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Abstract
AIM
To analyze the association of the CD36 polymorphism 
(rs1761667) with dietary intake and liver fibrosis (LF) in 
chronic hepatitis C (CHC) patients. 

METHODS
In this study, 73 patients with CHC were recruited. The 
CD36 genotype (G > A) was determined by a TaqMan 
real-time PCR system. Dietary assessment was carried 
out using a three-day food record to register the 
daily intake of macronutrients. Serum lipids and liver 
enzymes were measured by a dry chemistry assay. 
LF evaluated by transient elastography (Fibroscan®) 
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and APRI score was classified as mild LF (F1-F2) and 
advanced LF (F3-F4).

RESULTS
Overall, the CD36  genotypic frequencies were AA 
(30.1%), AG (54.8%), and GG (15.1%), whereas the 
allelic A and G frequencies were 57.5% and 42.5%, 
respectively. CHC patients who were carriers of the 
CD36 AA genotype had a higher intake of calories attri
butable to total fat and saturated fatty acids than those 
with the non-AA genotypes. Additionally, aspartate 
aminotransferase (AST) serum values were higher in AA 
genotype carriers compared to non-AA carriers (91.7 
IU/L vs 69.8 IU/L, P = 0.02). Moreover, the AA genotype 
was associated with an increase of 30.23 IU/L of AST 
(β = 30.23, 95%CI: 9.0-51.46, P  = 0.006). Likewise, 
the AA genotype was associated with advanced LF 
compared to the AG (OR = 3.60, 95%CI: 1.16-11.15, 
P  = 0.02) or AG + GG genotypes (OR = 3.52, 95%CI: 
1.18-10.45, P  = 0.02).

CONCLUSION
This study suggests that the CD36  (rs1761667) AA 
genotype is associated with higher fat intake and more 
instances of advanced LF in CHC patients. 

Key words: Hepatitis C virus infection; CD36 receptor; 
Lipids; Liver fibrosis; Mexico
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Core tip: In this study, chronically infected hepatitis C 
patients who were carriers of the AA genotype of the 
CD36  receptor polymorphism (rs1761667) showed 
a higher risk of advanced liver fibrosis compared to 
patients with an AG/GG genotype. This liver damage 
was associated with the consumption of a hepato
patogenic diet, high-calories and excessive intake of 
total and saturated fat, typical of the population of 
West Mexico. Thus, preventive nutritional intervention 
strategies based on the CD36 genotype may be a useful 
tool to avoid further liver damage due to alterations in 
liver lipid metabolism and inflammation in patients with 
chronic hepatitis C infection. 

Ramos-Lopez O, Roman S, Martinez-Lopez E, Fierro NA, 
Gonzalez-Aldaco K, Jose-Abrego A, Panduro A. CD36 genetic 
variation, fat intake and liver fibrosis in chronic hepatitis C virus 
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from: URL: http://www.wjgnet.com/1948-5182/full/v8/i25/1067.
htm  DOI: http://dx.doi.org/10.4254/wjh.v8.i25.1067

INTRODUCTION
The hepatitis C virus (HCV) is a hepatotropic human RNA 
virus, member of the Flaviviridae family[1]. Globally, it is 
estimated that nearly 170 million individuals are infected 
with HCV, causing yearly 350000 deaths[2]. Liver cirrhosis 

causes a high burden of liver disease in Mexico, and 
HCV infection represents one of its primary etiologies[3,4]. 
Approximately two million Mexican individuals are 
infected with HCV[5,6] and up to 64% of patients with 
acute HCV infection fail to undergo spontaneous viral 
clearance[7]. Thus, chronically infected patients may be 
at risk of liver fibrosis (LF), cirrhosis, and hepatocellular 
carcinoma during a period of 20 to 30 years[4,8]. 

Regardless of etiology, the pathogenesis of LF is 
influenced both by genetic and environmental factors[9,10]. 
High-fat diets, which have a significant content of satu
rated fatty acids (SFA), have been associated with the 
pathological processes known to be involved in liver fibro
genesis, including steatosis, inflammation, and insulin 
resistance[11-13]. Recently, we reported that in West Mexico, 
the general population and patients with liver disease 
consume an excessive amount of red meat, fried foods, 
sausages, and pastry products[14]. Consequently, these 
dietary trends have increased the proportional intake of 
calories, total fat, and SFA, which could eventually lead 
to liver damage in individuals that consume this type of 
hepatopathogenic diet. 

In addition to the textural, olfactory, neural and 
hormonal mechanisms involved in food intake, taste 
perception is considered a critical determinant of dietary 
preferences[15,16]. There is growing evidence of the 
existence of a new taste modality related to fat prefer
ence[17]. Experimental studies suggest that the lingual 
cluster of differentiation 36 (CD36) receptor regulates 
the motivation for fatty food consumption in rodents[18,19]. 
This effect is carried out through the cellular capture of 
long-chain fatty acids by the CD36 receptors on the taste 
buds[20]; subsequently, lipid signals are transduced into 
the gustatory nervous pathway[21]. Therefore, genetic 
variations that lead to changes in the expression of 
CD36 could explain the interindividual differences in 
fat linking[15]. CD36 protein levels are modulated by 
several single nucleotide polymorphisms (SNPs) in the 
CD36 gene on chromosome 7[22,23]. One SNP consists of a 
nucleotide substitution of guanine for adenine in the CD36 
gene promoter sequence (-31118G > A, rs1761667)[24]. 
This SNP has been associated with a significant reduction 
in the CD36 expression in several tissues[25,26]. 

Recently, we reported an association between CD36 
with a higher intake of fat portions and high serum cho
lesterol among the general population of West Mexico[27]. 
However, its role in dietary intake and HCV-related 
liver damage is currently unknown. Therefore, this study 
aimed to analyze the association of the rs1761667 CD36 
polymorphism with dietary intake and LF in patients 
chronically infected with hepatitis C. 

MATERIALS AND METHODS
Study design
In this retrospective study, 73 chronic hepatitis C (CHC) 
patients were recruited at the Department of Molecular 
Biology in Medicine from January 2012 to December 
2014. Chronic HCV infection was defined as a positive 
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anti-HCV test result (ELISA Third-Generation, AxSYM, 
Abbott Laboratories, Illinois, United States) and the 
presence of serum HCV RNA for more than six months 
(COBAS® AmpliPrep/COBAS® Taqman® HCV Test; 
Roche Diagnostics, Pleasanton, CA, United States)[28,29]. 
Duration of infection (years) was estimated by the self-
reported date of exposure to any known risk factor for 
HCV infection including the history of surgeries, blood 
transfusions, hemodialysis, acupuncture, injection 
drug use and tattooing[30]. Patients co-infected with the 
hepatitis B virus or human immunodeficiency virus, as 
well as alcohol abusers were excluded. Based on the 
pattern of alcohol intake in West Mexico, alcohol abusers 
were defined as those individuals that consumed more 
than two drinks per occasion, as previously described[31]. 
None of the CHC patients in the study group had 
received antiviral treatment for HCV infection. 

Viral genotyping
A VERSANT HCV Genotype 2.0 line probe assay was 
used to determine the HCV genotypes (Innogenetics, 
Ghent, Belgium). 

Body mass index measurement
An electrical bioimpedance apparatus was used to 
assess body mass index (BMI, kg/m2) (INBODY 3.0, 
Analyzer Body Composition, Biospace, South Korea).

Dietary assessment
A three-day food record (two weekdays and one week
end day) was used as a tool to assess the patient’s 
dietary intake, which has been previously used for our 
population[27,32-34]. This methodology provides accurate 
data concerning intake of food and nutrients[35]. Briefly, 
each subject was instructed on how to register the type, 
amount, and mode of preparation of all foods using food 
models[32]. The food records were coded by a qualified 
dietitian using a specialized software (Nutrikcal VO®, 
Mexico). This program calculated the total amount of 
calories, fat, protein, and carbohydrates as well as the 
daily intake of food group servings such as sugars, meat, 
fruits, vegetables, fats, milk, legumes, and cereals. 
Dietary data were averaged over the three-day food 
records and were compared with the recommended dietary 
intakes based on the Mexican System of Food and 
Equivalents[36,37]. 

Biochemical tests
Serum was obtained from 10 mL blood samples after a 
12-h overnight fast. Biochemical tests included glucose, 
alanine aminotransferase (ALT), aspartate aminotran
sferase (AST), gamma-glutamyl transferase (GGT), 
total cholesterol (TC), triglycerides (TG) and high-
density lipoprotein cholesterol (HDL-c). The Friedewald 
formula was selected to estimate low-density lipoprotein 
cholesterol (LDL-c)[38]. The concentration of very low-
density lipoprotein cholesterol (VLDL-c) was calculated as 
Total Cholesterol - (LDL-c + HDL-c). All biochemical tests 
were performed using a dry chemistry assay on a Vitros 

250 Analyzer (Ortho-Clinical Diagnostics, Johnson and 
Johnson Co, Rochester, NY). 

Liver fibrosis evaluation
Liver stiffness (fibrosis) was evaluated by transient elas
tography (TE) (FibroScan® Echosens, Paris, France). 
The average value of ten successful readings expressed 
in kilopascals (kPa) was used as an indicator of LF 
according to the following classification: F1 (< 7 kPa), 
F1-F2 (7 kPa-8.49 kPa), F2 (8.5 kPa-9.49 kPa), F3 (9.5 
kPa-12.49 kPa) and F3-F4 (12.5 kPa-14.49 kPa) and 
F4 (> 14.5 kPa)[39]. For this study, patients in either the 
F1 or F2 stages were classified as having mild LF and 
those in the F3 or F4 stages were classified as having 
advanced LF[40]. This classification was corroborated by 
calculating the aspartate aminotransferase-to-platelet 
ratio index (APRI score), as previously described[41].

CD36 genotyping
Leukocyte genomic DNA was extracted by a modified 
salting-out method[42]. The rs1761667 CD36 polymor
phism was detected by an allelic discrimination assay 
(TaqMan, Applied Biosystems, ID C_8314999_10; Foster 
City, CA, United States) in a 96-well format (StepOnePlus 
thermocycler (Applied Biosystems, Foster City, CA, United 
States) as previously described[27,34]. 

Statistical analysis
The sample size was estimated by a formula for the com
parison of proportions[43] resulting in a statistical power 
of 80% (β = 0.20) with a reliability of 95% (α = 0.05) 
based on the rs1761667 CD36 allelic frequency in our 
population[24,27]. Quantitative variables were expressed as 
mean ± SD and analyzed by one-way ANOVA adjusted for 
age, gender, and BMI. Subsequently, post hoc tests were 
run (Bonferroni’s test and Dunnett’s T3 test). Finally, to 
quantify the effect of the CD36 genotypes on quantitative 
variables, linear regression was performed. The Hardy-
Weinberg equilibrium (HWE) and qualitative variables 
were evaluated by the χ 2 test. The association of the 
CD36 genotypes with LF was assessed by odds ratio 
(OR) as well as logistic regression tests considering a 
confidence interval (CI) of 95%. A P-value of < 0.05 
was considered significant. Statistical analyses were 
performed using Arlequin (version 3.1), Epi InfoTM 7 (CDC, 
Atlanta, GA) and SPSS Statistics, Version 20.0 (IBM Corp, 
Armonk, NY). All statistical analyses were reviewed and 
approved by an expert biomedical statistician. 

Ethical guidelines
This study was in compliance with the ethical guidelines 
defined by the Declaration of Helsinki 2013 and was 
approved by the Institutional Board Review (CI-01913). 
All patients who agreed to enter this study signed a 
written informed consent.

RESULTS
In this study, the genotypic frequencies were AA (30.1%), 
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AG (54.8%), and GG (15.1%), whereas the allelic A and 
G frequencies were 57.5% and 42.5%, respectively. 
These genotypes were concordant with the HWE (P = 
0.50). In Table 1, the demographical and clinical chara
cteristics of the CHC patients by CD36 genotype are 
shown. No significant differences for the variables of 
age, gender, BMI, years of infection, and HCV genotypes 
between CD36 genotypes were found. Only the CHC 
patients who were carriers of the AA genotype were 
overweight according to the WHO classification (BMI = 
26.6 kg/m2). HCV genotype 1 was the most frequent 
with 68.4% of the total cases, followed by HCV genotype 
2 (23.3%) and HCV genotype 3 (8.2%).

The daily dietary intake of the CHC patients classified 
by CD36 genotype is shown in Table 2. CHC patients 
who were carriers of the CD36 AA genotype had a 
higher caloric intake relative to total fat, and SFA than 
those with the AG and GG genotypes. No differences in 
protein and CH intakes between CD36 genotypes were 
observed. Subsequently, the daily intake of several food 
groups classified by CD36 genotype is shown in Table 
3. Fats were the only food group associated with the 
CD36 genotype. The lipid and liver profiles of the CHC 
patients by CD36 genotype are shown in Table 4. CHC 
patients with the CD36 AA genotype had more elevated 
serum levels of AST than the AG genotype carriers (91.7 
IU/L vs 69.8 IU/L, P = 0.02). Furthermore, an increase 
of 30.23 IU/L of AST was attributed to the AA genotype 
when compared with the AG genotype (β = 30.23, 
95%CI: 9.0-51.46, P = 0.006). No differences for ALT 
and GGT were observed (Table 4).

According to the categories of LF established in this 
study, 47.9% of the CHC patients had mild fibrosis, 
whereas 52.1% presented advanced fibrosis (Table 5). 
Among the CHC patients, the kPa values and APRI score 
were higher in those with advanced fibrosis compared 
to those with mild fibrosis (22.7 kPa vs 6.5 kPa, P < 
0.001 and 1.78 vs 0.81, P < 0.001, respectively). CHC 
patients with advanced fibrosis had a higher frequency 
of the CD36 AA genotype than those with mild fibrosis 
(42.1% vs 17.1%, P = 0.002), respectively (Table 6). 
Additionally, patients who were AA genotype carriers had 

a higher risk for advanced fibrosis than those with the AG 
genotype (OR = 3.60, 95%CI: 1.16-11.15, P = 0.02) and 
AG + GG genotypes (OR = 3.51 95%CI: 1.18-10.45, P = 
0.02). A logistic regression test was used to corroborate 
this association (OR = 2.23 95%CI: 1.03-4.81, P = 0.041). 

DISCUSSION
Genetic polymorphisms in fat taste perception may partially 
explain the interindividual variability in fat intake[15] and 
their association with the risk of developing chronic 
diseases[15,44]. Over recent years, it has been proposed 
that the CD36 receptor is an oral fat sensor that may 
influence an individual’s preference for high-fat foods[15-18]. 
Specifically, it has been shown that the CD36 AA genotype 
decreases fat taste perception[45-48]. In this study, the 
frequency of CD36 AA genotype was 30.1%. In regards 
to food consumption, despite that the three-day food 
record may not be representative of the long-term 
food variety, the amount of fat intake represented over 
30% of the total daily calories. It has been documented 
that the prolonged ingestion of high-fat diets increases 
the risk for metabolic disorders[49]. These data were 
consistent with previous results found in overweight 
patients from the general population of West Mexico[27]. 

The association of high-fat diets with LF has been well 
documented in animal models[11-13] as well as in humans 
in different populations[50,51]. In this study, among the 
CD36 AA genotype carriers, more cases of advanced 
LF were detected. This disease stage is characterized 
by steatosis and persistent inflammation[4]. Also, they 
exhibited significantly higher levels of AST, which is a 
better predictor of progression of LF than ALT or GGT[52]. 
Furthermore, two validated non-invasive methods (TE 
and APRI score) were used to evaluate LF[41,53]. Since 
no differences in demographic and viral characteristics 
between CD36 genotypes were found, the likelihood of 
HCV-related LF seems to be enhanced because of the 
higher consumption of fat portions observed among the 
CD36 AA genotype carriers.

The immunological mechanisms that regulate LF 
progression during HCV infection have been extensively 
studied[54-56]. However, alterations in lipid and lipoprotein 
metabolism have been reported to play a key role[9], 
considering that chronic HCV infection is characterized by 
hypocholesterolemia and reduced levels of LDL-c, TG and 
apolipoprotein B (apoB)[57]. Recently, a novel interaction 
of the CD36 receptor in liver VLDL-c metabolism has 
been proposed[58]. Findings in a further study, concurring 
with this hypothesis, have demonstrated that CD36 
deletion can reduce VLDL output and liver fat in obese 
mice[59]. This finding was related to the enhanced 
production of the series-2 liver prostaglandins, which 
have been shown to suppress VLDL output and increase 
the hepatocyte triglyceride content in an inflammatory 
condition-dependent manner[60]. Thus, it is plausible that 
the AA genotype carriers may have a lower expression of 
the CD36 receptor that could contribute to liver steatosis 
and consequently to fibrosis similar to the effects of 

CD36 genotype

Variable AA AG GG P-value
No. of patients, n (%) 22 (30.1)  40 (54.8)    11 (15.1) ---
Age (yr)   48.1 ± 11.7   51.4 ± 11.1   53.7 ± 15.3 0.38
Gender (F/M) (12/10) (21/19) (7/4) 0.68
BMI (kg/m2) 26.6 ± 4.1 24.9 ± 4.2 24.4 ± 3.1 0.52
Duration of infection (yr)   26.9 ± 10.1 25.2 ± 8.1 25.4 ± 7.4 0.62
HCV genotype 1, n (%) 15 (68.2)  27 (67.5)      8 (72.7) 0.40
HCV genotype 2, n (%)   5 (22.7)    9 (22.5)      3 (27.3)
HCV genotype 3, n (%) 2 (9.1) 4 (10) 0 (0)

Table 1  Demographical and clinical characteristics of the chronic 
hepatitis C patients classified by cluster of differentiation 36 
genotype

Quantitative values are expressed as mean ± SD. Frequencies are expressed 
as percentage. CHC: Chronic hepatitis C; F/M: Female/male; BMI: Body 
mass index; HCV: Hepatitis C virus; CD36: Cluster of differentiation 36.

Ramos-Lopez O et al . CD36  taste receptor and hepatitis C
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a CD36 deletion. Nonetheless, further investigation is 
required to elucidate the correlation between the CD36 
genotype and liver steatosis and clarify its interaction 
with other key molecules involved in this metabolic 
alteration, such as the microsomal triglyceride transfer 
protein (MTTP), apolipoprotein E and apoB[61,62].

Concerning the nutritional management of liver disease, 

including HCV infection, the majority of international 
guidelines focus on the reduction of total fat and SFA 
intake[51,63] without taking into account the nutrigenetics 
and food cultures of individual populations. We advocate 
shifting towards a genome-based nutrition approach as a 
preventive and intervention strategy for chronic diseases 
given the fact that, worldwide, human populations 
differ[64]. Specifically, in the case of Mexico and most 
of Latin America, the people in these regions are gene
tically an admixture of Amerindian, Caucasian, and 
African ancestries with a heterogeneous inter-regional 
distribution[65,66]. Furthermore, 70% of the Mexican 
general population is overweight or obese due to the 
consumption of an obesogenic and hepatopatogenic 
diet that was previously described[4,14,64]. Thus, based 
on the gene-environmental interactions that currently 
prevail in the Mexican population, specific preventive 
strategies are crucial to diminish the progression of liver 
damage caused by alterations in lipid metabolism and 
inflammation. 

In this study, the frequency of the CD36 AA geno
type (30.1%) was comparable to the pattern of dis
tribution (28.4%) observed in non-diabetic individuals 
of Caucasian origin[24]. These findings are consistent 
with the high Caucasian ancestry that prevails among 
Mexican-Mestizos and HCV patients that have been 
previously reported[7], whereas different frequencies 
have been reported elsewhere[67-69]. Thus, we consider 
that the detection of the CD36 genotype, as well as other 
nutrient-interacting genes[31-34] could be used as auxiliary 
tools to predict the adherence to dietary regimens and 
for the implementation of genome-based intervention 

CD36 genotype

Variable Reference values AA AG GG P-value
Total calories - 2531.3 ± 301.3 1902.5 ± 396.1 1873.5 ± 345.7    0.021a

CH (%) 50-60   55.4 ± 10.5 54.3 ± 8.9 53.2 ± 6.4 0.76
Protein (%)    15 17.2 ± 4.6 16.3 ± 3.9 16.4 ± 2.9 0.81
Fat (%) < 30 34.9 ± 7.5 27.5 ± 7.2 24.9 ± 1.1           0.001299a

SFA (%)   < 7 16.1 ± 6.1   8.1 ± 3.2   8.4 ± 2.7 0.2 × 10-6a

MUFA (%)    20 13.1 ± 3.4 12.8 ± 7.6 12.1 ± 5.4 0.94
PUFA (%)    10   8.8 ± 6.5   5.6 ± 4.2   5.2 ± 1.3 0.11

Table 2  Daily dietary intake of the chronic hepatitis C patients classified by cluster of 
differentiation 36 genotype

aBy post hoc tests: Total calories: AA genotype vs AG and GG genotypes, P = 0.027. Fat: AA vs AG, P = 
0.006; AA vs GG, P = 0.002; SFA: AA vs AG, P = 0.2 × 10-6, AA vs GG, P = 0.185 × 10-4. Quantitative values are 
expressed as mean ± SD. CH: Carbohydrates; SFA: Saturated fatty acids; MUFA: Monounsaturated fatty acids; 
PUFAs: Polyunsaturated fatty acids; CD36: Cluster of differentiation 36.

CD36 genotype
Variable Reference 

values
AA AG GG P-value

Sugars 0-3   5.7 ± 4.3 5.5 ± 4.8 5.2 ± 4.1 0.85
Meat 2-3   5.7 ± 1.6 5.1 ± 2.8 4.4 ± 2.2 0.15
Fruits 2-4   2.0 ± 1.8 1.7 ± 0.9 1.4 ± 1.1 0.43
Vegetables 3-5   2.1 ± 1.6 1.9 ± 1.1 1.6 ± 0.8 0.42
Fats 0-3   6.5 ± 1.7 4.3 ± 3.1 3.9 ± 2.2          0.0032071

Milk 1-3   1.0 ± 0.7 0.8 ± 0.7 0.8 ± 0.9 0.86
Legumes 1-2   1.0 ± 0.7 0.9 ± 0.7 0.8 ± 0.7 0.88
Cereals   6-11 10.3 ± 5.4 9.6 ± 5.8 9.0 ± 5.1 0.77

Table 3  Daily intake of food group servings in chronic hepatitis 
C patients classified by cluster of differentiation 36 genotype

Quantitative values are expressed as mean ± SD. 1By Post hoc tests: Fats: 
AA vs GG, P = 0.011608. CD36: Cluster of differentiation 36.

CD36 genotype

Variable AA AG GG P-value
Glucose (mg/dL) 109.5 ± 59.3 106.7 ± 42.9   97.4 ± 19.8 0.78
TC (mg/dL) 146.8 ± 35.1 162.2 ± 44.2 157.8 ± 51.1 0.40
TG (mg/dL) 112.8 ± 43.3 140.8 ± 60.8 142.3 ± 51.1 0.30
HDL-c (mg/dL)   42.7 ± 15.1   40.4 ± 13.1 33.8 ± 9.8 0.21
LDL-c (mg/dL)   83.1 ± 28.8   95.4 ± 42.6 101.1 ± 42.6 0.44
VLDL-c (mg/dL) 22.6 ± 8.7   28.2 ± 12.1   28.9 ± 10.1 0.27
ALT (IU/L)   93.8 ± 42.6   73.4 ± 73.1   71.5 ± 46.4 0.38
AST (IU/L)   91.7 ± 41.3   61.5 ± 40.3   69.8 ± 53.9    0.0281

GGT (IU/L)   85.9 ± 56.2   66.4 ± 40.8   43.1 ± 33.2 0.18

Table 4  Biochemical profile of the chronic hepatitis C 
patients classified by cluster of differentiation 36 genotype

1By post hoc tests: AA genotype vs AG genotype, P = 0.024. Quantitative 
values are expressed as mean ± SD. TC: Total cholesterol; TG: Triglycerides; 
HDL-c: High-density lipoprotein cholesterol; LDL-c: Low-density lipo
protein cholesterol; VLDL-c: Very low-density lipoprotein cholesterol; ALT: 
Alanine aminotransferase; AST: Aspartate aminotransferase; GGT: Gamma-
glutamyl-transferase; CD36: Cluster of differentiation 36.

Variable Mild fibrosis Advanced fibrosis P -value

No. of patients, n (%) 35 (47.9) 38 (52.1) -
kPa 6.5 ± 1.7 22.7 ± 13.4 < 0.001
APRI score 0.81 ± 0.33 1.78 ± 0.53 < 0.001

Table 5  Kilopascals and aspartate aminotransferase to platelet 
ratio index score values by the severity of liver fibrosis among 
chronic hepatitis C patients

Quantitative values are expressed as mean ± SD. kPa: Kilopascals; APRI: 
Aspartate aminotransferase to platelet ratio index.

Ramos-Lopez O et al . CD36  taste receptor and hepatitis C
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strategies[64] aimed at reducing fat intake and dysli
pidemia in our population[27]. 

In conclusion, the AA genotype of the rs1761667 CD36 
polymorphism was associated with higher fat intake and 
more instances of advanced LF in CHC patients. However, 
further genomic studies are needed to analyze the role 
of the CD36 polymorphism on liver disease in other 
populations within Mexico and worldwide. 
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