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Abstract
A new feature extraction technique for the detection 
of lesions created from mucosal inflammations in Crohn’s 
disease, based on wireless capsule endoscopy (WCE) 
images processing is presented here. More specifically, 
a novel filtering process, namely Hybrid Adaptive 
Filtering (HAF), was developed for efficient extraction 
of lesion-related structural/textural characteristics from 
WCE images, by employing Genetic Algorithms to the 
Curvelet-based representation of images. Additionally, 
Differential Lacunarity (DLac) analysis was applied 
for feature extraction from the HAF-filtered images. 
The resulted scheme, namely HAF-DLac, incorporates 
support vector machines for robust lesion recognition 
performance. For the training and testing of HAF-
DLac, an 800-image database was used, acquired 
from 13 patients who undertook WCE examinations, 
where the abnormal cases were grouped into mild and 
severe, according to the severity of the depicted lesion, 
for a more extensive evaluation of the performance. 
Experimental results, along with comparison with other 
related efforts, have shown that the HAF-DLac approach 
evidently outperforms them in the field of WCE image 
analysis for automated lesion detection, providing higher 
classification results, up to 93.8% (accuracy), 95.2% 
(sensitivity), 92.4% (specificity) and 92.6% (precision). 
The promising performance of HAF-DLac paves the way 
for a complete computer-aided diagnosis system that 
could support physicians’ clinical practice.
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Core tip: This paper presents a novel procedure to 
analyze wireless capsule endoscopy (WCE) images 
and extract features towards the automatic detection 
of Crohn’s disease-based lesions. In this direction, a 
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hybrid adaptive filtering process is proposed that aims 
to refine the WCE images, prior to feature extraction, 
by selecting via  a genetic algorithm approach the 
most informative curvelet-based components of the 
images. Then, differential lacunarity is employed for 
extracting color-texture features in YCbCr color space. 
The experimental results showed that the proposed 
WCE image analysis scheme is robust and outperforms 
related approaches of the literature, mainly in the case 
of mild lesions detection. 
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INTRODUCTION
Wireless capsule endoscopy (WCE)[1] is a novel medical 
procedure which has revolutionized gastrointestinal 
(GI) diagnostics by turning into reality the concept of 
painless and effective visual inspection of the entire 
length of small bowel (SB). In recent years, the validity 
of SB WCE in clinical practice has been systematically 
reviewed[2]. Out of this evidence base, it clearly 
emerges that WCE is invaluable in evaluating various 
disorders, such as Crohn’s disease (CD), and mucosal 
ulcers. CD is a chronic disorder of the GI tract (GT) 
that may affect the deepest layers of the intestinal 
walls. In 45% of cases, CD lesions are located in 
small intestine. One of the main characteristics of 
inflammatory bowel diseases, such as CD, is the 
evolution of extended internal inflammations to ulcers, 
or open sores, in the GT. CD is not lethal by itself, but 
serious complications are of high risk, rendering early 
diagnosis and treatment essential. 

Despite the great advantages of WCE and the 
revolution that has brought, there are challenging 
issues to deal with. A WCE system produces more than 
55000 images per examination that are reviewed in a 
form of a video, that requires more than one hour of 
intense labor for the expert, in order to be examined[3]. 
This time consuming task is a burden, since the 
clinician has to stay focused and undistracted in front 
of a monitor for such a long period. Moreover, it is not 
guaranteed that all findings will be detected. It is not 
rare that abnormal findings are visible in only one or 
two frames and easily missed by the physician. Thus, 
automatic inspection and analysis of WCE images is 
of immediate need, in order to reduce the labor of 
the clinician and eliminate the possibility of omitting 
a lesion due to the clinician’s non-concentration. 
Motivated by the latter, a number of automatic GI 
content interpretation research efforts have been 
proposed in the literature (see Section “Related 

Work”).
In this work, we introduce a novel WCE image 

analysis system for the recognition of lesions created 
by mucosal inflammation in CD. The main contributions 
of this paper are in: (1) extending the relatively limited 
research efforts on CD lesions and ulcers detection; 
(2) developing the novel Hybrid Adaptive Filtering 
(HAF) for efficiently isolating the lesion-related WCE 
image characteristics, by applying genetic algorithms 
(GA)[4] to the representation of the WCE images on the 
Curvelet Transform[5] domain; and (3) examining the 
performance of the proposed approach, namely, HAF-
DLac, based on the severity of lesions. Additionally, 
this work extends the effectiveness of Differential 
Lacunarity (DLac)-based feature vector, presented in[6] 
and further examines the potential of the YCbCr space 
for efficient lesion detection.

RELATED WORK
In the recent literature, the principal research interest 
(more than 75% of the WCE-related published 
works[7]) towards the reduction of the examination time 
of WCE data deals with detection of certain disorders 
in the internal mucous membrane. The major types of 
pathologies targeted are polyps, bleeding, ulcerations, 
celiac disease, and CD. As far as inflammatory tissue 
(i.e., ulcer and CD lesions) detection is concerned, only 
a small proportion of research efforts (7% for ulcers 
and 2% for CD[7]) are targeted towards this direction, 
in spite of the great importance and wide-spreading 
of such disorders. Detecting such kind of eroded 
tissue is very challenging, since it is characterized by 
huge diversity in appearance. For ulcer detection, a 
feature vector that consists of curvelet-based rotation 
invariant uniform local binary patterns (riuLBP) 
classified by multilayer perceptron was proposed[8]. 
Detection rates are heartening, but the performance 
is affected by the downsides of LBP. Although riuLBP 
perform well in illumination variations, they are 
based on the assumption that the local differences of 
the central pixel and its neighbors are independent 
of the central pixel itself, which is not always gua
ranteed, as the value of the central pixel may also 
be significant. Moreover, there is lack of between-
scale texture information that is highly important for 
medical image analysis. In[9], the authors present a 
segmentation scheme, utilizing log Gabor filters, color 
texture features, and support vector machines (SVM) 
classifier, based on Hue-Saturation-Value (HSV) space. 
Classification results are promising, but the dataset 
is rather limited (50 images) and includes perforated 
ulcerations that are quite easily detected due to clear 
appearance. Additionally, the HSV model suffers some 
shortcomings, as the RGB model[10]. The authors in[11] 
propose bag-of-words-based local texture features (LBP 
and scale-invariant feature transform-SIFT) extracted 
in RGB space and SVM classifier, whereas in[12], a 
saliency map is used along with contour and LBP data. 

8642 October 21, 2016|Volume 22|Issue 39|WJG|www.wjgnet.com

Charisis VS et al . Efficient detection of small bowel lesions



Both approaches are affected by the weaknesses 
of LBP and SIFT features, which are of narrow use, 
since such features are often limited in relatively 
small regions of interest, are susceptible to noise, 
and exhibit insufficient sensitivity results. In the same 
direction, the works[6,13,14] investigate the potential 
of Empirical Mode Decomposition-based structural 
features extracted from various color spaces, introduce 
texture features based on color rotation, and perform 
preliminary research on Curvelet-based lacunarity 
texture features. The proposed results are promising, 
but the dataset used for validation is rather small. To 
the best of our knowledge, the main research efforts 
reported in the literature dealing with the detection of 
CD lesions are[15-17]. In[15,16], Color Histogram statistics, 
MPEG-7 features along with a Haralick features and 
a Mean-Shift algorithm are used, whereas in[17] a 
fusion of MPEG-7 descriptors and SVM classifiers are 
employed. Even though the classification performance 
is promising, MPEG-7 standards were not particularly 
designed to describe medical images; thus, there are 
several problems behind applying them in medical 
image analysis. They were developed for multimedia 
content description; hence, in case of images, they 
describe the overall content of the image, not allowing 
efficient characterization of local properties or arbitrary 
shaped regions of interest. Besides, they compute 
descriptors within relatively big rectangular regions 
that are inadequate for description of local medical 
image properties.

Aside from schemes developed to detect a single 
abnormality, there are efforts towards broad frame
works that detect multiple abnormalities, such as 
blood, erythema, polyps, ulcers and villous edema[18-24]. 
Nevertheless, none of them deals with less straight
forward lesions created by CD inflammations. It is 
unquestionable that detecting multiple abnormalities is 
important for an overall computer-assisted diagnosis 
tool, but it is crucial that all abnormalities are equally 
detected properly. This is extremely challenging and 
not achieved in any of the aforementioned techniques, 
where ulcer detection results are rather low. There is no 
one-size-fits-all approach, particularly for CD lesions and 
ulcerations that exhibit huge diversity in appearance, 
with attributes (color, texture, size) varying significantly 
over severity and position. 

From a methodological validation point of view, 
a serious limitation of the preceding efforts is the 
employment of quite small databases (< 250 images 
instead of > 500[7]), which are often unbalanced 
and not described in detail (severity, incorporation of 
confusing tissue). Moreover, the inclusion of multiple 
instances from the lesion taken in the very same 
region within the GT that exhibit high similarity is a 
possible source of overfitting and virtual optimistic 
results. Last but not least, none of the published 
approaches validates the performance against the 
severity of lesions, apart from[17], where lesion severity 
classification takes place.

In the direction of reducing the reading time of 
WCE images, apart from the research efforts reported 
in the literature, there are some existing software 
solutions that have been implemented within the 
WCE image reviewing software by the manufacturing 
companies of the wireless capsules. The first software 
module designed towards reading time reduction 
was the Suspected Blood Indicator[25]. This software 
module analyses WCE images with respect to color 
and selects the frames that contain a large number of 
red pixels, detecting, in this way, blood or other lesions 
characterized by the red color. The notion behind this 
software module is the same as the ones presented 
above (and the one proposed in this work), i.e., 
automatic detection of a specific disorder. However, 
the performance is substandard in terms of sensitivity 
(40.9%) and specificity (70.7%)[25] and, thus, cannot 
be reliably used in clinical practice. Another software 
tool aiming at reading time reduction is Automatic 
Mode[26], that groups images with similar semantics 
based on color, shape and texture features and 
projects only one representative frame. No automatic 
detection of disorders, however, takes place. In this 
context, the physician saves time (up to 47%[26]) by 
reviewing less images. Nevertheless, lesions that only 
appear in few images and small-sized lesions that do 
not cause significant shifts of the image features are 
often missed. Consequently, this tool is suggested to 
be used when diffuse or large lesions are expected 
to be found[26]. Last but not least, two software tools 
targeting data enhancement have been incorporated 
in WCE images reading software, namely Blue Mode[27] 
and Fuji Intelligent Colour Enhancement (FICE)[27]. 
Blue Mode enhances the images by applying color 
shifting in the short wavelength range of visible 
light (around the wavelength of blue color). On the 
other hand, FICE, based on Spectral Estimation 
Technology[28], analyses an image, estimates spectra at 
various wavelengths and produces an enhanced image 
of a given wavelength of light (most often to narrowed 
blue and green). Both techniques do not provide 
direct automatic lesion detection, but reduce WCE 
reading time in an indirect way. By improving image 
quality and intestinal surface structure representation, 
the doctors, theoretically, can more easily identify 
pathologic changes and, thus, review the whole 
sequence faster. Although such tools seem to improve 
the detection accuracy of lesions[27], the significance 
of WCE data reading time reduction in clinical practice 
has not been studied yet.

PROPOSED HAD-DLAC APPROACH
Overview
The objective of HAF-DLac scheme is as follows. 
Given a region of interest (ROI) I within a WCE image, 
identify if I corresponds to normal tissue or CD lesion. 
The overall structure of HAF-DLac scheme, along with 
a working example, is depicted in Figure 1. After a pre-
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representation of WCE images on the Curvelet space. 
In the latter, the image is decomposed into a series 
of Curvelet-based sub-images of various scales and 
orientations. Then, GA is employed and, by using 
energy- or Lacunarity curve gradient-based fitness 
function, selects the optimum sub-images that relate 
the most with the CD lesion-related characteristics. 
The HAF output consists of the selected sub-images 
that could be either combined through a reconstruction 
process to produce a reconstructed image (R-case), 
or used directly with no reconstruction (NR-case). 

processing stage, where the RGB image is converted 
to YCbCr space and the chromatic channels are 
extracted, the WCE image is inputted to HAF section of 
HAF-DLac scheme. YCbCr space was selected because 
it is a perceptually uniform color space that separates 
color from brightness information and overcomes 
the disadvantage of high correlation between the 
RGB channels[29]. The role of HAF is to isolate the CD 
lesion-related WCE image characteristics, facilitating 
the task of feature vector extraction that follows. To 
achieve this, HAF incorporates GA that acts upon the 

Figure 1  Proposed HAF-DLac scheme along with a working example.
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Under both scenarios, the HAF output is used as input 
to the DLac section of the HAF-DLac scheme. There, 
DLac-based analysis is performed, resulting in efficient 
extraction of feature vector (FVDLac), corresponding to 
the R- and NR-case (FVR and FVNR, respectively). The 
latter is forwarded to SVM-based classification.

Hybrid adaptive filtering 
In order to follow the WCE image characteristics 
and focus upon the ones that mostly relate to the 
CD lesion information, a hybrid adaptive filtering 
(HAF) approach was developed. As declared by the 
term “hybrid”, HAF entails two processing tools, 
i.e., CT and a simple GA optimization concept, so as 
to construct a filtering process adapted to specific 
characteristics of the filtered signal. CT is qualified 
as a filter bank due to its functionality to decompose 
an image into sub-images at various scales and 
orientations that can be interpreted as a pseudo-
spectral-spatial representation[30]. In order to exploit 
the aforementioned capability of CT, a new GA-based 
approach was introduced for the optimized selection 
of sub-images that correspond to specific features of 
an image. The concept of decomposing a WCE image 
in curvelet domain and selecting specific informative 
sub-images was implanted by a previous preliminary 
study[6], where it was evidenced that sub-images at 
certain scales and angles exhibit high discrimination 
capabilities. One of the most important modules of 
the filtering procedure described above is the fitness 
function (FF) of the GA, as this is a pivotal criterion 
according to which the filtering is implemented. 
Energy-based fitness function (EFF) and Lacunarity 
curve gradient-based (LFF) FFs were employed in this 
approach.

EFF
The aim of using EFF was to conduct a filtering 
procedure by selecting the sub-images which embed 
the minority of the energy of the image. Based on 
the results of[6], we observed that the sub-images 
with better performance exhibited lower mean energy 
compared to the others that achieved worse results. 
This may be explained by the fact that the sub-images 
with high mean energy contain abrupt and steep 
structures that do not convey valuable information 
about the texture of normal and eroded mucosa. On 
the contrary, the low energy sub-images are free from 
misleading content and are more likely to contain CD 
lesion-based information. This potential is evidenced 
in Figure 2A, where we can see the decomposition of 
an ulcer image (Y channel) at scale 3 and 8 angles. 
It is clear that sub-images at angles 1, 4, 5 and 8, 
which contain less mean energy than the rest (Figure 
2B), are more likely to exhibit informative texture 
content, since they display informative, apparently, 
distribution of non-zero pixels and they do not contain 
sharp changes. On the contrary, the sub-images at 
angles 2, 3, 6 and 7 exhibit intense variations at their 

borders, highlighted by the grater intensity range, that 
may conceal the delicate textural patterns and hinder 
efficient features extraction. The formula used for the 
EFF is:

     f (S) = Σ{SlSr = 1} E{cr}2/Σ{i = 1 E{ci
2},      (1)

M

where S is the string of 1/0S, Sr = 1 is the set of the 
elements of S with value 1, ci represents the sub-
image at angle i. 

LFF
Apart from the EFF, a second approach was attempted, 
by employing the gradient of the DLac-w curve 
estimation in the FF structure. As mentioned before, 
DLac is a measure of heterogeneity and a scale-
dependent measure to characterize and discriminate 
textures and patterns[31]. In this way, an image with 
uniform patterns delivers lower DLac values than an 
image with arbitrary and irregular patterns. The DLac 
analysis scale is determined by the size w of the gliding 
window (see Section “DLac-Based Feature Vector”). 
The DLac-w curve can be considered as a multi-scale 
description of structural patterns and its gradient can 
reveal the existence of specific textures and structures. 
For example, if an image contains microstructures with 
moderate differentiation for a variety of observation 
scales, the gradient of the DLac-w curve is expected to 
be lower than the one that corresponds to more abrupt 
and irregular structures that can be described rather 
diversely from various scale perspectives. 

The aim of using LFF was to capture the variations 
in structural and textural characteristics of WCE 
images. Images with small DLac-w curve gradient 
may correspond to structures of normal and eroded 
mucosa, while DLac-w curves with steeper slope 
may account for distracting content. To this end, 
by considering the capability of DLac-w curve to 
monitor the existence of valuable or meaningless 
content, DLac-based filtering would act as a boosting 
procedure of the information of the initial WCE images 
related to the CD lesion structures in it. This concept 
is validated by the observations made, based on the 
results of[6], where the sub-images that provided 
better performance exhibited divergent DLac-w curve 
gradient compared to those that granted worse 
results. In Figure 3, the boxplot of the local gradient 
of DLac-w curves vs the analysis scale is depicted for 
efficient (black) and non-efficient (gray) sub-images 
at the Curvelet domain, coming from 30 randomly 
selected WCE images depicting CD lesion or normal 
tissue. From Figure 3 it is clear that non-efficient sub-
images tend to expose higher slope at smaller scales 
and lower slope at bigger scales. The gradient of DLac 
curve at scale i (Gr(i)) is calculated as the difference 
Λ(i + 1) - Λ(i - 1). The formula used for the LFF is 
expressed by 

     f (S) = [Gr(4) + Gr(5)]/Σ{i = 1 Gr(i),      (2)13
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since the gradient at the first two scales has to be high 
and the gradient of the rest scales has to be low (based 
on Figure 3). 

DLac-based feature vector
The second part of the proposed HAF-DLac scheme 
is DLac analysis that aims to efficiently extract FVDLac. 
As noted before, CD lesions exhibit widely diverse 
appearance; thus, a robust tool is required to be 
able to perform multi-scale, translation invariant 
texture analysis. DLac is such an attractive tool 
due to its simple calculation and precision that has 
been previously used successfully for WCE image 
analysis[6,14]. The rationale for using DLac[32] is its 
capability of revealing either sharp or slight changes 
in neighboring pixels (that characterize CD lesion 
texture), since it does not use thresholding, as does 
a very common feature extraction tool, namely 
riuLBP, that conceals the magnitude of changes. The 
downsides of riuLBP and other feature extraction 
approaches are presented in Section “Related Work”. 
Moreover, DLac is tolerant to: (1) non-uniform 
illumination (very common in WCE images), due 

to the differential calculation; and (2) rotational 
translation, since the pixel arrangement in the 
gliding box is irrelevant. In general, DLac surpasses 
the simple statistical (e.g., Haralick features, co-
occurrence matrix, etc.) as well as the more advanced 
structural approaches (such as riuLBP, textons, texture 
spectrum, etc.) of texture because it is based on, 
neither plain non-scale statistical analysis of the raw 
pixel intensities, nor predefined structural patterns. 
On the contrary, it relies on the statistical analysis 
of pseudo-patterns (box mass), defined by the data 
itself, at multiple scales while providing between-scale 
information. For the above reasons, DLac is expected 
to produce powerful features from the HAF-enhanced 
WCE images and achieve advanced classification 
results that is evidenced by the experimental results.
In order to exploit the multi-scale analysis advantage 
of DLac, the value Λ(w,r) [see (1)] is not calculated for 
a single set of parameters. In this work, we calculate 
Λ vs w, with r being a constant, despite the fact that 
initial approaches suggested the opposite[32]. This 
technique[33,34] is adopted because w is the primary 
feature that affects the scale of the analysis, since it 

Figure 2  Curvelet-based decomposition of a wireless capsule endoscopy image. A: Decomposition of the Y channel of an ulcer image at scale three and eight 
angles; B: Mean energy of each angle depicted in (A).
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determines the size of the image region on which the 
box mass will be calculated. According to[31,33], the 
larger the area on which the box mass is calculated, 
the coarser the scale of Lac analysis becomes. On the 
contrary, r value affects the scale of DLac analysis 
only to a certain degree, by determining the size of 
the neighborhood on which the differential height 
is calculated and, consequently, the sensitivity to 
recognize intensity variations. Thus, in our approach, 
we achieve to identify slight variations in neighboring 
pixels (by selecting a small value for r) and to analyze 
structure patterns at different scales. Moreover, 
Λ(w)|wmin curve is normalized (ΛN(w)) to the value 
Λ(w), in order to secure an identical reference level 
and extract more efficient information[35]. 

The decay of ΛN(w) as a function of window size 
follows characteristic patterns for random, self-similar, 
and structured spatial arrangements, and lacunarity 
functions can provide a framework for identifying such 
diversities. Thus, the ΛN(w) curve may form the FV. 
The concept of reducing the feature space dimension 
introduces the essence of modelling ΛN(w) with 
another function L(w). The normalized DLac-w curves 
bear resemblance to hyperbola. On this ground, the 
function

     L(w) = b/wa + c,w = [wmin,wmax]      (3)

was chosen to model the ΛN(w) curves[35]. Parameter 
a portrays the convergence of L(w), b represents the 
concavity of hyperbola and c is the translational term. 
The best interpretation of ΛN(w) by the model L(w) is 
computed as the solution of a least squares problem, 
where parameters a, b, c are the independent 
variables[36]. Parameters a, b, c embody the global 

behaviour of the ΛN(w) curve, i.e., the DLac-based 
texture features of a WCE image. Another way to 
reduce the feature space dimension established by the 
DLac curve is to use six statistical measures that are 
calculated on the ΛN(w) curve[8,37]. The six common 
statistical features extracted from ΛN(w) curve are: 
mean (MN = E[X]), standard deviation (STD = 
(E[(X-m)/s2])1/2), entropy (ENT = -Σ(pi∙log(pi))), energy 
(ENG = E[X2]), skewness (r3 = E[((X-m)/s)3], measure 
of the asymmetry of the probability distribution), and 
kurtosis (r4 = E[((X-m)/s)4], descriptor of the shape of 
probability distribution), where pi is the probability of 
value xi, X is a random variable with mean value m and 
standard deviation s. 

In order to draw more conclusive results about the 
efficiency of DLac-based FV, five different types of FVs 
are constructed:

     FV1
DLac = [ΛN(wmin + 1), ..., ΛN(wmin + 5)],        (4)

     FV2
DLac = [a, b, c],                                          (5)

     FV3
DLac = [a, b, c, ΛN(wmin + 1), ΛN(wmin + 2)], 

                   ΛN(wmin + 3)],                                  (6)

     FV4
DLac = [MN, STD, ENT, ENG, r3, r4,),            (7)

     FV5
DLac = [FV3

DLac, FV4
DLac].                               (8)

In FV1
DLac, the entire DLac curve values are not used, 

in order to avoid the “curse of dimensionality” effect 
and because the length of the curve depends on the 
size of the input image/sub-image (for more details 
see Section “Parameter Setting, HAF Realization and 
FV Construction). FV3

DLac aims to express the glocal, 

Figure 3  Boxplot of local gradient of DLac curves vs analysis scale (parameter w) for efficient (black) and non-efficient (gray) sub-images at curvelet 
space based on[6]. +: Extreme value.
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i.e., both global (parameters a, b, c) and local (values 
ΛN(w)), behavior of the curve. As a previous study[6] 
has shown, this is quite an efficient approach to 
replace the lengthy DLac-w curve, without omitting 
crucial information. At last, FV5

DLac constitutes an 
augmented version of FV3

DLac, in terms of global 
DLac-w curve behavior representation.

EXPERIMENTAL AND IMPLEMENTATION 
ISSUES
Dataset
A fundamental part to develop a robust and efficient 
algorithm for WCE-based lesion detection, in general, is 
the existence of a sufficiently rich database, on which 
the algorithm is going to be tested. Unfortunately, the 
majority of related approaches (59%) are based on 
databases consisting of less than 500 images[7]. Using 
a limited number of images, or even highly correlated 
images can doubtlessly lead to overfitting that may 
produce a virtual, unrealistic, fruitful performance. 

The WCE image database used in this study 
contains 400 frames depicting CD-related lesions and 
400 lesion-free frames acquired from 13 patients 
who undertook a WCE examination. The exams were 
rated twice by two clinicians. Then, we selected only 
the images that have been classified all four times 
into the same class. This procedure allowed to assess 
the inter-/intra-rater variability and acquire a highly 
confident dataset. Moreover, the physicians, upon 
mutual agreement, manually computed a ROI in 
each image. Some characteristic examples are given 
in Figure 4. The CD lesion images were manually 
annotated into mild (152 samples) and severe (248 
samples) cases, based upon the size and severity 
of the lesion. The mild case includes lesions at an 
early stage with vague boundaries that are difficult 
to recognize (Figure 4 bottom), whereas the severe 
case contains lesions that are clearly shaped (Figure 
4 middle). This discrimination was performed in order 
to extensively assess the performance of the proposed 
scheme on the basis of the lesion detection difficulty. 
Additionally, a “total” scenario that contains all lesion 
images is examined, so as to assess the performance 
from a spherical perspective. The 400 abnormal 
images were taken from 400 different lesion events 
for achieving the lowest possible similarity. The normal 
part of the dataset contains frames that depict both 
simple and confusing tissue (folds, villus, bubbles, 
intestinal juices/debris) for creating realistic conditions 
and avoiding virtual optimistic results. 

In order to further validate the efficacy of the 
proposed scheme, two open WCE databases are 
engaged, namely CapsuleEndoscopy.org (CaEn)[38] 
and KID[39-41]. The CaEn database contains 6 normal 
and 22 CD-related lesion images (collected using 
the Pillcam SB from Given Imaging, Israel) while the 
KID database contains 60 normal (30 with confusing 

intestinal content) and 14 CD-related lesion images 
(collected using the MiroCam system, IntroMedic Co, 
South Korea).

Parameter setting, HAF realization and FV construction
As far as the CT is concerned, two parameters have to 
be determined, i.e., the number of analysis scales and 
the number of analysis angles at the second scale. It 
is prevalent in related applications to use three to four 
scales for the analysis[8]. One of the main factors that 
determine the number of scales is the input data to 
be processed. As the number of scales increases, the 
size of the computed sub-images decreases, which 
may lead to negative effects. In our approach, after 
exhaustive trials we opted for four analysis scales. 
Each scale employs a certain number of angles that 
differ from scale to scale. It has been shown[6] that, 
for avoiding data redundancy and complexity, the 
optimum number of angles at the second scale is 8. 

Considering the implementation of DLac analysis, 
Λ(w) is calculated for gliding box size r = 3 pixels and 
gliding window size w = 4 to wmax, where wmax is 
the minimum dimension of the input data. We did not 
choose a fixed value for wmax because the curvelet 
sub-images vary a lot in size, and we needed as longer 
DLac curves as possible, so as to acquire more efficient 
FVs. 

Regarding the gliding box, its size has to be small 
in order to be capable to recognize slight local spatial 
variations that characterize lesion tissue. The value r = 
3 pixels was selected after exhaustive experiments. As 
far as the gliding window is concerned, its size has to 
range from small to large values so as to capture both 
micro- and macro-structures and achieve multiscale 
information extraction. The minimum size of gliding 
window adopted here is the smallest feasible value, 
i.e., r + 1, in order not to miss information from the 
tightest possible analysis scale.

In order to implement the curvelet sub-image 
selection via HAF, the 25% of the dataset was used. 
From the 800 images in total, we randomly selected 
100 normal and 100 abnormal samples without 
considering the severity class they belong. For 
each generation of GA, the FF value was calculated 
accordingly to the whole dataset of the 200 images 
per chromatic channel. The selected sub-images per 
chromatic channel and FF method were found to be 
(scale/angle):

{[2/(5, 6, 8), 3/(4, 5, 8, 9, 12, 13), 4/(1, 4, 5, 10, 
13)]|Y; [2/(2, 6), 3/(4, 5, 9, 12, 13, 16), 4/(4, 8, 13, 
16)]|Cb; [2/(1, 5, 6), 3/(1, 4, 9, 13), 4/(1, 5, 9, 13, 
16)]|Cr}|EFF, and

{[1/(1), 2/(6, 7, 8), 3/(8, 9, 12, 13), 4/(1, 2, 3, 7, 
9, 13)]|Y; [1/(1), 2/(2, 6), 3/(9, 12), 4/(1, 4, 8, 9, 13, 
16)]|Cb; [1/(1), 2/(6), 3/(1, 4, 8, 12), 4/(1, 5, 8, 9, 
13, 16)]|Cr}|LFF. 

The FVx
DLac, (x = [1,5]), was calculated for each 
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individual chromatic channel, for the combination of all 
channels and for each feature extraction approach (R-/
NR-case). For the combined channel scenario (Section 
“Hybrid Adaptive Filtering”), the NR-case was not 
taken into consideration, as it would lead to a lengthy 
FV and the classification procedure would suffer from 
the “curse of dimensionality” effect. For example, for 
the FV5

DLac and EFF case the resulted FV would contain 
456 features (12 features/sub-images × 38 sub-
images).

Classification setup
The classification phase of the HAF-DLac scheme 
is performed by a SVM classifier with radial basis 
kernel function[42]. SVM have been used extensively in 
pattern recognition applications related to WCE image 
analysis[6,9,11,17], showing superior performance. The 
data from the database that did not contribute to the 
sub-image selection, were used for the classification 

procedure. In order to achieve as much generalization 
as possible, 3-fold cross validation was applied 100 
times and the average accuracy (ACC), sensitivity 
(SENS), specificity (SPEC), and precision (PREC) 
values were estimated.

RESULTS
The performance of the proposed scheme is evaluated 
through the experimental results derived from the 
application of the CD lesion detection technique to the 
experimental dataset. To this end, results from every 
individual channel (Y, Cb, Cr) and the combination of 
them, under both HAF-DLac implementation scenarios 
(R/NR-case) and all severity cases (mild, severe, total) 
are presented.

Individual channel case
For the individual channel case, ACC values were 

Figure 4  Six Wireless Capsule Endoscopy images of the adopted dataset and corresponding regions of interest: (from top to bottom) normal case, severe 
Crohn's disease lesion and mild Crohn’s disease lesion.
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calculated for R and NR cases, for all severity scenarios 
and FVs.

Reconstruction case: For the R-case, the ACC values 
for all individual channels and all CD lesion cases are 
depicted in Figure 5 for the two FFs used and for the 
five types of FV. For the mild lesion case, it is clear that 
the augmented FV (FV5

DLac) extracted from Cr channel 
provides with the best performance (78.8% ACC). 
Channel Cb achieves 3.7 percentage points (pp) lower 
ACC than Cr, whereas channel Y delivers the worst 
detection accuracy (71.2%) for the same FV. These 
results refer to the LFF case. On the contrary, the EFF 
scenario evidently exhibits deteriorated performance 

for all channels. This is explained by the fact that LFF-
based filtering, due to the intuitive characteristics of 
DLac, is able to discern and boost more efficiently 
the textural structures of mucosa that slightly differ 
in case of mild lesions. In case of severe lesions, the 
detection accuracy of the HAF-DLac is significantly 
higher, as expected, for all channels compared to mild 
lesion scenario. ACC is 91.5%, 90.3% and 93.8% for 
Y, Cb and Cr channels, respectively, for the LFF case 
and FV5

DLac. Given the easier task of discriminating 
severe lesions, the EFF-based filtering, provides with 
results that slightly differ (-0.2 to -0.9 pp) from the 
LFF ones, as opposed to the mild lesion case, where 
the difference is -1.6 to -4.8 pp. Finally, at the total 

Figure 5  Classification ACC values using both fitness functions LFF (lacunarity curve gradient-based fitness function) and EFF (energy-based fitness 
function), for the R-individual channel case, all severity cases and all feature vector (FV) types [see (2) - (6)].
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scenario, Cr channel also provides with the best 
performance (90.5% ACC), followed by Cb (88.0% 
ACC) for FV5

DLac and LFF. Y channel achieves 85.7% 
ACC or the same FV but for EFF case.

No-reconstruction case: The procedure followed 
in the R-case was also adopted in NR-case. More 
specifically, Figure 6 shows the ACC values for all 
individual channels. It is clear that, as in R-case, 
channel Cr and LFF approach exhibit the best 
performance regarding the value of ACC for the 
majority of cases. Considering mild lesions, the highest 
ACC values achieved are 64.8% for {EFF, FV2

DLac, Y}, 
77.8% for {LFF, FV4

DLac, Cb} and 81.2% for {LFF,FV3
DLac, 

Cr}. For severe lesions, the best ACC values are 
89.1%, 87.0% and 90.2% for {EFF, FV2

DLac, Y/Cb/Cr 
(respectively)}. Last but not least, for the total CD 
lesion case, the highest ACC value is 86.3% for Cr 
channel, followed by Cb channel with 84.8% ACC value 
for {LFF, FV4

DLac}. The worst performance is delivered 
by Y channel, achieving 81.5% ACC for {EFF, FV4

DLac}.

Combined channel case (R-case only): The eva
luation of HAF-DLac for the combined channel data 
followed the same practice as in individual channel 
data. The ACC values for the combination of Y, Cb and 
Cr channels and all CD lesion scenarios are depicted 
in Figure 7 for the two FFs used [LFF (black line) and 

Figure 6  Classification ACC values using both fitness functions LFF (lacunarity curve gradient-based fitness function) and EFF (energy-based fitness 
function), for the NR-individual channel case, all severity cases and all feature vector (FV) types [see (2) - (6)].

Charisis VS et al . Efficient detection of small bowel lesions

100

95

90

85

80

75

70

65

60

55

50
1        2         3        4        5

Mild

LFF
EFF

100

95

90

85

80

75

70

65

60

55

50
1        2         3        4        5

Severe

LFF
EFF

100

95

90

85

80

75

70

65

60

55

50
1        2         3        4        5

Total

LFF
EFF

100

95

90

85

80

75

70

65

60

55

50
1        2         3        4        5

LFF
EFF

100

95

90

85

80

75

70

65

60

55

50
1        2         3        4        5

LFF
EFF

100

95

90

85

80

75

70

65

60

55

50
1        2         3        4        5

LFF
EFF

100

95

90

85

80

75

70

65

60

55

50
1        2         3        4        5

LFF
EFF

100

95

90

85

80

75

70

65

60

55

50
1        2         3        4        5

LFF
EFF

100

95

90

85

80

75

70

65

60

55

50
1        2         3        4        5

LFF
EFF

Y

Cb

Cr

AC
C

FV type



8652 October 21, 2016|Volume 22|Issue 39|WJG|www.wjgnet.com

EFF (gray line)] and for the five types of FV. For mild 
lesions, the highest classification ACC value for LFF 
approach is 79% and for EFF approach is 75.9% for 
FV5

DLac. In case of severe lesions, the ACC values are 
increased by 13.7 pp and 17.3 pp (i.e., 92.7% and 
93.2%) for LFF and EFF, respectively, for FV3

DLac. At 
last, in the total case, LFF achieves 88.3% ACC value 
for FV5

DLac, whereas EFF provides with 85.2% ACC 
value for the same FV. 

Overall performance
Table 1 presents the best ACC values in the format of 
“percent (R/NR-case - FF - FV type)”, both for individual 
and combined channel cases and all three severity 
scenarios from a spherical perspective. The best mean 
results for each severity scenario are formatted in 
bold. The SENS-SPEC values for Cr-mild, Cr-severe 
and Cr-total are 76.6%-85.8%, 95.2%-92.4%, and 
91.8%-89.2%, respectively. Moreover, for comparison 
purposes, the best classification results of the proposed 
scheme for all severity scenarios, and the classification 
results when using some of the most promising 
schemes in literature, proposed in[6] (CurvLac)[8], 
(CurvLBP), and[17] (ECT), are presented in Table 2. 
In[6], the authors engaged curvelet-based Lac features 
extracted from single or combined sub-images in the 
curvelet domain, whereas in[8], curvelet-based LBP is 
applied for ulcer recognition, and in[17], MPEG-7-based 
edge, color and texture features are used in order 

to detect CD lesions. At last, Table 3 presents the 
classification results acquired from applying the above 
approaches to the open databases CaEn and KID. 

Statistical analysis
To examine the robustness of the proposed HAF-
DLac approach, sensitivity analysis with regard to 
image noise, the parameter r of DLac, and some GA 
parameters (initial population (IP), generations, P0→1, 
and P1→0) was performed. In particular, the sensitivity 
of the quantities SENS and SPEC, defined as d (X) = 
(|Xnew - Xbase|/Xbase) × 100%, where X is SENS or 
SPEC, Xbase is the base value that is achieved with the 
current settings and Xnew is the new value acquired 
after changing one parameter of the system, was 
estimated. Given that the d calculation with respect to 
each examined parameter requires full analysis, we 
performed it only for the total scenario. The SENSbase 
and SPECbase used in this study are the highest values 
achieved for the total scenario R-case LFF approach 
and FV5

DLac, i.e., 91.8% and 89.2%, respectively (see 
Section “Overall Performance”). 

As far as the resiliency to noise is concerned, zero 
mean Gaussian noise was added to the images. The 
variance of the added noise ranged from 0.005 to 0.05 
in increments of 0.001 up to 0.01 and 0.005 from 0.01 
to 0.05. In Figure 8A, the SENS and SPEC values are 
depicted, whereas in Figure 8B the index d for these 
metrics is shown. It is observed that the proposed 
system is rather robust to noise, as the sensitivities 
of SENS and SPEC are < 2% for noise variance 0.005 
and do not exceed 6% and 2.5%, respectively, for 
noise variance up to 0.01. When more intense noise is 
added, the performance notably drops; however, even 
in such a case, 83% SENS and 74.4% SPEC for 0.02 
variance noise are quite acceptable. 

Another significant parameter of the proposed 
system is the size r of the gliding box of DLac analysis. 
Figure 8C presents the SENS and SPEC values when 
r ranges from 2 to 15 pixels, whereas Figure 8D 
depicts the corresponding sensitivity values of SENS 
and SPEC. The base values correspond to r = 3. It is 

Figure 7  Classification ACC values using both fitness functions LFF (lacunarity curve gradient-based fitness function) and EFF (energy-based fitness 
function), for the R-combined channel case, all severity cases and all feature vector (FV) types [see (2) - (6)].

Table 1  Best ACC values for both individual and combined 
channel cases 

Channel Severity scenario

Mild Severe Total

Y 71.3% (R-LFF-FV5) 91.5% (R-LFF-FV5) 85.7% (R-EFF-FV5)
Cb   77.8%(NR-LFF-FV4) 90.3 %(R-LFF-FV5) 88.0% (R-LFF-FV5)
Cr   81.2%(NR-LFF-FV3) 93.8% (R-LFF-FV5) 90.5% (R-LFF-FV5)
YCbCr 79.0% (R-LFF-FV5) 93.2% (R-EFF-FV3) 88.3% (R-LFF-FV5)

The format (X-Y-Z) corresponds to (R/NR-case - FF - FV type). The best 
ACC value for each severity scenario is formatted in bold. 
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evident that the bigger the gliding window, the lower 
the performance. However, the HAF-DLac scheme 
exhibits remarkable robustness, since the sensitivities 
of SENS and SPEC are 4.5% and 5.5%, respectively, 
even for tripling the size of the gliding window. At the 
extreme case of r = 15, the SENS value is more than 
75% and SPEC value is more than 83%, indicating an 
efficient performance. 

Finally, Table 4 tabulates the results of the sen
sitivity calculations for +20% and -20% shift of four 
GA parameters. It is clear that the proposed approach 
is very robust with respect to all parameters, as the 

sensitivity of SENS and SPEC is less than 1% for all 
tested cases. 

Validation of DLac-based features
In order to validate the choice of DLac analysis for 
the extraction of texture features a comparative 
study took place of the classification performance of 
various widely used statistical features that include: 
nine histogram-based features (Hist), five gradient-
based features (Grad), five feature based on the 
autoregressive model (AR), 11 features based on the 
co-occurrence matrix for four directions (44 features 

Table 2  Best ACC/SENS/SPEC/PRES  for HAF-DLac vs  other approaches[6,8,17]

Methodology Severity scenario

Mild Severe Total

HAF-DLac 81.2%/76.6%/85.8%/84.3%78.8/73.2/84.4/82.41 93.8%/95.2%/92.4%/92.6% 90.5%/91.8%/89.2%/89.5%
CurvLac 69.8%/64.3%/75.3%/72.2% 90.4%/92.5%/88.3%/88.8% 84.5%/87.1%/81.9%/82.8%
CurvLBP 73.4%/67.2%/79.6%/76.7% 89.6%/91.9%/87.3%/87.9% 81.7%/83.2%/80.2%/80.8%
ECT 71.8%/65.9%/77.7%/74.7% 91.2%/92.8%/89.6%/89.9% 85.6%/87.5%/83.7%/84.3%

1These values correspond to R-case FV5DLac. 

Table 3  Classification results on CaEn[38] and KID[39-41] open wireless capsule endoscopy databases

Classification 
measures

CaEn database KID database

HAF-DLac CurvLac CurvLBP ECT HAF-DLac CurvLac CurvLBP ECT

ACC 89.3% 75.0% 75.0% 82.1% 85.1% 74.3% 78.4% 75.7%
SENS 90.9% 77.3% 77.3% 81.8% 85.7% 57.1% 71.4% 64.3%
SPEC 83.3% 66.7% 66.7% 83.3% 85.0% 78.3% 80.0% 78.3%
PREC 95.2% 89.5% 89.5% 94.7% 57.1% 38.1% 45.5% 40.9%

Figure 8  Robustness study for HAF-DLac scheme. A: SENS, SPEC values when zero-mean Gaussian noise of various variances is added; B: Sensitivity of SENS, 
SPEC for (A); C: SENS, SPEC values for various sizes of the gliding box r of DLac analysis; D: Sensitivity of SENS, SPEC for (C).
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in total) for five inter-pixel distances (COM1-COM5) and 
five run-length-matrix-based features for four different 
directions (RLM0, RLM45, RLM90 and RLM135) and a 
combination of them (RLMt)[43]. These feature were 
calculated from the HAF-outputted images (R-case and 
LFF approach) in Cr channel (most efficient setup) and 
only the total scenario of data was considered. Figure 
9 presents the classification results (ACC, SENS, SPEC, 
PREC) achieved by each of the latter FVs along with 
the DLac-based FV (FV5

DLac). 

DISCUSSION
In this paper we developed the HAF-DLac scheme 
for the detection of CD-based lesions. HAF-DLac was 
thoroughly tested on a rich dataset to ensure its good 
performance. 

As the experimental results have shown at the 
individual channel R-case, engaging specific DLac 
values alone, i.e., FV1

DLac, is incapable to potently 
describe the characteristics of CD lesions. In the same 
way, the mere representation of the DLac curve with 
the hyperbola parameters does not provide fruitful 
effects. Moreover, in some cases (Y and Cb channels, 
severe and total scenario) the performance decreases, 
implying the loss of critical information. On the other 
hand, the utilization of FV5

DLac that incorporates 
information in various formats from the entire DLac 
curve significantly improves the performance of 
the proposed scheme. FV5

DLac provides the highest 
classification results, however, in many cases (mild-Y/
Cb/Cr, severe-Cb/Cr, total-Y) FV3

DLac and/or FV4
DLac 

that are half in size compared to FV5
DLac, achieve 

similar or slightly lower results (less than one pp lower 

ACC value), while reducing the complexity. It is also 
evidenced that the Cr component is the most efficient 
for CD lesion detection, implying that the majority 
of CD lesion-related information is more thoroughly 
expressed by the amount of blue-greenish or fuchsia-
reddish hues. This might be explained by the fact 
that the reflected reddish-greenish light is closely 
related to blood volume. Intestine walls are packed 
with a blood-vessels grid that is locally deformed by 
the mucosal erosion. On the contrary, the luminance 
plane Y, is the least competent for such an approach, 
specifically when the lesions are mild. Luminance 
varies significantly within GT, even for normal regions. 
Consequently, Y plane cannot adequately capture the 
modest lighting variations caused by eroded intestine 
walls.

As far as the NR-case is concerned, from an 
overall point of view and considering the FV types 
performance, it becomes apparent that the most 
powerful FVs are the second and the forth with 
an exception of the mild-Cr case, where FV3

DLac is 
the most efficient. In contrast to the R-case, the 
lengthiest FV (FV5

DLac) is unable to correctly classify 
abnormal regions, maybe owing to the over-length 
of FV resulting in the “curse of dimensionality” effect. 
Moreover, in most cases, FV2

DLac performs better than 
FV1

DLac, denoting that the synopsis of the DLac curve 
information in just three parameters, although it 
omits important information (as shown in R-case), 
tends to improve the detection potential, because 
multiple sub-images are simultaneously employed. We 
should also highlight the low results presented by Y 
channel during the mild lesion scenario, implying that 
combining information from multiple sub-images in the 

Figure 9  Classification results for various texture feature extraction techniques.

Table 4  Robustness study for HAF-DLac with respect to genetic algorithms parameters

Parameter IP Generations P0→1 P1→0

(%) change 20 -20 20 -20 20 -20 20 -20

δ (SENS) 0.27% 0.64% 0.54% 0.68% 0.14% 0.08% 0.21% 0.17%
δ (SPEC) 0.41% 0.87% 0.81% 0.96% 0.17% 0.11% 0.11% 0.09%
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low-potential luminance plane results in deteriorated 
performance. Finally, as far as the two selection 
approaches are concerned (EFF and LFF) in NR-
case, it is apparent that there is no clear winner. The 
utilization of features extracted from multiple structural 
components of the WCE images (sub-images) permits 
to camouflage, to a certain extent, the shortcomings 
introduced by each approach.

 Considering the combined channel case, the 
differences in terms of classification accuracy between 
the two FFs is marginal, with an exception of mild 
lesion detection. Similarly to the R-individual channel 
case, the FVs that include augmented information from 
the entire DLac-w curve (FV3

DLac, FV4
DLac and FV5

DLac) 
achieve better performance, compared to the more 
simple FVs (FV1

DLac and FV2
DLac).

From an overall perspective, it is evident that Cr 
channel delivers the highest classification accuracy for 
all severity scenarios. The LFF approach and FV5

DLac are 
also proven to provide better results for the majority 
of cases. However, this notion does not apply for the 
NR-case, where FV3

DLac and FV4
DLac are more efficient. 

It is also noteworthy that, although the highest ACC 
value (81.2%) for the Cr-mild case is achieved for NR-
case and FV3

DLac, the corresponding result for the R-case 
and FV5

DLac (which are the most efficient settings 
for severe and total scenarios) is only 2.4 pp lower, 
implying a rather satisfactory behavior. Comparing 
the results between R- and NR-cases of individual 
channels we can conclude that NR-case results in 
decreased classification performance for the majority 
of cases. The utilization of features from individual 
curvelet-based sub-images results in lengthy overall 
FVs and the classification process suffers from the 
increased complexity. The detection of mild CD lesions 
in Cb and Cr channels is an exception, where NR 
yields better results, engaging, however, smaller FVs 
that have half the size of the most efficient FV at the 
R-case. The abundance of information caused by the 
individual sub-images leads to better discrimination 
of slightly eroded tissue. By considering the results of 
the combined channel case we observe that the use 
of information simultaneously captured from all planes 
leads to slightly diminished performance, compared to 
the behavior of the individual Cr channel, although it 
surpasses the performance of the other two individual 
channels. This might be explained by the inclusion of 
misleading data from Y channel and the tripling is size 
of the FVs. 

Compared to other approaches, HAF-DLac scheme 
demonstrates superior performance, exhibiting 4.9, 
4.3, 5.5 and 5.2 pp higher accuracy, sensitivity, 
specificity and precision, respectively, than the second 
most efficient method[17], when considering the total 
case. Even more, significant is the progress (7.8, 
9.4, 6.2 and 7.6 pp in terms of accuracy, sensitivity, 
specificity and precision, respectively, compared 
to[8]) in successfully detecting mild erosions, an 
examination that none of the other approaches has 

conducted. The detection rates (accuracy, sensitivity, 
specificity and precision) of severe, clearly defined 
lesions reach the considerable values of 93.8%, 
95.2%, 92.4% and 92.6%, respectively, surpassing 
the other efforts[6,8,17] by at least 2.6, 2.4, 2.8 and 2.7 
pp, respectively. Moreover, the advanced behavior of 
the proposed scheme is evidenced by the classification 
results obtained by CaEn and KID database. The 
performance of HAF-DLac is rather solid in recognizing 
efficiently both kinds of tissue [20/22-5/6 (CaEn) 
and 12/14-51/60 (KID) lesion-normal images]. On 
the contrary, the other approaches exhibited inferior 
discrimination capability as they failed to identify, 
mainly, the lesion cases, and, specifically, from the KID 
database. The above results highlight that the HAF 
process combined with DLac-based features surpass 
two of the most promising methodologies in the 
literature that use LBP and MPEG-7 features. 

Regarding the performance of the various feature 
extraction techniques, it becomes apparent (Figure 
9) that the proposed FV is by far the most efficient, 
validating our hypothesis about the superiority of DLac 
analysis in extracting texture features compared to 
widely used statistical approaches.

Furthermore, it should be noted that the proposed 
scheme is quite efficient in terms of computational 
cost; that is < 0.5 s for a ROI of 140 × 140 pixels 
(average size) on a 4-core, 2.67 GHz desktop computer 
given the unoptimized Matlab implementation. It 
should be stressed that the time-consuming training 
phase is not included in the computational cost since 
it is performed only once during the development 
of the application. Focusing on even more efficient 
realizations, other programming languages (such as 
C++), and multithreading programming should be 
considered.

CONCLUSION
A new method, namely HAF-DLac, for CD inflam
matory tissue detection using WCE images in YCbCr 
color space was presented. The proposed scheme 
combined HAF with DLac analysis to initially process 
the WCE data for enhancing the underlying lesion 
information, by incorporating Curvelet transform and 
GA-based techniques and, then, applying feature 
extraction analysis that resulted in five different DLac-
based feature vectors with increased classification 
potential. The dataset (800 images with normal, mild 
and severe CD lesion cases) was subjected to HAF-
DLac analysis for individual-channel and combined 
channel cases. Extensive classification tests were 
implemented concerning all severity scenarios showing 
the effectiveness of the proposed method. The com
parison of the introduced HAF-DLac scheme with 
other relevant WCE-based lesion recognition methods 
evidenced its efficiency, consistency and robustness to 
more competent detection of CD lesions. The promising 
performance sets the ball rolling for an integrated 
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computer-aided diagnosis system on the service of 
gastroenterologists.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous re
viewers for the constructive comments that contributed 
to improving the final version of the paper. 

REFERENCES
1	 Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule 

endoscopy. Nature 2000; 405: 417 [PMID: 10839527 DOI: 
10.1038/35013140]

2	 Rondonotti E, Soncini M, Girelli C, Ballardini G, Bianchi 
G, Brunati S, Centenara L, Cesari P, Cortelezzi C, Curioni S, 
Gozzini C, Gullotta R, Lazzaroni M, Maino M, Mandelli G, 
Mantovani N, Morandi E, Pansoni C, Piubello W, Putignano R, 
Schalling R, Tatarella M, Villa F, Vitagliano P, Russo A, Conte 
D, Masci E, de Franchis R. Small bowel capsule endoscopy in 
clinical practice: a multicenter 7-year survey. Eur J Gastroenterol 
Hepatol 2010; 22: 1380-1386 [PMID: 20173646 DOI: 10.1097/
MEG.0b013e3283352ced]

3	 Maieron A, Hubner D, Blaha B, Deutsch C, Schickmair T, 
Ziachehabi A, Kerstan E, Knoflach P, Schoefl R. Multicenter 
retrospective evaluation of capsule endoscopy in clinical routine. 
Endoscopy 2004; 36: 864-868 [PMID: 15452781 DOI: 10.1055/
s-2004-825852]

4	 Goldberg DE. Genetic algorithms in search, optimization and 
machine learning. Boston, MA: Addisson-Wesley Longman 
Publishing, 1989: 1-432

5	 Candes J, Demanet L, Donoho D, Ying L. Fast discrete curvelet 
transforms. Multiscale Model Simul 2006; 5: 861-899 [DOI: 
10.1137/05064182X]

6	 Eid A, Charisis VS, Hadjileontiadis LJ, Sergiadis GD. A curvelet-
based lacunarity approach for ulcer detection from wireless capsule 
endoscopy images. Proceedings of the 26th IEEE International 
Symposium on Computer-Based Medical Systems; 2013 Jun 
20-22. Porto, Portugal: IEEE, 2013: 273-278 [DOI: 10.1109/
CBMS.2013.6627801]

7	 Liedlgruber M, Uhl A. Computer-aided decision support systems 
for endoscopy in the gastrointestinal tract: a review. IEEE Rev 
Biomed Eng 2011; 4: 73-88 [PMID: 22273792 DOI: 10.1109/
RBME.2011.2175445]

8	 Li B, Meng M. Texture analysis for ulcer detection in capsule 
endoscopy images. Image Vis Comput 2009; 27: 1336-1342 [DOI: 
10.1016/J.IMAVIS.2008.12.003]

9	 Karargyris A, Bourbakis N. Identification of ulcers in wireless 
capsule endoscopy videos. Proceedings of the 6th IEEE 
International Symposium on Biomedical Imaging: From Nano to 
Macro; 2009 Jun 28-Jul 01. Boston, USA: IEEE, 2009: 554-557 
[DOI: 10.1109/isbi.2009.5193107]

10	 Gevers T, Weijer J, Stokman H. Color feature detection. In: 
Lukac R, Plataniotis K. Color image processing: Methods and 
applications. Boca Raton: CRC Press, 2006: 203-226

11	 Yu L, Yuen PC, Lai J. Ulcer detection in wireless capsule 
endoscopy images. Proceedings of the 21st IEEE International 
Conference on Pattern Recognition. 2012 Nov 11-15. Tsukuba, 
Japan: IEEE, 2012: 45-48

12	 Chen Y, Lee J. Ulcer detection in wireless capsule endoscopy 
videos. Proceedings of the 20th ACM International Conference 
on Multimedia. 2012 2012 Oct 29-Nov 2. Nara, Japan, New York: 
ACM, 2012: 1181-1184 [DOI: 10.1145/2393347.2396413]

13	 Charisis VS, Katsimerou C, Hadjileontiadis LJ, Liatsos CN, 
Sergiadis GD. Computer-aided capsule endoscopy images 
evaluation based on color rotation and texture features: An 
educational tool to physicians. In: Rodrigues PP, Pechenizkiy 
M, Gama J, Correia RC, Liu J, Traina A, Lucas P, Soda P, 

editors. Proceedings of the 26th IEEE International Symposium 
On Computer-Based Medical Systems. 2013 Jun 20-22; Porto, 
Portugal. Red Hook: IEEE, 2013: 203-208 [DOI: 10.1109/
CBMS.2013.6627789]

14	 Charisis VS, Hadjileontiadis LJ, Liatsos CN, Mavrogiannis CC, 
Sergiadis GD. Capsule endoscopy image analysis using texture 
information from various colour models. Comput Methods 
Programs Biomed 2012; 107: 61-74 [PMID: 22056811 DOI: 
10.1016/J.CMPB.2011.10.004]

15	 Girgis H, Mitchell B, Dassopoulos T, Mullin G, Hager G. An 
intelligent system to detect Chrohn’s disease inflammation in 
wireless capsule endoscopy videos. Proceedings of the 7th IEEE 
International Symposium on Biomedical Imaging: From Nano to 
Macro. 2010 Apr 14-17. Rotterdam, The Netherlands: IEEE, 2010: 
1373-1376 [DOI: 10.1109/ISBI.2010.5490253]

16	 Jebarani W, Daisy VJ. Assessment of Crohn’s disease lesions 
in wireless capsule endoscopy images using SVM based 
classification. In: Proceedings of the 2013 IEEE International 
Conference on Signal Processing, Image Processing, and Pattern 
Recognition. 2013 Feb 7-8. Coimbatore, India: IEEE, 2013: 
303-307 [DOI: 10.1109/ICSIPR.2013.6497945]

17	 Kumar R, Zhao Q, Seshamani S, Mullin G, Hager G, Dassopoulos 
T. Assessment of Crohn’s disease lesions in wireless capsule 
endoscopy images. IEEE Trans Biomed Eng 2012; 59: 355-362 
[PMID: 22020661 DOI: 10.1109/TBME.2011.2172438]

18	 Coimbra M, Cunha J. MPEG-7 visual descriptors-contributions 
for automated feature extraction in capsule endoscopy. IEEE Trans 
Circuits Syst Video Technol 2006; 16: 628-637 [DOI: 10.1109/
TCSVT.2006.873158]

19	 Li B, Meng MQ. Computer-based detection of bleeding and ulcer 
in wireless capsule endoscopy images by chromaticity moments. 
Comput Biol Med 2009; 39: 141-147 [PMID: 19147126 DOI: 
10.1016/J.COMPBIOMED.2008.11.007]

20	 Hwang S. Bag-of-visual-words approach to abnormal image 
detection in wireless capsule endoscopy videos. In: Bebis G, 
Richard B, Parvin B, Koracin D, Wang S, Kyungnam K, Benes 
B, Moreland K, Borst C, DiVerdi S, Yi-Jen C, Ming J, editors. 
Advances in visual computing. Lecture Notes in Computer Science 
6939. Proceedings of the 7th International Symposium on Visual 
Computing, Part II; 2011 Sept 26-28. Las Vegas, NV, USA, New 
York: Springer, 2011: 320-327 [DOI: 10.1007/978-3-642-24031-7_
32]

21	 Karargyris A, Bourbakis N. Detection of small bowel polyps and 
ulcers in wireless capsule endoscopy videos. IEEE Trans Biomed 
Eng 2011; 58: 2777-2786 [PMID: 21592915 DOI: 10.1109/
TBME.2011.2155064]

22	 Nawarathna R, Oh J, Muthukudage J, Tavanapong W, Wong 
J, de Groen PC, Tang SJ. Abnormal Image Detection in 
Endoscopy Videos Using a Filter Bank and Local Binary Patterns. 
Neurocomputing 2014; 144: 70-91 [PMID: 25132723 DOI: 
10.1016/J.NEUCOM.2014.02.064]

23	 Iakovidis DK, Koulaouzidis A. Automatic lesion detection in 
capsule endoscopy based on color saliency: closer to an essential 
adjunct for reviewing software. Gastrointest Endosc 2014; 80: 
877-883 [PMID: 25088924 DOI: 10.1016/J.GIE.2014.06.026]

24	 Szczypiński P, Klepaczko A, Pazurek M, Daniel P. Texture and 
color based image segmentation and pathology detection in capsule 
endoscopy videos. Comput Methods Programs Biomed 2014; 113: 
396-411 [PMID: 23164524 DOI: 10.1016/j.cmpb.2012.09.004]

25	 Signorelli C, Villa F, Rondonotti E, Abbiati C, Beccari G, de 
Franchis R. Sensitivity and specificity of the suspected blood 
identification system in video capsule enteroscopy. Endoscopy 2005; 
37: 1170-1173 [PMID: 16329012 DOI: 10.1055/s-2005-870410]

26	 Kyriakos N, Karagiannis S, Galanis P, Liatsos C, Zouboulis-
Vafiadis I, Georgiou E, Mavrogiannis C. Evaluation of four time-
saving methods of reading capsule endoscopy videos. Eur J 
Gastroenterol Hepatol 2012; 24: 1276-1280 [PMID: 22825645 
DOI: 10.1097/MEG.0b013e32835718d2]

27	 Krystallis C, Koulaouzidis A, Douglas S, Plevris JN. Chromoen
doscopy in small bowel capsule endoscopy: Blue mode or Fuji 

Charisis VS et al . Efficient detection of small bowel lesions



8657 October 21, 2016|Volume 22|Issue 39|WJG|www.wjgnet.com

Intelligent Colour Enhancement? Dig Liver Dis 2011; 43: 953-957 
[PMID: 21893436 DOI: 10.1016/j.dld.2011.07.018]

28	 Haneishi H, Hasegawa T, Hosoi A, Yokoyama Y, Tsumura N, 
Miyake Y. System design for accurately estimating the spectral 
reflectance of art paintings. Appl Opt 2000; 39: 6621-6632 [PMID: 
18354676 DOI: 10.1364/AO.39.006621]

29	 Tkalcic M, Tasic JF. Colour spaces: perceptual historical 
and applicational background. In: Zajc B, Tkalcic M, editors. 
Proceedings of the IEEE Region 8 EUROCON 2003; 2003 Jul 
1-4. Ljubljana, Slovenia: IEEE, 2003: 304-308 [DOI: 10.1109/
EURCON.2003.1248032]

30	 Starck JL, Candès EJ, Donoho DL. The curvelet transform for 
image denoising. IEEE Trans Image Process 2002; 11: 670-684 
[PMID: 18244665 DOI: 10.1109/TIP.2002.1014998]

31	 Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, 
Perlmutter M. Lacunarity analysis: A general technique for the 
analysis of spatial patterns. Phys Rev E Stat Phys Plasmas Fluids 
Relat Interdiscip Topics 1996; 53: 5461-5468 [PMID: 9964879 
DOI: 10.1103/PhysRevE.53.5461]

32	 Dong P. Test of a new lacunarity estimation method for image 
texture analysis. Int J Remote Sens 2000; 21: 3369-3373 [DOI: 
10.1080/014311600750019985]

33	 Plotnick RE, Gardner RH, O’Neill RV. Lacunarity indices as 
measures of landscape texture. Landscape Ecol 1993; 8: 201-211 
[DOI: 10.1007/BF00125351]

34	 Zaia A, Eleonori R, Maponi P, Rossi R, Murri R. MR imaging and 
osteoporosis: fractal lacunarity analysis of trabecular bone. IEEE 
Trans Inf Technol Biomed 2006; 10: 484-489 [PMID: 16871715 
DOI: 10.1109/TITB.2006.872078]

35	 Hadjileontiadis LJ. A texture-based classification of crackles 
and squawks using lacunarity. IEEE Trans Biomed Eng 2009; 56: 
718-732 [PMID: 19174342 DOI: 10.1109/TBME.2008.2011747]

36	 Marquardt D. An algorithm for least squares estimation of 
nonlinear parameters. J Soc Indust Appl Math 1963; 11: 431-441 
[DOI: 10.1137/111030]

37	 Haralick RM. Statistical and structural approaches to texture. 
Proc IEEE 1979; 67: 786-804 [DOI: 10.1109/PROC.1979.11328]

38	 Given Imaging. Capsule endoscopy. 2014. Available from: URL: 
http://www.capsuleendoscopy.org

39	 Iakovidis DK, Koulaouzidis A. Automatic lesion detection in 
wireless capsule endoscopy - A simple solution for a complex 
problem. Proceedings of the 2014 IEEE International Conference 
on Image Processing; 2014 Oct 27-30. Paris, France: IEEE, 2014: 
2236-2240

40	 Iakovidis DK, Koulaouzidis A. Software for enhanced video 
capsule endoscopy: challenges for essential progress. Nat Rev 
Gastroenterol Hepatol 2015; 12: 172-186 [PMID: 25688052 DOI: 
10.1038/NRGASTRO.2015.13]

41	 Koulaouzidis A, Iakovidis DK. KID: Koulaouzidis-Iakovidis 
Database for Capsule Endoscopy. Available from: URL: http://is-
innovation.eu/kid

42	 Cristianini N, Shawe-Taylor J. An introduction to support vector 
machines and other kernel-based learning methods. Cambridge: 
Cambridge University Press, 2000: 93-124

43	 Szczypiński PM, Strzelecki M, Materka A, Klepaczko A. MaZda-
-a software package for image texture analysis. Comput Methods 
Programs Biomed 2009; 94: 66-76 [PMID: 18922598 DOI: 
10.1016/J.CMPB.2008.08.005]

P- Reviewer: Hosoe N, Sakin YS, Lakatos L    S- Editor: Qi Y    
L- Editor: A    E- Editor: Wang CH  

Charisis VS et al . Efficient detection of small bowel lesions


