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Abstract
Helicobacter pylori  (H. pylori ) antibiotic resistance is the  
main factor affecting the efficacy of the current eradica- 
ting therapies. The aim of this editorial is to report on the  
recent information about the mechanisms accounting 
for the resistance to the different antibiotics currently  
utilized in H. pylori  eradicating treatments. Different me- 
chanisms of resistance to clarithromycin, metronidazole, 
quinolones, amoxicillin and tetracycline are accurately 
detailed (point mutations, redox intracellular potential, 
pump efflux systems, membrane permeability) on the  
basis of the most recent data available from the litera- 
ture. The next hope for the future is that by improving the  
knowledge of resistance mechanisms, the elaboration of  
rational and efficacious associations for the treatment 
of the infection will be possible. Another auspicious pro- 
gress might be the possibility of a cheap, feasible and 
reliable laboratory test to predict the outcome of a thera- 
peutic scheme.
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INTRODUCTION
The discovery of  Helicobacter pylori (H. pylori) infection and  
its role in different diseases from chronic gastritis to gas- 
tric cancer has radically changed the management of  pa- 
tients with this condition. Unfortunately, the goal of  achi- 
eving a cure in all treated patients at the first therapeutic 
approach, as generally occurs for common infective disea
ses, has not been achieved for H. pylori. Indeed, it has been 
immediately evident that only a few antibiotics are active 
against such a bacterium in the acidic environment of  the 
stomach.

The initial susceptibility of  H. pylori to both clarithro-
mycin and imidazoles, key drugs for triple first-line thera-
pies, has progressively been undergoing a marked reduc-
tion and the eradication rate following therapy regimens 
including these antibiotics is decreasing[1]. Similarly, the 
low H. pylori resistance rate towards quinolones, mainly 
used for second-line therapy, observed in the past has in-
creased during the last decade, whilst both amoxicillin and 
tetracycline resistance rates seem to have remained low[2]. 

Online Submissions: http://www.wjgnet.com/2150-5330office
wjgp@wjgnet.com
doi:10.4291/wjgp.v2.i3.35

35

World J Gastrointest Pathophysiol  2011 June 15; 2(3): 35-41
ISSN 2150-5330 (online) 

© 2011 Baishideng. All rights reserved.

June 15, 2011|Volume 2|Issue 3|WJGP|www.wjgnet.com



Alternative molecules, such as furazolidone, bismuth salts  
and rifabutin are not available worldwide and they are 
not free of  significant side-effects. All these observations  
highlight the crucial role of  antibiotic resistance in the 
management of  H. pylori infection[3,4]. Therefore, the know- 
ledge of  resistance mechanisms may contribute to elabo-
rate more rational antibiotic combinations with the aim of  
improving treatment success.

We reviewed the mechanisms of  H. pylori antibiotic 
resistance towards the drugs mainly used, including clari- 
thromycin, metronidazole, levofloxacin, amoxicillin and 
tetracycline. 

CLARITHROMYCIN 
Clarithromycin remains the currently available most power- 
ful antibiotic against H. pylori with minimal inhibitor con- 
centrations (MICs) being the lowest as compared to the 
other molecules. Indeed, MIC values as low as 0.016-0.5 
mg/L are generally reported, antibiotic resistance being re- 
cognized with MIC values ≥ 1.0 mg/l (range: 2-256 mg/
L)[5,6]. The bacteriostatic activity of  clarithromycin depends 
on its capacity to inhibit the protein synthesis by binding to  
the 50S bacterial ribosomal subunit. Extensive studies by 
PCR-based tools have demonstrated that point mutations 
in the peptidyltransferase region encoded in domain V of   
23S rRNA are responsible for the bacterial resistance to  
macrolides[7]. These mutations are able to inhibit the bin- 
ding between clarithromycin and the ribosomal subunit 
dedicated to the specific antibiotic related protein synthe- 
sis[7,8]. The more frequent mutations associated with clari- 
thromycin resistance are the transition adenine to cytosine  
in 2143 and 2142 positions of  rRNA, whilst the substitu- 
tion of  adenine with cytosine in 2142 position is less fre- 
quent. These mutational events are responsible for more 
than 90% of  clarithromycin resistance in developed coun- 
tries[9]. In detail, the mutation at position 2143 seems to 
be associated with different resistance levels rather than 
an on/off  behavior, with MIC values widely ranging from 
0.016 to 256 mg/L. Conversely, the mutations at position 
2142 are associated with more restricted MIC values, close 
to 64 mg/L[10,11]. Of  note, we found that the presence of  
the A2143G point mutation, rather than the A2142G or 
A2142C mutation, markedly reduces H. pylori eradication 
rate[12]. These data should suggest that a mutational event 
detected in vitro does not precisely predict in vivo results[13].

Several other point mutations have been identified such  
as A2115G, G2141A, T2117C and T2182C, T2289C, G22- 
4A, C2245T, C2611A. Besides the low frequency, the clini- 
cal relevance of  the A2115G, G2141A, T2117C T2289C, 
G224A, C2245T mutation is still not proven, their role not  
being consistently reported[14,15], whilst the T2182C and C- 
2611A have been associated with low resistance levels[16,17].

Another relevant mechanism for macrolide resistance 
is ascribed to the efflux pump system. At least 5 conserved  
families of  drug efflux mechanisms are associated to bac- 
terial species, including Small Multidrug Resistance, Multi- 
drug and Toxic Compounds Extrusion proteins, the Major  

Facilitator Superfamily, the ATP-Binding Cassette Super- 
families and the Resistance-Nodulation Cell Division[18]. 
The Resistance-Nodulation-cell Division (RND family) 
is responsible for macrolide intrinsic resistance in several  
Gram negative bacteria and it has been recently proposed 
also for H. pylori. In detail, it has been observed that 4  
RND gene clusters (HP0605-HP0607, HP0971-HP- 
0969, HP1327-HP1329, HP1489-HP1487) in the efflux 
pump system play a role in promoting multidrug H. pylori  
resistance[19]. These systems of  excretion can be inhibited  
by the administration of  specific Efflux Pump Inhibitors 
(EPI), such as Phe-Arg-β-naphthylamide (PAβN). Indeed,  
EPI-administration is associated with a relevant intra- 
cellular entrapment of  antibiotic and a significant decrease 
of  MIC values. In detail, a dose-dependent reduction of  
MIC values in 15 rRNA point mutate resistant strains has  
been demonstrated by using PAβN. Increased intracellular 
antibiotic concentrations able to compensate the reduced 
drug affinity for the mutate ribosomal site have been 
postulated as a possible mechanism. This effect is cons- 
tantly associated with the HP0605-HP0607 cluster gene. 
Interestingly, a different effect of  EPI administration on 
MIC values is observed between susceptible and rRNA  
mutate strains. A possible explanation is that, in suscep- 
tible strains, clarithromycin binds preferentially to the  
ribosomal subunits rather than the efflux pumps. Conse- 
quently, the excretive activity of  efflux pumps becomes  
irrelevant, the effect of  PAβN on MIC value modifica- 
tions vanishing. On the contrary, in the rRNa mutate 
strains, clarithromycin is preferentially excreted by the 
efflux pumps because of  its low affinity with the mutate 
ribosomal site, with the more relevant impact of  efflux 
pumps inhibition by PAβN on MIC values[20]. Based on 
these findings, it is reasonable to hypothesize that PAβN 
(or PAβN-like molecules) administration could improve 
the eradicating efficacy of  the clarithromycin-based thera- 
pies by increasing its intracellular entrapment. 

The possible interaction between the RND efflux 
pump system and proton pump inhibitors (PPIs) due to 
structural analogies is also of  clinical interest. Besides the  
deep gastric acid inhibition, PPIs may inhibit the activi- 
ty of  bacterial efflux pumps, similar to EPI drugs. Interes- 
tingly, MIC values of  clarithromycin, as well as metronida- 
zole, amoxicillin and furazolidone, are decreased 4-fold 
and 3-fold in H. pylori multi-resistant strains by using rabe- 
prazole and pantoprazole respectively, whilst no significant 
effect is observed with omeprazole, esomeprazole and lan- 
soprazole[21]. These differences should be considered when  
choosing the PPI in eradication regimens.

METRONIDAZOLE
Mechanisms of  metronidazole resistance have been exten- 
sively investigated and new information has been recently 
obtained[22]. In H. pylori strains, MIC values of  0.5-2 mg/L 
are reported, antibiotic resistance being recognized with  
MIC values ≥ 8 mg/L (range: 16-128 mg/L)[5,23]. Bacteri- 
cide activity of  metronidazole depends on the reduction 
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of  its nitro-groups in anionic radicals, nitroso-derivates and  
hydroxylamines which are able to damage the DNA-heli- 
coidal structure. These reactions of  reduction are strongly  
dependent on the intracellular redox potential of  compon- 
ents of  electron transport chain which needs to be effecti- 
vely negative. In detail, electrons are produced by the Pyru- 
vate Oxido Reductase complex (POR) and are passed to 
either ferredoxin or flavodoxin which, in turn, reduce other  
molecules as metronidazole[24]. This process is particularly 
active in anaerobe species which are highly susceptible to 
metronidazole. The acquisition of  antibiotic resistance de- 
pends on the reduction or abolition of  activity of  the elec- 
tron carriers. On the contrary, the high intracellular redox 
potential of  aerobe species prevents the metronidazole re- 
duction-activation and is responsible for the intrinsic resis- 
tance of  these bacteria[25]. 

A further action mechanism of  metronidazole against 
anaerobe bacteria in aerobe conditions consists in the pro- 
duction of  oxygen-free radicals. In this case, the oxygen 
acts as the last acceptor of  electrons from reduced metroni- 
dazole, leading to the regeneration of  the parent inactive 
antibiotic (futile cycle) and the production of  oxygen-free 
radicals which are toxic for DNA structure[26]. In resistant  
strains, such a bactericide effect is neutralised by a catalase-
superoxide dismutase system with final water production.  
This enzymatic system increases its activity in the presence  
of  metronidazole[25,27]. The intracellular redox potential/
oxygen tension also plays a relevant role in the resistance 
of  microaerophilic species, such as H. pylori, in which 
catalase/superoxide dismutase is not present. Of  note, 
the pre-exposure of  H. pylori resistant strains to anaerobic 
conditions is associated with a loss of  resistance and 
restoration of  metronidazole susceptibility[28]. In this event,  
a NADH oxidase acts as an ‘oxygen scavenger’ assuring 
low redox potential/oxygen tension and maintaining the 
antibiotic in the active form. An inactive mutate NADH 
oxidase and intracellular higher redox potential/oxygen 
tension have been found in H. pylori resistant strains[29].

Different mutations involving the rdxA gene which 
encodes for an oxygen insensitive NADPH nitro-reduc
tase have been identified in metronidazole resistant strains. 
These mutations are recognized as the main mechanism 
conferring metronidazole resistance in H. pylori[30]. In the  
susceptible strains, NADPH nitro-reductase reduces seve- 
ral compounds, including metronidazole, by 2 electrons 
transfer and generating toxic nitro-derivates for DNA. 
For example, the activation of  NADPH in E. coli, which  
is usually resistant to metronidazole, generates susceptible 
strains. Besides these mutations, other and more complex  
genetic events (insertions and deletions of  transposons, 
missense and frameshift mutations) could be simultaneo- 
usly present in the rdxA gene. These events complicate 
metronidazole resistance assessment by bio-molecular 
tools[31-33]. 

More recently, the inactivation of  other reductases, 
encoded by genes as frxA (for NADPH flavin oxidore
ductase) and frxB (for ferredoxin-like enzymes), has been 
investigated. There is evidence that these point mutations 

are able to increase bacterial resistance exclusively in the 
presence of  rdxA gene mutations[23,34-35]. Indeed, the rare 
cases of  metronidazole resistant strains in the absence 
of  rdxA mutations have been attributed to mutations 
involving genes outside the rdxA which can, in turn, 
down-modulate its expression[36]. 

A role for a complex efflux system responsible for 
metronidazole in H. pylori strains has been recently report
ed. In detail, the presence of  Outer membrane Efflux 
Proteins (OEP) in H. pylori which interact with several 
intracellular translocases and regulate secretion of  different 
antibiotics has been found. Of  note, the inactivation of  
2 OEPs (HP0605 and HP0971) in a double-knockout 
mutant strain significantly increased susceptibility towards 
metronidazole, supporting a significant role for this efflux 
pump system in metronidazole resistance[19]. 

LEVOFLOXACIN
The use of  levofloxacin for H. pylori eradication is increa- 
sing worldwide because of  its role in ‘rescue therapy’ regi- 
mens following the failure of  clarithromycin-based 
treatments. MIC values of  0.25-0.50 mg/L are generally 
reported, antibiotic resistance being recognized with MIC  
values ≥ 1 mg/L (range: 4-32 mg/L)[37,38]. Fluoroquino- 
lones exert a dose-dependent bactericide effect by binding 
the sub-unit A of  DNA gyrase (topoisomerase Ⅱ), an 
essential enzyme for the maintenance of  DNA helicoidal 
structure. In susceptible strains, levofloxacin stops DNA 
and, at high doses, even RNA synthesis. Surprisingly, 
when the dose is further increased, quinolones become 
bacteriostatic agents.

Point mutations in Quinolones Resistance-Determining 
Region (QRDR) of  gyrA prevent binding between the  
antibiotic and the enzyme, conferring antibiotic bacterial 
resistance[39]. Different studies found the involvement of  
the following H. pylori loci: (1) position 91 (Asp91Gly, Asn, 
Ala, or Tyr); (2) position 87 (Asn87Lys); and (3) position 
88 (Ala88Val)[39-41]. Mutations in both 91 and 87 position 
have been observed in the 100% of  levofloxacin resistant 
isolates and a new mutation consisting in the substitution 
of  Asn with Tyr in position 87 has been additionally identi- 
fied[37]. Rare mutations involve the position 86 (Asp86Asn) 
which, in turn, is usually associated with the mutations at 87  
and 91 positions[37], lowering its role on MIC values. Simi- 
larly, the constant association between the gyrB with the 
gyrA 87-91 mutations most likely minimize the role of  the 
gyrB mutations in quinolone resistance[42]. Indeed, gyrA 
and gyrB gene mutations involvement in levofloxacin resis- 
tance has been observed in 83.8% and 4.4% respective- 
ly[43].

Other factors involved in levofloxacin resistance are an  
amino acidic polymorphism in the codon 87 of  gyrA, con- 
sisting in the presence of  different asparagyne-threonine 
residues. In detail, the complete sequencing genome of  2 
strains, i.e. the 26695 and the J99, allowed identifying the 
presence of  threonine in the J99 strain and asparagyne re- 
sidues in the 26695 strain associated with a higher antibio- 
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tic susceptibility. Interestingly, the presence of  threonine  
residue at 87 codon is also conserved in other. Helicobacter  
types thus indicating the possibility of  a “philogenic” evo- 
lution of  Helicobacter species[37]. 

AMOXICILLIN
Amoxicillin is a β-lactam antibiotic included in all current  
therapeutic regimens for H. pylori eradication[4]. MIC 
values ranging from 0.06 to 0.25 mg/L are generally 
reported in susceptible strains, antibiotic resistance being 
recognized with MIC values ≥ 1 (range: 1-8 mg/L)[5,44]. 
Amoxicillin acts by interfering with the peptidoglycan sy- 
nthesis, especially by blocking transporters named penicil- 
lin binding proteins (PBP)[5]. This drug has been the first  
antibiotic used in H. pylori therapy because of  a presumed  
absence of  resistance. Nevertheless, the evidence of  sta- 
ble amoxicillin resistant strains, with a MIC of  8 mg/L, 
has been reported[45]. Moreover, an instable amoxicillin 
resistance has been described in H. pylori isolates, the 
resistance being peculiarly lost upon freezing the culture 
at -80°C. Such an unusual condition has been defined as 
‘amoxicillin tolerance’ rather than resistance[46].

Different mechanisms have been invoked in the stable 
amoxicillin resistance. The Penicillin Binding Proteins 
(PBPs) are enzymes involved in the synthesis of  the pepti- 
doglycan layer of  the bacterial wall by a glycosyl trans- 
ferase-acyl transpeptidase activity. This enzymatic activity 
is located in the C-terminal region, in 3 distinct motifs 
(SKN368-371, SNN433-435, KTG555-557) of  PBPs. The first motif  
occupies a central position in the catalytic cleft whereas  
second and third motifs are dislocated on the outside. PBP- 
1, PBP2, PBP3 are reported as high molecular PBPs whilst 
PBP4 is reported as low molecular protein. The β-lactam 
binding to PBPs motifs leads a bactericide effect by synthe- 
tic interruption of  the peptidoglycan layer, as well as an os- 
motic bacterial shock. Production of  β-lactamase, i. e. the 
main mechanism of  penicillin resistance in other bacteria, 
has been consistently found to be inactive in H. pylori[47-49].

Several investigations indicate that multiple point mu- 
tations in pbp1 gene are the major mechanism of  amoxici- 
llin resistance, leading to a loss of  affinity between amoxici- 
llin and PBP-transpeptidase[44,50]. It has been observed that 
the Ser414 to Arg substitution, adjacent to the SKN motif  in 
PBP1, is responsible for amoxicillin resistance with a signi- 
ficantly increased MIC (> 0.5-1 mg/L)[49]. Another study 
reported the substitution of  Asn562 aminoacid with a Tyr 
residue in proximity to KTG motif  of  PBP1. Such a point 
mutation is able to confer high resistance to all strains 
in vitro and is considered the main mutation conferring 
resistance. Other substitutions (Ala369 to Thr, Val374 to Leu, 
Leu423 to Phe, Thr593 to Ala) not constantly associated with 
Asn562-Tyr seem to play an additive role in increasing MIC 
values of  the resistant strains similarly to point mutations 
in PBP2, in PBP3 and PBP4[48,51]. Interestingly, H. pylori 
resistant strains obtained by transformation in vitro of  
susceptible naive strains, exhibit MIC values 5-10 fold 
lower than naïve resistant strains[49], suggesting that several 

and concomitant mechanisms are probably involved in 
conferring the high levels observed in natural antibiotic 
resistance.

The outer bacterial membrane constitutes a first barrier 
for accounting for an intrinsic and not specific resistance. 
Indeed, the variable fluidity of  lipopolysac caridic layer is 
able to limit the diffusion of  several lipophilic compoun
ds. Recent findings indicate that “porin” narrow channels, 
encoded in H. pylori by hopB and hopC genes, regulate 
the penetration of  small solutes. Point mutations in hopB  
and a deletion in hopC gene are associated with reduced 
amoxicillin accumulation in all naïve mutant and transfor- 
med strains, with a consequent increase of  MIC values (250 
mg/L for hopB gene and 125 mg/L for hopC gene)[44]. 
When point mutations either in hopB or in hopC are 
associated with mutations in PBP1 gene (triple mutants), 
a further increase of  MIC values (400 mg/L) is observed. 
These findings could suggest that channels and PBP1 
mutations are factors able to support the resistance[44,52]. 
It has been reported that several encoding “porin” genes 
could be over-regulated (omp25 porin gene) or down-re- 
gulated (omp32 porin gene) by antibiotic exposure leading 
to alterations in the membrane permeability. Comparable 
alterations of  permeability are likely associated to variable 
expression of  genes involved in import/export/binding 
of  metals[53]. 

Finally, the efflux of  molecules is a frequently reported 
event in bacteria as a protective process from the toxic 
effect of  environmental compound accumulation. Never
theless, it seems unlikely that amoxicillin resistance is sus
tained by these mechanisms because amoxicillin shows a 
very low hydrophobicity which is an indispensable require
ment for substrates of  multidrug efflux pumps[54,55]. 

TETRACYCLINE
Tetracycline is a fundamental antibiotic in quadruple regi- 
mens for H. pylori eradication. MIC values 0.25-2 mg/L[56]  
are generally reported, antibiotic resistance being recog- 
nized with MIC values ≥ 4[5]. Bacterial resistance towards 
such a drug, although still rare, appears to be increasing. 
Tetracycline acts as a bacteriostatic against either Gram 
positive or Gram negative species by inhibiting codon-
anticodon link at level of  30S ribosomal subunit and blo- 
cking the attachment of  aminoacyl-tRNA to the acceptor 
site. Resistant strains show wide range of  MIC values 
(2-256 mg/L).  Recent studies have identified 2-6 possible 
sites for antibiotic-ribosome interaction at high affinity, 
whilst several biochemical investigations reported multiple, 
likely hundreds, sites at low affinity[57,58]. Simultaneous 
triple point mutations from the 965 to 967 position in loop 
of  helix 31 - i.e. the crucial part of  primary acceptor site 
(site P) is recognized as the major mechanism of  tetracy 
cline resistance. The main point mutation is a substitution 
of  an AGA with a TTC triplet[59,60] and it reduces the affini- 
ty of  24%-52%[61]. Levels of  resistance are proportional to 
the number of  changes in the AGA 965-967. Single and  
double point mutations are associated with low and inter- 
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mediate MIC values whilst high resistance levels are obser- 
ved in the presence of  a triple mutation from AGA 956 to  
957. In detail, among the possible mutations in AGA trip- 
let, the substitution involving the Guanine in the central 
position is associated with higher MIC values, suggesting 
that purine base plays a more consistent role in the configu- 
ration of  the primary site. Purine-rich sequences in the  
loop of  helix 31 are more frequently observed in susce- 
ptible strains, whilst pyrimidine-rich loops are in the resis- 
tant strains. It is possible that pyrimidine-rich sequences 
in helix 31 are not compatible with tetracycline conforma- 
tion, leading to a decreasing affinity[60]. Another study 
found a deletion of  G942 in all resistant strains. This guani- 
ne base is located in Tet-4 site, in proximity of  primary 
P site. Since the affinity of  tetracycline for Tet-4 site is 
significantly lower than those for primary P site, Tet-4 may 
be considered an accessory site for the antibiotic activity 
in susceptible strains. Therefore, the loss of  affinity due to 
a deletion G492 in such a site may exert a marginal role in 
the increasing bacterial resistance[62] (Table 1).

Serial exposures of  susceptible strains on antibiotic 
are unable to confer resistance whereas the exposition to 
mutate resistant DNA leads easily transformation. These 
data indicate a horizontal spread of  mutate genome rath-
er than a vertical or parental transformation[62]. Of  note, 
resistant transformants from susceptible strains exhibit 
intermediate MIC values between parental susceptible 
strains (4-8 mg/dL) and natural resistant strains (> 32 
mg/dL)[61,63]. Such a finding would indicate that factors 
other than point mutations in 30S ribosomal subunit may  
work in concert for the tetracycline resistance develop-
ment. Indeed, resistant strains without point mutations 
have been observed[61].

Another mechanism of  tetracycline resistance is attri
buted to ribosomal protection by the soluble protein Tet 
(O). Such a protein removes the antibiotic from ribosome  
preventing the arrest of  protein synthesis[64]. In addition a 
chemical modification of  tetracycline by an oxidoreductase 
NADP-dependent may interfere in the binding between 
antibiotic and the ribosomal site[58].

Decreased membrane permeability and a reduced intra- 

cellular accumulation of  tetracycline were observed in te- 
tracycline resistant strains, which are also cross-resistant to  
amoxicillin. This finding suggests an identical profile of  
outer protein for both antibiotics. Finally, the possible 
role of  a specific tetracycline efflux pumps system affe- 
cting intracellular drug concentrations has been investi- 
gated with discordant results. Indeed, pre-exposure of  
resistant strains to a de-energizing agent such as cyani- 
de m-chlorophenylhydrazone (CCCP) leads to variable 
reductions of  MIC values[21,58]. However, the role of  either  
specific pumps unaffected by CCCP or a variable expre
ssion of  not specific multidrug efflux pumps, such as the 
MexAB-OprM system, cannot be excluded and should be 
further investigated[62,63]. 

CONCLUSION
The amount of  data we have reported in this editorial 
reveals that the knowledge about H. pylori antibiotic resis
tance is a topic with a rapidly and constantly increasing 
interest. Future perspectives hope for new information 
aimed at elaborating novel and rational antibiotic associa
tions very effective for H. pylori infection cure in clinical 
practice. Another “fascinating challenge” could be a feasi- 
ble, cheap and not time consuming laboratory investigation  
able to predict the treatment outcome and address the 
best therapeutic choice case by case.
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