increases mTOR com-
plexes anchoring on lysosomes and stimulates the mTOR1 activity to influence 
the cellular metabolism and proliferation of lal-/- myeloid-derived suppressive 
cells (MDSCs). These include an increased influx of glucose through aerobic 
glycolysis, an increased mitochondrial oxidative phosphorylation and ATP pro-
duction, an impairment of the mitochondrial membrane potential in association 
with increased reactive oxygen species (ROS) production, and an increased cell 
cycle entry in lal-/- MDSCs.

TG, CE

FC, FFA

LAL

12/15/LO

9-HODE, 13-HODE
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Figure 5  Lysosomal acid lipase and its downstream effector genes. Lyso-
somal acid lipase (LAL) cleaves cholesteryl esters (CE) and triglycerides (TG) 
to produce free cholesterol (FC) and fatty acids (FFA) in lysosomes of cells. 
The lipid derivatives (9-HODE, 13-HODE) of FFA serve as ligands for PPARg 
in coupling with retinoid X receptor a (RXRa, which suppresses gene expres-
sion of a variety of pro-inflammatory cytokines. The LAL/PPARg axis serves as 
an anti-inflammatory pathway. LAL deficiency blocks this metabolic pathway to 
provoke up-regulation of pro-inflammatory cytokines (e.g., Api6, MMP12).  TGF: 
Transforming growth factor beta; IL: Interleukin; MCP: Monocyte chemotactic 
protein; TNF: Tumor necrosis factor; NF: Nuclear factor.
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Matrix metalloproteinases12
Zinc-dependent MMPs act as modulators for inflamma-
tion and innate immunity by activating, deactivating or 
modifying the activities of  signaling cytokines, chemo-
kines and receptors through proteolytic and nonproteo-
lytic functions[82-84]. Among MMPs, MMP12 is a 22-kDa 
secretory proteinase that is predominantly expressed in 
macrophages as previously reported[85]. MMP12 degrades 
extracellular matrix components, such as type IV col-
lagen, fibronectin, laminin, gelatin, vitronectin, entactin, 
heparin, and chondroitin sulphates, to facilitate tissue re-
modeling[86]. The expression of  MMP12 in macrophages 
is induced in the lung of  cigarette smokers[87]. Inactivation 
of  the MMP12 gene in knock-out mice demonstrates a 
critical role of  MMP12 in smoking-induced chronic ob-
structive pulmonary disease (COPD)[88], a disease highly 
related to lung cancer. From clinical studies, MMP12 
correlates with early cancer-related deaths in non-small 
cell lung cancer (NSCLC), especially with those associ-
ated with tobacco cigarette smoke exposure[89,90]. In the 
lal-/- lung, MMP-12 is the highest upregulated gene[31]. In 
the lal-/- lung, both macrophages and lung epithelial al-
veolar type Ⅱ (AT Ⅱ) cells are responsible for MMP-12 
increase[31,91,92]. Both myeloid-specific and lung epithelia-
specific MMP12 bitransgenic mouse models have been 
created to study the functional roles of  this LAL/PPARγ 
downstream molecule. 

In the myeloid-specific c-fms-rtTA/(TetO)7-CMV-
MMP12 bitransgenic mouse model, induction of  MMP12 
abnormally elevates numbers and frequencies of  CMP 
and GMP populations in the bone marrow, similar to that 
observed in lal-/- mice. Addition of  activated MMP12 
is able to stimulate wild type Lin- progenitor cells to dif-
ferentiate into the MDSC population, suggesting that 
MMP12 directly exerts its effect on hematopoietic pro-
genitor cells. The MDSCs are systemically increased in 
multiple organs of  MMP12 bitransgenic mice. MDSCs 
from MMP12-overexpred bitransgenic mice suppress T 
cell proliferation and function. MMP12 directly stimu-
lates differentiation of  CD11b+Gr-1+ cells from Lin- 
progenitor cells. In the lung, the concentration of  IL-6 
is increased, which aberrantly activates oncogenic Stat3 
and increases expression of  Stat3 downstream genes in 
epithelial tumor progenitor cells. As a result, spontaneous 
emphysema and lung adenocarcinoma are sequentially 
developed in MMP12-overexpressive bitransgenic mice, 
suggesting a critical role of  MMP12 in the transition 
from emphysema to lung cancer. 

In epithelial-specific CCSP-rtTA/(TetO)7-CMV-
MMP12 bitransgenic mice, MMP12 overexpression 
induces regional MDSCs infiltration and increases epi-
thelial growth. Again, spontaneous emphysema and 
bronchioalveolar adenocarcinoma are developed sequen-
tially. Importantly, MMP12 upregulation is highly asso-
ciated with COPD and lung cancer in human patients. 
Together, these studies support that LAL/PPARγ down-
stream MMP12 plays a critical role in emphysema to 
lung cancer transition that is facilitated by inflammation. 

Clinically, it has been reported that there is a pathophysi-
ological connection between emphysema/COPD and 
lung cancers[93,94]. 

Apoptosis inhibitor 6
Apoptosis inhibitor 6 (Api6) belongs to the macrophage 
scavenger receptor cysteine-rich domain superfamily 
(SRCR-SF)[95,96]. Api6 expression is the second highest 
induced gene in the lal-/- lung. Api6 is regulated by LAL 
metabolic derivatives (e.g., 9-HODE) and PPARγ[31]. In 
a myeloid-specific c-fms-rtTA/(TetO)7-CMV-Api6 bi-
transgenic mouse model, many phenotypes are similar to 
those observed in lal-/- mice. Overexpression of  Api6 
abnormally elevates MDSCs in the bone marrow, blood 
and lung with increased cell proliferation and decreased 
apoptotic activities. Api6 overexpression activates Stat3, 
Erk1/2 and p38 in myeloid lineage cells. Persistent in-
flammation in myeloid-specific Api6 bitransgenic mice 
causes lung adenocarcinoma[97].

Pathogenic overexpression of  Api6 is also observed 
in lal-/- AT Ⅱ cells. In an epithelial-specific CCSP-
rtTA/(TetO)7-CMV-Api6 bitransgenic mice, Api6 over-
expression in AT Ⅱ cells increases pro-inflammatory 
cytokine/chemokine levels in bronchoalveolar lavage 
fluid and serum, activates oncogenic signaling and inhib-
its apoptosis, promotes expansion of  MDSCs in lung and 
blood but not in the bone marrow or spleen. Lung MD-
SCs from this bitransgenic mouse model suppress T cell 
proliferation and function, which results in occurrence of  
emphysema and adenocarcinoma.

CONCLUSION
MDSCs play vital roles in various inflammation-induced 
chronic diseases. Elimination or reduction of  MDSCs 
populations can slow down disease formation and pro-
gression. It is important to identify the molecular path-
ways in order to effectively block MDSCs homeostasis 
and function. Extensive studies outlined in this review 
have shown that the role of  LAL in controlling neutral 
lipid metabolism is a key player in MDSCs development, 
homeostasis and function, therefore, providing a new av-
enue to develop therapeutic or immunologic approaches 
for clinical application. Through studies of  the LAL 
function, defective gene expression patterns have been 
mapped in lal-/- MDSCs. These provide novel targets for 
controlling MDSCs and associated diseases by design-
ing small molecule inhibitors. Clinically, small molecule 
inhibitors for c-kit have been tested to target MDSCs[98]. 
Using the gene profile list from LAL deficiency-induced 
MDSCs, more small molecule inhibitors can and will be 
identified to inhibit MDSCs pathogenic functions in vari-
ous disease conditions. 
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