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Abstract
It has been established that cancer can be promoted 
and exacerbated by inflammation. Hepatocellular 
carcinoma (HCC) is the fifth most common cancer 
worldwide, and its long-term prognosis remains poor. 
Although HCC is a complex and heterogeneous tumor 
with several genomic mutations, it usually develops in 
the context of chronic liver damage and inflammation, 
suggesting that understanding the mechanism(s) of 
inflammation-mediated hepatocarcinogenesis is essen-
tial for the treatment and prevention of HCC. Chronic 
liver damage induces a persistent cycle of necro-
inflammation and hepatocyte regeneration, resulting 
in genetic mutations in hepatocytes and expansion of 
initiated cells, eventually leading to HCC development. 
Recently, several inflammation- and stress-related sig-
naling pathways have been identified as key players 
in these processes, which include the nuclear factor-
κB, signal transducer and activator of transcription, 
and stress-activated mitogen- activated protein kinase 
pathways. Although these pathways may suggest po-
tential therapeutic targets, they have a wide range of 
functions and complex crosstalk occurs among them. 

This review focuses on recent advances in our under-
standing of the roles of these signaling pathways in 
hepatocarcinogenesis.
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INTRODUCTION
Various types of  cancer arise in the setting of  chronic in-
flammation, suggesting a strong link between inflamma-
tion and carcinogenesis[1,2]. Although Virchow first sug-
gested this relationship in the 19th century, clear evidence 
for it has been obtained only during the last decade[3].The 
development of  hepatocellular carcinoma (HCC) is one 
of  the most extensively investigated inflammation-based 
carcinogenic processes because more than 90% of  HCCs 
develop in the context of  chronic liver damage and in-
flammation. 
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HCC is diagnosed in more than half  a million people 
each year and is the third most common cause of  cancer 
mortality worldwide[4]. The short-term prognosis of  pa-
tients with HCC has improved recently due to advances 
in early diagnosis and treatment, but long-term prognosis 
remains unsatisfactory, as indicated by the low overall 
survival of  22%-35% at 10 years after curative treat-
ment[5,6]. Thus, understanding the molecular carcinogenic 
mechanisms and the unique pathogenic biology of  HCC 
has become an important issue worldwide.

HCC is a complex and heterogeneous tumor with 
several genomic mutations, but even the most frequent 
genetic mutations, such as those in p53 and β-catenin, are 
seen in 30%-50% of  HCC cases at most[7]. On the other 
hand, as mentioned above, more than 90% of  HCC de-
velops based on chronic inflammation, indicating that un-
derstanding the mechanism(s) of  inflammation-mediated 
hepatocarcinogenesis is necessary for the treatment and 
prevention of  HCC.

The main cause of  HCC is viral hepatitis caused by 
the hepatitis B virus (HBV) or hepatitis C virus (HCV); 
other major etiologies include hemochromatosis, alcohol-
ic hepatitis, and non-alcoholic steatohepatitis (NASH)[7]. 
Most of  these diseases are known to cause chronic in-
flammation in the liver, which plays a critical role in hepa-
tocarcinogenesis. For example, in chronic viral hepatitis, 
the host immune responses to HBV or HCV are often 
insufficiently strong to completely clear the infection, 
resulting in chronic stimulation of  an antigen-specific 
immune response[8]. Virus-infected hepatocytes are killed 
by host immune cells as well as the intrinsic cytopathic 
effects of  the hepatitis viruses, triggering the production 
of  various cytokines and growth factors and subsequently 
inducing compensatory hepatocyte regeneration. This 
persistent cycle of  necro-inflammation and hepatocyte 
regeneration is thought to increase the risk of  genetic 
mutation in hepatocytes, and, furthermore, to promote 
survival and expansion of  initiated cells[9-11]. Addition-
ally, reactive oxygen species (ROS) and nitrogen oxygen 
species, generated by both initiated cells and inflamma-
tory cells, could accelerate hepatocarcinogenesis through 
several mechanisms, such as the induction of  oxidative 
DNA damage, DNA methylation, and hepatocyte in-
jury[11].

Multiple signaling pathways are involved in these pro-
cesses. Among them, recent in vivo studies have shown 
that several inflammation- and stress-related signaling 
pathways are key players in hepatocarcinogenesis, includ-
ing the nuclear factor-κB (NF-κB), signal transducer and 
activator of  transcription (STAT), and stress-activated 
mitogen-activated protein kinase (MAPK) pathways. 
Mutations in genes involved in these signaling pathways 
are currently thought to be rare. Nevertheless, constitu-
tive activation of  these pathways is frequently seen in the 
tumor and surrounding liver tissues, and may be due to 
the inflammatory microenvironment. Interestingly, these 
signaling pathways do not act independently, but are 
linked through extensive crosstalk. This review highlights 

advances in the understanding of  these interesting but 
complex signaling pathways in hepatocarcinogenesis.

INFLAMMATION-RELATED SIGNALING IN 
HEPATOCARCINOGENESIS
Role of the I κB kinase/NF-κB pathway in hepatocytes
The NF-κB family of  transcription factors consists of  
five members: p65/RelA, c-Rel, RelB, p50/NF-κB1, and 
p52/NF-κB2. Two of  the five members dimerize and are 
held in the cytoplasm by the inhibitor of  NF-κB (IκB) 
proteins[12]. In response to many kinds of  proinflammato-
ry stimuli, the I κB kinase (IKK) complex, which consists 
of  two catalytic subunits, IKKα and IKKβ, and a regu-
latory component, IKKγ/I κB kinase (NEMO), phos-
phorylates IκB and subsequently induces degradation 
of  it. Once activated, NF-κB dimers translocate into the 
nucleus and stimulate the transcription of  various genes, 
such as those encoding cytokines and anti-apoptotic 
factors[13]. Mice lacking RelA, IKKβ, or NEMO reveal 
embryonic lethality with extensive liver apoptosis and de-
generation[14-16]. This liver apoptosis is induced by tumor 
necrosis factor (TNF)-α, and intercrossing with TNF 
receptor 1 knockout mice prevents liver damage and the 
lethal phenotype[14,17,18]. Furthermore, hepatocyte-specific 
IKKβ or NEMO knockout mice are not embryonic-
lethal, but are more sensitive to TNF-α-mediated liver 
injury[19,20]. Thus, NF-κB plays a key role in liver homeo-
stasis by preventing hepatocyte death.

The role of  IKKβ in hepatocarcinogenesis has been 
examined using the diethylnitrosamine (DEN)-induced 
mouse HCC model[21]. DEN is the most commonly used 
genotoxic chemical carcinogen to investigate the mecha-
nism of  hepatocarcinogenesis, because it is easy to induce 
HCC and DEN-induced HCC shows histology and gene 
expression similar to human HCC, especially with a poor 
prognosis[22,23]. A single dose of  DEN given to 2-wk-old 
male mice is sufficient to induce HCC. However, when 
DEN is administered to mice older than 4 wk of  age, it 
cannot induce HCC and requires assistance from tumor 
promoters, such as phenobarbital, because hepatocyte 
proliferation is rare in adult mice[24]. Thus, some stimula-
tion that induces hepatocyte proliferation is indispensable 
as a tumor promoter in this model.

Strikingly, DEN-induced HCC was markedly in-
creased in hepatocyte-specific IKKβ knockout mice[21]. 
Hepatocyte-specific knockout of  IKKβ induced a greater 
extent of  hepatocyte death with ROS accumulation after 
DEN administration, because NF-κB activation is re-
quired for the up-regulation of  antioxidative genes, such 
as ferritin heavy chain and manganese-dependent super-
oxide dismutase. Excess ROS accumulation promotes cell 
death through various mechanisms, including prolonged 
c-Jun NH2 terminal kinase (JNK) activation[25]. Cell death 
is accompanied by an inflammatory reaction, and the 
elevated hepatocyte death rate enhances compensatory 
proliferation. Thus, the hepatocyte-specific deletion of  
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IKKβ augments DEN-induced hepatocyte death and 
cytokine-driven compensatory proliferation, which acts as 
a tumor promoter and eventually leads to increased HCC 
development (Figure 1). Similar findings were obtained 
in mice lacking IKKγ/NEMO, the hepatocyte-specific 
deletion of  which results in spontaneous liver damage, 
hepatosteatosis, fibrosis, and HCC development[20].

Although the experiments described above demon-
strate a tumor-suppressive role of  NF-κB in the hepa-
tocyte, hepatocyte NF-κB has been also identified to 
have tumor-promoting roles in other HCC models that 
depend on chronic inflammation rather than liver dam-
age and death-driven compensatory proliferation. Experi-
ments crossing transgenic mice expressing a non‑degrad-
able IκBα mutant in hepatocytes with MDR2 knockout 
mice, which show low-grade chronic inflammation in 
the portal area and subsequent cancer development, re-
vealed that the inhibition of  NF-κB activation resulted 
in reduced HCC development[26]. In this model, NF-κB 
activation in the hepatocyte promoted a low degree of  
TNF-α production and paracrine TNF-α signaling main-
tained NF-κB activation in the malignant cells, leading to 

the expression of  anti-apoptotic genes and the survival 
of  malignant cells. Notably, NF-κB activation is more 
important in the progression of  hepatocarcinogenesis 
than in the initiation step in this model. A similar tumor-
promoting role of  NF-κB in the hepatocyte has been 
reported in hepatocyte-specific lymphotoxin αβ trans-
genic mice[27]. Lymphotoxin αβ transgenic hepatocytes 
produce chemokines, such as CCL2, CCL7, CXCL1, and 
CXCL10, in an IKKβ-dependent manner, recruiting in-
flammatory cells into the liver and inducing spontaneous 
chronic inflammation and the subsequent development 
of  HCC. These findings suggest that NF-κB activation in 
the hepatocyte is involved in the production of  cytokines 
and chemokines that maintain the inflammatory environ-
ment as a tumor promoter. Thus, the NF-κB pathway in 
the hepatocyte plays dual roles in hepatocarcinogenesis, 
according to the disease model and the carcinogenesis 
stage.

Role of the IKK/NF-κB pathway in myeloid cells
The role of  the NF-κB pathway in myeloid cells has also 
been investigated using a DEN-induced HCC model[21]. 
In contrast to hepatocyte-specific IKKβ knockout mice, 
deletion of  IKKβ in both hepatocytes and myeloid cells, 
including Kupffer cells, strongly inhibited DEN-induced 
HCC development. This phenotype was derived from 
the markedly reduced production of  cytokines, such 
as TNF-α, interleukin-6 (IL-6), and hepatocyte growth 
factor, which are secreted by non-parenchymal cells in 
response to dying hepatocytes and induce compensatory 
proliferation of  residual hepatocytes. Thus, IKKβ/NF-
κB in myeloid cells is required for the production of  
liver growth factors and subsequent hepatocarcinogen-
esis. Furthermore, IKKβ in myeloid cells, especially in 
Kupffer cells, has also been implicated in the develop-
ment of  metastatic liver tumors through IL-6 produc-
tion[28]. Thus, the IKKβ/NF-κB pathway orchestrates 
inflammatory crosstalk between hepatocytes and myeloid 
cells in liver cancer development (Figure 1).

Role of inflammatory cytokines in hepatocarcinogenesis
As mentioned above, NF-κB activation-mediated produc-
tion of  inflammatory cytokines plays an important role in 
the inflammation-carcinogenesis axis of  the liver. Various 
inflammatory cytokines, including TNF-α, IL-1α, IL-
1β, IL-6, and IL-8, have been implicated in chronic liver 
inflammation, among which IL-6 is thought to be one 
of  the most important[8,29,30]. In chronic hepatitis, IL-6 is 
considered to be produced mainly by activated Kupffer 
cells and to intensify local inflammatory responses, and 
then induce compensatory hepatocyte proliferation, 
facilitating malignant transformation of  hepatocytes[30]. 
Hepatocytes express high amounts of  the IL-6 receptor 
and a signal-transducing element (gp130) that, upon IL-6 
binding, activates two signaling pathways, Janus activated 
kinase (JAK)-STAT and MAPK, which are important in 
the regulation of  cell survival and proliferation[31]. In fact, 
serum IL-6 levels are elevated in patients with chronic liv-
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Figure 1  Role of inflammation- and stress-related signaling pathways in 
hepatocarcinogenesis. Chronic liver damage induces a persistent cycle of 
necro-inflammation and hepatocyte regeneration, resulting in genetic mutations 
in hepatocytes and expansion of initiated cells, eventually leading to hepatocel-
lular carcinoma (HCC) development. As shown in the figure, nuclear factor-κB, 
signal transducer and activator of transcription 3, and stress-activated mitogen-
activated protein kinase pathways play critical roles in these processes. Fur-
thermore, other factors, such as obesity and impaired expression of microRNA, 
can modify these inflammatory processes and accelerate HCC development. 
ROS: Reactive oxygen species; TLR: Toll-like receptor; NF-κB: Nuclear factor-
κB; TNF: Tumor necrosis factor; IL: Interleukin; JNK: c-Jun NH2 terminal kinase;  
STAT: Signal transducer and activator of transcription. 
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adipose tissue or Kupffer cells activate hepatocyte STAT3 
and NF-κB, respectively, promoting cell proliferation and 
survival of  initiated hepatocytes. In fact, recent clinical 
studies have suggested that visceral fat accumulation, in-
sulin resistance, and dysregulation of  adipokines, which 
induce the activation of  the inflammatory response, play 
important roles in hepatocarcinogenesis[45-47]. As the inci-
dence rate of  such obesity-associated hepatocarcinogen-
esis is likely to increase in the near future, inflammatory 
cytokines have also attracted considerable attention as a 
mediator of  the association between obesity and hepato-
carcinogenesis[48].

Role of JAK-STAT signaling
JAK/STAT signaling pathways are important compo-
nents of  many cytokine receptor systems. Cytokines 
function by specifically recognizing their receptors, 
which, as a result of  binding to their ligand, undergo 
conformational changes, resulting in the displacement of  
JAKs, and subsequently JAKs phosphorylate and activate 
STATs. The STAT protein family consists of  seven mem-
bers encoded by distinct genes. Among them, STAT3 is 
the most important IL-6 signaling pathway molecule and 
is recognized as a key player linking inflammation and 
cancer[49,50]. In response to IL-6 signaling through gp130/
JAK, STAT3 forms homodimers that translocate to the 
nucleus. STAT3 is constitutively active in many tumor 
cells, but not in normal cells, and regulates the expression 
of  genes involved in tumor progression, such as cell sur-
vival, proliferation, invasion, and angiogenesis[51].

Clinical and experimental evidence suggest the in-
volvement of  the STAT3 signaling pathway in hepatocar-
cinogenesis. Activated nuclear STAT3 is found in 60% of  
HCC and is more pronounced in aggressive tumors[52]. In 
contrast, suppressors of  this pathway, such as suppressor 
of  cytokine signaling 3 (SOCS3), are down-regulated in 
HCC[53]. In a mouse model, hepatocyte-specific STAT3 
ablation prevented DEN-induced HCC development[52], 
whereas hepatocyte-specific SOCS3 knockout mice were 
susceptible to HCC development through the enhanced 
activation of  JAK/STAT and MAPK signaling[53]. Hepa-
tocyte-specific IL-6 and IL-6R transgenic mice spontane-
ously develop hepatocellular hyperplasia and adenomas, 
which are considered precancerous lesions in humans, 
accompanying STAT3 activation[54]. Furthermore, in 
a human study, gain-of-function mutations in gp130 
have been identified in 60% of  benign hepatocellular 
adenomas with an inflammatory phenotype, and when 
combined with β-catenin-activating mutation, lead to 
HCC development[55]. Thus, the IL-6-gp130-JAK-STAT3 
signaling axis is an important contributor to HCC devel-
opment, making it an attractive target for the treatment 
and/or prevention of  hepatocarcinogenesis.

Interaction between STAT3 and NF-κB has been 
reported at several levels in tumors. Some studies showed 
that STAT3 and NF-κB co-regulate numerous oncogenic 
and inflammatory genes[50]. Additionally, STAT3 directly 
interacts with RelA, trapping it in the nucleus, thereby 

er diseases, including alcoholic hepatitis, HBV and HCV 
infections, and NASH[32-34]. Additionally, a higher serum 
IL-6 level correlates with future HCC development in 
patients with chronic hepatitis B or C[35,36]. These findings 
suggest that IL-6 plays a role linking chronic inflamma-
tion and hepatocarcinogenesis in humans.

In a mouse HCC model, IL-6 knockout mice showed 
a marked reduction in DEN-induced HCC development, 
indicating that IL-6 signaling is directly involved in hepa-
tocarcinogenesis[37]. This study also demonstrated the key 
role played by the toll-like receptor (TLR) adapter protein 
MyD88. Necrotic hepatocyte-induced IL-6 production 
was reduced significantly in MyD88-deficient Kupffer 
cells. Furthermore, deletion of  MyD88 suppresses DEN-
induced carcinogenesis, indicating that IL-6 production 
through the TLR/MyD88/NF-κB pathway in Kupffer 
cells is essential for HCC development. Another study 
showed that the DEN-induced acute inflammatory re-
sponse is triggered by IL-1α release from necrotic hepa-
tocytes, and IL-1α subsequently induces IL-6 production 
by Kupffer cells[38]. Indeed, IL-1 receptor knockout mice 
showed significantly reduced DEN-induced IL-6 produc-
tion and subsequent HCC development[38]. Of  note, a 
clinical study revealed that higher serum IL-6 levels cor-
related with higher aspartate aminotransferase levels in 
chronic hepatitis C, suggesting that IL-6 may be produced 
in response to HCV-induced hepatocyte injury[36].

HCC develops much more frequently in males than in 
females in almost all populations, with a male-to-female 
ratio of  2:1-4:1[39]. Interestingly, although this sex disparity 
is also found in this DEN-induced HCC model, ablation 
of  IL-6 abolished the sex differences in hepatocarcino-
genesis[37]. However, ovariectomized female mice revealed 
enhanced IL-6 production and aggravated HCC develop-
ment. Furthermore, estrogen administration to Kupffer 
cells inhibits necrotic hepatocyte-induced IL-6 produc-
tion. These results suggest that estrogen-mediated down-
regulation of  IL-6 may partly explain the sex disparity 
in HCC development. However, more recently, Li et al[40] 
reported that transcription factors Foxa1 and Foxa2 in 
the hepatocyte played important roles in the sex disparity 
in hepatocarcinogenesis through an interaction with the 
estrogen and androgen receptors, independent of  IL-6 
signaling. Thus, the sex disparity in hepatocarcinogenesis 
may have several causes in addition to estrogen-mediated 
down-regulation of  IL-6.

Several epidemiologic studies have shown that obesity 
and metabolic syndrome increase the risk of  HCC[41-43]. 
Although the mechanism by which obesity and metabolic 
syndrome promote hepatocarcinogenesis is not fully un-
derstood, it seems likely to be mediated, in part, by a state 
of  chronic inflammation. A recent report by Park et al[44] 
demonstrated that dietary- or genetically induced obesity 
promoted DEN-induced HCC along with low-grade 
inflammation, and ablation of  IL-6 or the TNF receptor 
1 abrogated their tumor-promoting effects, suggesting 
that IL-6 and TNF-α are required for the promotion of  
obesity-associated HCC. IL-6 and TNF-α produced by 
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contributing to constitutive NF-κB activation[56]. On the 
other hand, a recent in vivo study revealed that IKKβ/
NF-κB in the hepatocyte negatively regulated STAT3 
activation in a DEN-induced HCC model[52]. Inactiva-
tion of  IKKβ caused ROS accumulation and ROS were 
found to oxidize protein tyrosine phosphatases, including 
SHP1 and SHP2, which dephosphorylated JAK2 and 
STAT3. Oxidation of  SHP1 and SHP2 results in the loss 
of  their catalytic activity and the constitutive activation 
of  STAT3. In fact, an inverse correlation between NF-
κB and STAT3 has been found in human HCC samples. 
This crosstalk may be a reason for the aggravation of  
DEN-induced HCC in hepatocyte-specific IKKβ knock-
out mice. Furthermore, Bard-Chapeau et al[57] showed 
that hepatocyte-specific SHP2 knockout mice revealed 
spontaneous liver inflammation and tumorigenesis, ac-
companied by STAT3 activation. These mice also showed 
enhanced DEN-induced HCC, which was decreased 
significantly by intercrossing with hepatocyte-specific 
STAT3 knockout mice. These results suggest that the 
inhibition of  STAT3 activation by SHP2 plays an im-
portant tumor-suppressing role in hepatocarcinogenesis 
(Figure 2).

Implications of microRNA in inflammatory signaling
MicroRNAs (miRNAs) are endogenous 20-23-nucleotide 
RNAs that play important gene-regulatory roles by pair-
ing with the messenger RNAs of  protein-coding genes to 

direct their post-translational repression[58]. Recently, miR-
NAs have been reported to be implicated in hepatocar-
cinogenesis through modulating inflammatory signaling 
pathways. Ji et al[59] found that miR-26 was significantly 
reduced in human HCC tissues, compared with sur-
rounding non-tumor tissues, and a gene network analysis 
revealed that miR-26 expression was inversely correlated 
with the activation of  NF-κB and IL-6 signaling path-
ways. Although a causal relationship between miR-26 and 
hepatocarcinogenesis could not be evaluated in this study, 
Kota et al[60] showed that low miR-26 expression played a 
causal role in hepatocarcinogenesis using a myc-induced 
mouse HCC model, and induction of  miR-26 by gene 
therapy suppressed HCC development.

More recently, hepatocyte nuclear factor 4α (HNF4α), 
a transcription factor that is essential for the development 
of  hepatocytes, was reported to play a key role in hepato-
carcinogenesis, linking miRNAs and inflammatory signal-
ing pathways[61]. Transient suppression of  HNF4α induc-
es decreased miR-124 expression, leading to increased IL-
6R expression and subsequent STAT3 activation. STAT3 
activation not only plays the tumor-promoting roles 
described above, but also up-regulates HNF4α-targeting 
miRNAs, miR-24 and miR-629, resulting in continued 
suppression of  HNF4α. Thus, transient suppression of  
HNF4α initiates an IL-6/STAT3-mediated hepatocar-
cinogenesis process through a miRNA feedback loop 
circuit (Figure 2). The authors also showed that systemic 
administration of  miR-124 prevented hepatocarcinogen-
esis by inhibiting the feedback loop and inducing tumor-
specific apoptosis in mice. Thus, a therapeutic strategy 
targeting miRNA may be useful for the prevention and 
treatment of  HCC.

STRESS-RELATED SIGNALING IN 
HEPATOCARCINOGENESIS
Stress-activated MAPK
MAPK cascades are signaling systems that transmit in-
tracellular signals initiated by extracellular stimuli to the 
nucleus[62,63]. The MAPK family consists of  three major 
MAPK cascades, converging on extracellular signal-
regulated kinases (ERKs), JNKs, and p38 MAPKs. Each 
MAPK signaling system comprises at least three compo-
nents: MAPK, MAPK kinase (MAPKK), and MAPKK 
kinase (MAP3K). MAP3K phosphorylates, and thereby 
activates, MAPKK, and activated MAPKK, in turn, 
phosphorylates and activates MAPK. Among the three 
MAPKs, ERKs are activated predominantly by growth 
factors, whereas JNKs and p38 MAPKs, also called 
stress-activated MAPKs, are activated by stresses. We 
discuss the function and regulation of  the stress-activated 
MAPKs in hepatocarcinogenesis in detail below.

Role of JNK signaling
JNK has three isoforms (JNK1, JNK2, JNK3) encoded 
by three loci. JNK1 and JNK2 are expressed ubiquitously, 
including in the liver, whereas JNK3 is expressed primar-
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ily in the brain[64]. JNK is phosphorylated and activated 
by two MAPKKs, MKK4 and MKK7, and subsequently 
phosphorylates transcription factors, such as c-Jun and 
JunD, which compose the AP-1 complex[65]. Additionally, 
JNK phosphorylates other proteins, such as Bcl-2 family 
members, and exerts various kinds of  functions, depend-
ing on the cell type and stimuli[66]. Furthermore, although 
JNK1 and JNK2 isoforms play redundant roles in many 
physiological processes, they also have distinct biological 
activities in some situations[67,68].

The major functions of  JNK in the liver are thought 
to be the induction of  hepatocyte proliferation and cell 
death. JNK is involved in cell cycle progression, mostly 
through the activation of  c-Jun. In this function, JNK1 
is considered to be more important than JNK2, because 
proliferation of  hepatocytes after partial hepatectomy is 
significantly impaired in JNK1 knockout mice, but not in 
JNK2 knockout mice[69]. Additionally, hepatocyte death 
due to TNF‑α, lipotoxicity, ER stress, ischemia-reperfu-
sion, and drug toxicity, such as that from acetaminophen, 
are also considered to be JNK-dependent[19,70-73]. JNK1 
and JNK2 are, to some extent, redundant in this function. 
Although the downstream targets of  JNK are not fully 
understood, most studies have demonstrated that JNK is 
required for the activation of  the mitochondrial apoptotic 
pathway, through the activation of  pro-apoptotic Bcl-2 
family members[74,75].

The role of  JNK in hepatocarcinogenesis has been 
investigated using the DEN-induced HCC model[76]. 
As mentioned above, hepatocyte-specific knockout of  
IKKβ markedly promotes DEN-induced HCC, through 
enhanced hepatocyte death and compensatory prolifera-
tion[21]. These phenomena can be partly explained by 
enhanced JNK activation in the setting of  IKKβ deple-
tion. Because prolonged JNK activation is closely related 
to cell death, systems for the regulation of  JNK activity 
are needed for tissue homeostasis. In this regard, NF-κB 
plays an important role. Although several mechanisms 
have been proposed in the NF-κB-mediated inhibition 
of  JNK activation, ROS is one of  the most important 
mediators[25,77-79]. ROS accumulation, caused by the re-
duced expression of  NF-κB-dependent antioxidative 
enzymes, extends JNK activation by inactivating MAPK 
phosphatases that are essential for the dephosphoryla-
tion of  activated JNK[25]. In fact, the administration of  
antioxidants to hepatocyte-specific IKKβ knockout 
mice decreased sustained JNK activation and hepatocyte 
death after DEN injection, and furthermore, intercross-
ing hepatocyte-specific IKKβ knockout mice with JNK1 
knockout mice significantly reduced DEN-induced hepa-
tocyte death and compensatory proliferation, eventually 
suppressing HCC development[21,76]. Additionally, JNK1 
knockout mice showed a significant reduction of  DEN-
induced HCC, compared with wild-type controls. Thus, 
JNK1 is involved in hepatocarcinogenesis through hepa-
tocyte death and proliferation, which are key components 
of  necro-inflammatory cycles (Figure 1). Furthermore, 
in addition to the initial phase, JNK1 plays a tumor-

promoting role by enhancing cancer cell proliferation 
and neovascularization through the increased expression 
of  cyclin D1 and vascular endothelial growth factor, re-
spectively[76]. Another study showed that JNK1 promoted 
HCC cell proliferation in vivo through the up-regulation 
of  c-myc expression and the down-regulation of  p21 ex-
pression[69]. This study, however, also showed that JNK2 
was not involved in hepatocarcinogenesis. In fact, JNK1, 
but not JNK2, is activated in approximately half  of  hu-
man HCC tissues, compared with adjacent non-tumor 
tissues[69,80]. These results suggest that JNKs, especially 
JNK1, play an important role in the development of  
HCC. Notably, the pharmacological inhibition of  JNK 
suppressed DEN-induced HCC and the growth of  xeno-
grafted human HCC cells, suggesting that JNK may be a 
promising therapeutic target for HCC[69].

On the other hand, a recent study using conditional 
JNK knockout mice showed that the ablation of  both 
JNK isoforms, JNK1 and JNK2, in hepatocytes increased 
DEN-induced HCC, whereas the ablation of  JNK1 and 
JNK2 in both hepatocytes and myeloid cells reduced he-
patic inflammation and the development of  HCC, indi-
cating that JNK plays dual roles in hepatocarcinogenesis, 
depending on cell type and carcinogenesis stage[81].

JNK plays a pivotal role in the development of  meta-
bolic syndrome-related disorders, including NASH[41]. 
Inflammatory cytokines and ROS accumulation in the 
liver caused by obesity and fatty liver disease induce JNK 
activation, leading to insulin resistance by increasing in-
hibitory insulin receptor substrate 1 ser307 phosphoryla-
tion[82]. As a clinical study showed that insulin resistance 
was a major contributor to obesity-mediated hepatocar-
cinogenesis, JNK may be a candidate therapeutic target 
in such situations[83]. Furthermore, ROS-mediated JNK 
activation in the liver is linked not only to liver disease, 
but also to systemic disorders, such as atherosclerotic 
cerebrovascular diseases; thus, further elucidation of  this 
process is important[84,85].

Role of p38 signaling
The p38 MAPK family consists of  four members: p38α, 
p38β, p38γ, and p38δ[86]. Among them, p38α is abundant 
in most cell types, and its function has been investigated 
in most published studies of  p38 MAPKs. p38 is ac-
tivated through phosphorylation, primarily by MKK3 
and MKK6, but phosphorylation by MKK4 and auto-
phosphorylation are also involved in some stimuli[87]. 
p38 can activate not only transcription factors, such as 
ATF2, p53, and Mitf, but also protein kinases, such as 
MAPKAP kinase 2 (MK2) and MK5[88]. Although p38 
was initially discovered as a regulator of  inflammatory 
cytokine production, recent studies have revealed that it 
has tumor-suppressing properties. p38 inhibits tumori-
genesis by the down-regulation of  cyclins, up-regulation 
of  cyclin-dependent kinase inhibitors, and modulation of  
the tumor suppressor p53, resulting in cell cycle arrest, 
oncogene-induced senescence, apoptosis induction, and 
contact inhibition[86].
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Although the roles of  p38 in the liver have yet to be 
clarified, compared with JNK, major roles reported to 
date are the inhibition of  hepatocyte death and prolifera-
tion. These effects of  p38 are partially mediated by nega-
tive regulation of  the JNK/c-Jun pathway. For example, 
hepatocyte-specific p38α knockout mice showed much 
stronger lipopolysaccharide (LPS)-induced JNK activa-
tion in the liver, and intercrossing with hepatocyte specif-
ic IKKβ knockout mice induced severe liver injury after 
LPS administration, suggesting that p38α and IKKβ act 
synergistically to protect the liver from TNF-α-induced 
hepatocyte death[89].

The role of  p38 in hepatocarcinogenesis has also 
been investigated using the DEN-induced HCC model[38]. 
Similar to hepatocyte-specific IKKβ knockout mice, 
hepatocyte-specific p38α knockout mice showed en-
hancement of  DEN-induced ROS accumulation, JNK 
activation, liver damage, and compensatory hepatocyte 
proliferation, eventually resulting in enhanced carcinogen-
esis. Another study showed the tumor-suppressing role 
of  p38 through interaction with the JNK/c-Jun pathway 
by focusing on the antiproliferative effects in the ad-
vanced stage[90]. However, in contrast to IKKβ knockout 
mice, enhanced activation of  the JNK pathway in p38α 
knockout mice was accompanied by MAPKK activation, 
suggesting that the targets of  p38α may be upstream of  
JNK, such as MAPKKs and MAP3Ks[38]. Consistent with 
these animal experiments, in human samples, the activity 
of  the MKK6/p38 pathway is decreased in HCC tissues, 
compared with adjacent non-tumor tissues, and is signifi-
cantly lower in larger HCC tissues[91]. These findings sug-
gest that the p38 pathway may play an anti-proliferative 
role in human HCC.

Regulatory system of stress-activated MAPK signaling 
by MAP3Ks
The evidence presented above suggests that JNK acts 
generally as a tumor promoter and p38 acts generally as 
a tumor suppressor in hepatocarcinogenesis, but some 
studies have shown opposite roles in HCC and other 
cancers. For example, JNK plays tumor-suppressing roles 
in mouse skin cancer and mammalian cancer models[92,93]. 
Additionally, JNK has been reported to act as a tumor 
suppressor by inducing cancer cell apoptosis in HCC[94]. 
As mentioned above, JNK was also reported to play dual 
roles in hepatocarcinogenesis, depending on cell type 
and carcinogenesis stage[81]. p38 may also have oncogenic 
effects, facilitating cell invasion, inflammation, and an-
giogenesis[95,96]. Furthermore, crosstalk among JNK, p38, 
and molecules involved in other signaling pathways, such 
as NF-κB, further complicates their roles[97]. Thus, un-
derstanding of  the regulatory system of  stress-activated 
MAPK signaling is necessary for the potential use of  
these molecules as therapeutic targets. Importantly, only 
two molecules, JNK and p38, are downstream in this 
pathway, whereas more than 10 molecules have been 
identified for upstream MAP3Ks[98]. Each MAP3K is acti-
vated by several different kinds of  stimuli, and integrated 

into a unique pattern of  MAPK activation and substrate 
phosphorylation, leading to a specific cellular response 
to the stimulus. Thus, the activities of  JNK and p38 are 
tightly regulated by MAP3Ks. Several recent studies have 
uncovered roles of  MAP3Ks in the regulation of  stress-
activated MAPK signaling in hepatocarcinogenesis.

Role of apoptosis signal-regulating kinase 1
Apoptosis signal-regulating kinase 1 (ASK1), one of  the 
most important MAP3Ks, selectively activates JNK and 
p38 signaling in response to a variety of  stimuli, including 
ROS and cytokines[99]. In particular, ASK1 plays a key role 
in oxidative stress-induced cell death. In the absence of  
oxidative stress, thioredoxin (Trx), a reduction/oxidation 
regulatory protein, inhibits ASK1 kinase activity via direct 
binding to the N-terminal region of  ASK1. However, 
once oxidative stress occurs in the cell, Trx is converted 
to its oxidized form and dissociates from ASK1, resulting 
in ASK1 kinase activation[100]. ASK1 is considered to in-
duce cell death through stress-activated MAPK-mediated 
activation of  the mitochondrial cell death pathway[101]. In 
fact, ASK1 is involved in acetaminophen-induced hepa-
tocyte death, a typical ROS-mediated liver injury, through 
mechanisms involving Trx-ASK1 dissociation[102]. Fur-
thermore, ASK1 is involved in hepatocyte death medi-
ated by death receptors, such as TNF-R and Fas[75].

ASK1 knockout mice showed significantly increased 
DEN-induced HCC, suggesting that ASK1 plays tumor-
suppressing roles in hepatocarcinogenesis in this mod-
el[75]. Activation of  JNK and the pro-apoptotic Bcl-2 fam-
ily member Bim, which are required for death receptor-
mediated apoptosis, are attenuated in ASK1 knockout 
HCC, resulting in decreased cancer cell apoptosis. On the 
other hand, ASK1 plays a minor role in the tumor-pro-
moting effects of  JNK, such as the DEN-induced acute 
phase reaction, cancer cell proliferation, and neovascular-
ization. Thus, ASK1 is considered to play major roles in 
the tumor-suppressing part of  JNK activity in hepatocar-
cinogenesis. Furthermore, DNA damage-induced p38 ac-
tivation and subsequent p21 up-regulation is impaired in 
ASK1 knockout mice. Thus, ASK1 controls the tumor-
suppressing function in stress-activated MAPK signaling 
through the induction of  apoptosis and the DNA dam-
age response.

Another study indicated that ASK1 and Bim are also 
required for sorafenib-induced apoptosis in HCC cells[103]. 
Sorafenib is a small-molecule multikinase inhibitor that is 
currently the sole therapeutic drug effective for the treat-
ment of  HCC[104]. Most recently, somatic mutations in the 
ASK1 gene, which reduce the kinase activity of  ASK1, 
have been identified in melanoma[105]. Thus, it may be 
important to clarify whether similar mutations are found 
in HCC, from the point of  view of  not only the carcino-
genesis mechanism, but also possible therapeutic effects 
of  anticancer drugs.

Role of transforming growth factor β-activated kinase 1 
Another major MAP3K, activated kinase 1 (TAK1), is 
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activated through TNF receptor, TLR, IL-1 receptor, and 
transforming growth factor β receptor signaling, and 
then activates the JNK and NF-κB pathways, which play 
opposing roles in cell death[106]. Interestingly, hepatocyte-
specific TAK1 knockout mice show spontaneous hepa-
tocyte death, and this phenotype is partially rescued by 
crossing with TNF receptor 1 knockout mice, suggesting 
that TAK1 knockout hepatocytes are highly sensitive to 
endogenous TNF‑α-induced apoptosis[107]. This spon-
taneous cell death subsequently causes compensatory 
hepatocyte proliferation, inflammation, fibrosis, and 
the eventual development of  HCC in aged mice[107,108]. 
These phenomena resemble the phenotype observed in 
hepatocyte-specific NF-κB knockout mice. Furthermore, 
JNK activation is rather enhanced in TAK1 knockout 
mice, indicating that TAK1 in the hepatocytes acts as a 
tumor suppressor, mainly by regulating the activation of  
the NF-κB pathway. However, enhanced JNK activation 
in TAK1 knockout mice occurs partially through the 
activation of  another MAP3K, TAO2, suggesting that 
TAK1 may interact with other MAP3Ks[108]. Interest-
ingly, crossing hepatocyte-specific TAK1 knockout mice 
with NEMO knockout mice attenuated JNK activation 
and prevented hepatocyte death and the development of  
HCC, suggesting that NEMO has a tumor-promoting 
function in the setting of  TAK1 deletion[108]. Additionally, 
this function of  NEMO is considered to be independent 
of  NF-κB. Furthermore, a recent study showed that 
TAK1 inhibits ASK1-mediated apoptosis through a di-
rect interaction between the C-terminal domain of  TAK1 
and the N-terminal or C-terminal domain of  ASK1 in 
HEK 293 cells[109]. Thus, in the setting of  TAK1 deletion, 
ASK1 may play a tumor-promoting role by accelerating 
hepatocyte apoptosis and subsequent inflammation. Be-
cause crosstalk among MAP3Ks is less well understood, 
further studies are needed to clarify the whole picture of  
stress-activated MAPK signaling pathways.

CONCLUSION
One of  the most important reasons for the poor progno-
sis of  HCC is its frequent recurrence. Once HCC has de-
veloped, the recurrence rate does not decline with time, 
suggesting that most cases of  late-phase recurrence are 
due to metachronous multicentric carcinogenesis caused 
by persistent chronic inflammation[110]. Thus, determining 
the molecular mechanism(s) of  inflammation-mediated 
hepatocarcinogenesis is important in preventing not 
only the occurrence, but also the recurrence, of  HCC. 
As discussed in this review, recent studies have indicated 
that NF-κB, STAT3, and stress-activated MAPK signal-
ing pathways play key roles in inflammation-mediated 
hepatocarcinogenesis. These findings may prompt their 
introduction into the clinical setting as therapeutic targets. 
However, these pathways have a wide range of  func-
tions and exhibit complex crosstalk, and furthermore, 
may play opposing roles, depending on the cell type and 
carcinogenesis stage. Thus, alternative strategies, such as 

targeting particular isoforms, including JNK1; upstream 
regulators, including MAP3K; and other modulators, 
including miRNA; may be more beneficial than targeting 
the entire pathway. In this regard, further studies clarify-
ing the entire picture of  the signaling network are needed 
to translate these signaling pathways into clinical practice.
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