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Abstract
Pneumonia is the inflammation of the lungs and it is the world’s leading cause of 
death for children under 5 years of age. The latest coronavirus disease 2019 
(COVID-19) virus is a prominent culprit to severe pneumonia. With the pandemic 
running rampant for the past year, more than 1590000 deaths has occurred 
worldwide up to December 2020 and are substantially attributable to severe 
pneumonia and induced cytokine storm. Effective therapeutic approaches in 
addition to the vaccines and drugs under development are hence greatly sought 
after. Therapies harnessing stem cells and their derivatives have been established 
by basic research for their versatile capacity to specifically inhibit inflammation 
due to pneumonia and prevent alveolar/pulmonary fibrosis while enhancing 
antibacterial/antiviral immunity, thus significantly alleviating the severe clinical 
conditions of pneumonia. In recent clinical trials, mesenchymal stem cells have 
shown effectiveness in reducing COVID-19-associated pneumonia morbidity and 
mortality; positioning these cells as worthy candidates for combating one of the 
greatest challenges of our time and shedding light on their prospects as a next-
generation therapy to counter future challenges.

Key Words: Pneumonia; Human mesenchymal stem cells; Immunomodulation; Alveolar 
protection; Pandemic challenge; Clinical trials
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Core Tip: This article reviews the therapeutic potential and amplifiable merits of 
mesenchymal stem cells (MSCs) established over the past decade and summarize 
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pioneering clinical progress of MSC-based strategies to treat lung diseases considering 
the current demands of the pandemic and future prospects.
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INTRODUCTION
Pneumonia is the inflammation of the lungs resulting from infection, usually induced 
by bacteria or virus, resulting in significant morbidity worldwide[1]. According to 
World Health Organisation statistics in 2019, pneumonia killed 15% of children under 
5 years old in 2017, being the world’s leading cause of death for children under 5 years 
of age[2,3]. Pneumonia can be caused by multiple microbial pathogens[1], including 
bacteria, virus, fungi and parasites. Streptococcus pneumoniae, Haemophilus 
influenzae type b, respiratory syncytial virus, and the influenza virus are common 
pathogenic examples, with the latest coronavirus disease 2019 (COVID-19) virus being 
a prominent culprit to severe pneumonia[4].

The rapid spread of COVID-19 has escalated into a pandemic that has severely 
affected the entire world for the past year, resulting in more than 70000000 cases and 
1590000 deaths confirmed worldwide up to December 2020. Patients with severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2) infection rapidly develop acute 
respiratory distress syndrome (ARDS), which is characterized by severe pneumonia 
and widespread inflammation in the lungs, and patients are eventually susceptible to 
death from respiratory or multiple organ failure induced by cytokine storm[5-9]. There 
are a multitude of ongoing studies focusing on improving the understanding of 
pathological mechanisms and developing effective therapeutics, vaccines and drugs. 
However, management of SARS-CoV-2 infected patients in critical conditions is still 
limited to combined administration of antibiotics, corticosteroids and antibodies[10], 
along with external life-sustaining support. This scenario creates unprecedented 
demands for effective therapeutic approaches. The interest in stem cell therapies as 
compassionate therapies or in official clinical trials has thus been kindled further.

In this review, we discuss the specific therapeutic potential and amplifiable merits 
of mesenchymal stem cell (MSC) therapies for pneumonia and lung diseases, and we 
consider the clinical trials engendered by the recent challenges of the times, along with 
future prospects of the therapeutic approach.

PNEUMONIA-TRADITIONAL AND LATEST CHALLENGES
In the year of 2015, 3.2 million deaths were estimated to be caused by lower 
respiratory tract infection[1]. Pneumonia patients often feature coughs, fevers and 
difficulty in breathing as the alveoli are filled and obstructed by pus and tissue fluid, 
reducing oxygen intake. A possible consequence is type I respiratory failure (low 
oxygenation), which could be lethal to the patient. The proliferation of microbes in the 
lower respiratory tract and alveoli leads to local and systemic response. Neutrophils 
are recruited to the site of inflammation in response to chemokines released by 
alveolar epithelial cells, while the accumulation of neutrophils and fluid eventually 
causes productive cough. Additionally, inflammatory response results in systemic 
cytokine release that disrupts hypothalamic thermoregulation, causing fever.

The rampant COVID-19 pandemic has raised latest challenges for treating 
pneumonia, as many critical conditions and resulting deaths have been caused by 
cytokine storm subsequent to severe pneumonia[5,6]. The culprit is the pathogenic 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters alveolar 
and gastrointestinal tract cells via attachment of its spike protein to angiotensin-
converting enzyme 2 (ACE2)[11,12] and TMPRSS2[11], highly expressed primarily in the 
lungs and respiratory tract.

A cytokine storm is an overreaction of immune system components (especially 
neutrophils and killer T cells) that induces collateral damage to body tissues as a 
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second hit that result in lethality in severe cases. As observed in most patients with 
severe COVID-19, the levels of pro-inflammatory cytokines are increased in a 
phenotype characterized by elevated levels of interleukin (IL)-6, IL-1β, IL-1Ra, tumor 
necrosis factor (TNF)-α, and sIL2-Rα (key mediators of hyperinflammation), 
suggestive of a cytokine storm[7,8,13,14], the leading cause of COVID-induced mortality. 
Cytokines, especially IL-6, could play a role in triggering cytokine storm syndrome by 
inducing cytolytic dysfunction[7,8]. The high levels of IL-6 found in patients with severe 
COVID-19 inhibit natural killer (NK) cell activity and hence clearance of virus-infected 
cells via induced apoptosis[15]. This suppression leads to a vicious cycle that prolongs 
the survival of the targeted infected cells and increases antigen stimulation, which 
leads to further production of pro-inflammatory cytokines[8,13,14]. The enhanced antigen 
presentation process hence leads to persistent interferon (IFN)-γ-dependent 
suppression of cytolytic function and undesirable further amplification of cytotoxic T 
lymphocyte and macrophage activity[8,16,17]. In these patients, it is imperative to 
alleviate the severe pneumonia and cytokine release through suppression of the 
cytokine storm.

Traditional approaches and stem cell therapies to treat pneumonia induced by 
COVID-19
Due to unprecedented challenges posed by the COVID-19 pandemic, many types of 
therapeutics have been scrutinized and optimized, as the hectic race for effective 
treatments continues. Unfortunately, at this stage, candidate therapeutic drugs for 
treating patients with COVID-19 pneumonia are still in the testing phase. In addition, 
although the results of trials have been promising, the preventative efficacy of vaccines 
is limited by the high likelihood of viral strain mutations. Moreover, combination 
treatments are required in critical cases, as no antibodies, antibiotics or corticosteroids 
can be specifically administered to treat COVID-19 pneumonia[10]. Thus, a spectrum of 
drugs is used, such as IL-6 antagonists (anti-inflammatory agents), glucocorticoids 
(immunosuppressants), chloroquines (anti-inflammatory agents and antiviral drugs 
that inhibit viral endocytosis) and Janus kinase inhibitors (antiviral drugs that inhibit 
viral endocytosis). However, some uses and side effects of these drugs remain 
controversial, as their adverse effects also require further elucidation[18].

The high contagiousness, long viral incubation period and diverse symptoms 
significantly compromised prevention, control and necessitates effective treatments. 
Therapeutic approaches to suppress the cytokine storm seen in patients with COVID-
19 are greatly sought after to minimize COVID-19-associated morbidity and mortality. 
A safe therapy that could versatilely suppress inflammation associated with 
pneumonia and prevents alveolar/pulmonary fibrosis while conferring 
antibacterial/antiviral immunity is hence greatly desired. These demands point 
towards a cell-based therapy with integrated benefits as a silver bullet to counteract 
the disease by alleviating the clinical features of pneumonia. Although lung disease-
related clinical studies of MSCs are rare (most trials started in 2015), MSCs are worthy 
candidates for meeting the current demands.

MSCS: A NEXT-GENERATION THERAPY FOR PNEUMONIA
Cell-based therapies and the advantages of MSCs
Cell-based therapies have emerged as a prominent form of regenerative medicine that 
could overcome limitations of the body’s internal synthesis processes[19,20], hence 
providing possible solutions to many lethal respiratory diseases such as ARDS, 
idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease[21]. Although 
stem cell therapies have risen to prominence, ethical issues regarding the stem cell 
source as well as concerns about immune compatibility and tumorigenicity are major 
limitations preventing universal cell transplantation in patients. However, MSCs have 
a long history of translational application, have been employed in clinical trials for the 
last two decades and are an attractive therapeutic candidate despite the above 
concerns[22,23].

MSCs are multipotent adult stem cells capable of self-renewal and differentiation. 
The cells feature a heterogenic tripotential character that allows adipocytic, 
osteoblastic and chondrocytic differentiation, establishing their versatile role in these 
lineages[22] to facilitate tissue repair and treatment[24,25]. A particular perk of MSCs 
which render it as a rising star in treating inflammatory lung diseases, is their 
capability to modulate proliferation, activation and effector function of all immune 
cells through juxtracrine or paracrine mechanisms[26]. MSCs possess antimicrobial 
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capabilities and alleviates bacterial pneumonia by producing antimicrobial proteins[27] 
and microvesicles promoting phagocytic activity of alveolar macrophages, critical for 
bacterial clearance[28] (Detailed potentials and merits covered below). In fact, several 
major merits favour mesenchymal tissues over other sources of stem cells. First, 
corresponding to the origin, MSCs can be sourced and isolated from a variety of 
human tissues, including the umbilical cord/placenta, bone marrow, adipose tissues, 
and even dental pulp; thus, mesenchymal tissues are a robust and readily available 
source satisfying the clinical requirements for the volume of cells needed for therapies 
in a suitable timeframe. MSCs are suitable for cryopreservation and do not have the 
ethical issues inherent to embryonic stem cells or the risk of possible tumorigenicity 
posed by induced pluripotent stem cells. MSCs are known to be safe and immune-
compatible without adverse allogeneic reactions, as documented by records of clinical 
trials[19].

Therapeutic potential and amplifiable merits of MSCs
MSCs have 6 major merits related to their therapeutic potential for pneumonia and 
lung diseases (Figure 1).

Homing capacity to sites of injury/ inflammation: MSCs possess systemic (local 
transplantation) and non-systemic (bloodstream administration) homing capacities, 
which favours targeted administration and the overcoming of current hurdles related 
to transplantation efficiency[29]. The in vivo homing capacity of MSCs is strongly 
mediated by the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 
(CXCR4) axis[30-34]. The expression of SDF-1, a highly specific ligand of CXCR4 
expressed on the membrane of MSCs, is upregulated at the injury site in endothelial 
cells[30]. SDF-1 hence acts as a chemoattractant to recruit CXCR4-expressing MSCs in a 
gradient-dependent manner to the lung injury site[30,32], thus affecting both the 
circulating and resident cell populations. The CXCR4-bound SDF-1 complex is then 
internalized and re-secreted in a cycle.

To reach the injury site, introduced MSCs must penetrate the vascular tissues, and 
very late antigen-4 expressed on the surface of MSCs can bind vascular cell adhesion 
molecule-1, promoting a high-affinity conformation[35] and facilitating migration 
through the vascular endothelium[29]. Further approaches regarding this homing 
capacity, e.g., magnetic guidance, genetic modification (by infection/transfection), cell 
surface engineering (by enzymatic modification/ligand conjugation), priming (e.g., by 
pro-inflammatory culture conditions, discussed below) and fine-tuning of 
administration sites, are viable strategies to maximize delivery and hence therapeutic 
effects[29]. As a brief example, overexpression of the CXCR4 receptor in MSCs can 
enhance the mobilization of MSCs to the injury site and colonization of damaged lung 
tissue[36]. Increased targeting of MSC to damaged tissue was also observed after 
hypoxic preconditioning of the cells[37], which can further enhance CX3CR1 and 
CXCR4 expression, boosting their inherent homing capacity via the circulatory system 
post-engraftment. In addition to CXCR4, CXCR7 is an identified receptor with affinity 
for SDF-1 and is involved in MSC migration. CXCR7 overexpression has been 
demonstrated to promote homing of MSCs to injured lung tissue and their subsequent 
differentiation into type II alveolar epithelial cells, also enhancing the ability of MSCs 
to modulate the inflammatory response in acute lung injury[38].

Pulmonary passage often presents a major obstacle for intravenous stem cell 
delivery[39]. However, systemic retainment in the lungs post-injection due to the 
pulmonary first-pass effect is particularly favourable for pneumonia treatment, as 
systemic retainment in the lung capillaries post-injection enhances, not compromises, 
the efficacy of the introduced MSCs.

Immunomodulatory capacity: The immunomodulatory capacity of MSCs is one of 
their paramount behaviours. MSCs can secrete multiple soluble growth factors, 
cytokines, chemokines and extracellular molecules for paracrine signalling to regulate 
endothelial and epithelial permeability[40,41] and suppress inflammation caused by 
tissue injury, transplantation, and autoimmunity[23,24,42,43]. The marked suppression of 
inflammation by MSCs is mediated through inhibition of T (CD8+) and B lymphocyte 
proliferation. Collections of effector molecules are produced by MSCs and their 
concerted action critically inhibit lymphocyte proliferation. Tolerogenic mediators 
such as IL-10, transforming growth factor (TGF)-β1, prostaglandin E2 (PGE2), nitric 
oxide (NO), cyclooxygenase 2 (COX2), and HGF, are secreted by MSCs and their 
extracellular vesicles, as well established by many in vitro and in vivo studies[43-47].

Immunomodulation by MSCs is mediated via a collection of signalling pathways, 
including NO pathways[42], prostaglandin signalling[48] and suppressor of cytokine 
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Figure 1 Five major perks of mesenchymal stem cells therapies for pneumonia. NO: Nitric oxide; COX2: Cyclooxygenase 2; TGF: Transforming 
growth factor; IL: Interleukin; EVs: Extracellular vesicles; PGE-2: Prostaglandin E2; SDF-1: Stromal cell-derived factor-1; VCAM-1: Vascular cell adhesion molecule-1; 
VLA-4: Very late antigen-4; MSCs: Mesenchymal stem cells; CXCR4: CXC chemokine receptor 4.

signalling[49], and is applicable to endotoxin-, bacterial- and viral-induced acute lung 
injury[50].

Ren et al[42] found that NO desensitizes T cells via the IFN- inducible nitric oxide 
synthase (iNOS) pathway. IFN-γ and the concomitant presence of any of three other 
pro-inflammatory cytokines-TNF-α, IL-1a, or IL-1b-stimulates the expression of high 
levels of several chemokines and iNOS by MSCs. MSC-secreted chemokines direct T 
cells to migrate in close proximity to MSCs and subsequently suppress their sensitivity 
through NO.

PGE2 is a major inflammatory signalling molecule secreted at very high levels by 
airway epithelial cells, smooth muscle cells and alveolar macrophages during 
inflammation and substantially enhances the inflammatory response of injured lung 
tissues. PGE2, however, also acts as a chemokine to promote the migration of MSCs by 
activating the E-prostanoid 2 (EP2) receptor[48]. Overexpression of the EP2 receptor by 
MSCs enhances their homing/migration towards prostaglandins during lung 
injury/pneumonia, thus attenuating permeability, with consequential anti-
inflammatory effects[48].

Suppressor of cytokine signalling 1 was recently discovered as an important 
negative mediator[40] of B cell function in MSCs through cytokine-induced signal 
transduction. Its knockdown promotes PGE2 secretion by MSCs. The related 
transgenic approach constitutes a novel strategy for targeting inflammatory 
pulmonary disorders.

Along with promoting secretion of the anti-inflammatory factor IL-10, MSC-induced 
suppression of TNF-α, IL-1 and IL-6 (all pro-inflammatory cytokines) expression also 
promotes regulatory T cell activation and hence combats inflammation[51], thus 
suppressing caspase-3 activity, induced apoptosis and related damage[52]. MSC 
treatment reduces the population of pro-inflammatory T cells and NK cells, 
accompanied by an increase in the number of anti-inflammatory macrophages.

The various reports on the many forms of successful immunomodulation highlight 
the efficacy of MSCs as an ideal candidate to alleviate clinical conditions arising from 
severe pneumonia and cytokine storm.

Antibacterial capacity: In animal models of E. coli-induced pneumonia, MSC 
introduction reduced extravascular pulmonary oedema, improved lung endothelial 
barrier permeability and restored alveolar fluid clearance[53,54]. Cell administration also 
improves bacterial clearance through lipocalin 2 (an iron uptake blocker and 
antibacterial protein)[55] and LL-37 (an antimicrobial peptide) production by MSCs[50]. 
In addition to suppressing inflammatory responses as discussed above, MSCs also 
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upregulate the activity of monocytes and phagocytes via FGF7 signalling, offering a 
balance of immune power to clear invasive bacteria through phagocytosis but also 
suppressing secondary tissue injury and further aggravation in murine 
pneumonia[50,53-55].

Alveolar protection and fluid clearance: Viral infection impairs alveolar fluid 
clearance and protein permeability via pro-inflammatory cytokines and chemokines[53] 
and through downregulation of alveolar sodium and chloride transporter proteins[56].

Human MSCs significantly reduce viral infection-induced impairment of alveolar 
fluid clearance in vitro and reduce associated acute lung injury in vivo[56]. While 
angiogenesis and wound healing are imperative to preserve/restore respiratory 
function in organs with a large surface area, MSC-secreted Ang-1, KGF, VEGF and 
HGF promote angiogenesis, which reduces oxidative stress and prevents fibrosis and 
apoptosis. This effect is also observed for exosomes derived from primed human 
MSCs, which accelerate wound healing[57]. The protective effect of MSCs against acute 
lung injury is also facilitated by Cx43-dependent mitochondrial transfer from MSCs to 
pulmonary alveoli and the resultant enhancement of cell activity[58].

Prevention of lung fibrosis and promotion of organ regeneration: Trophic factors 
such as HGF, EGF, bFGF, KGF, IGF-1 and connective tissue growth factor are 
important factors that modulate the microenvironment and promote tissue 
repair[52,56,59]. Of the many factors secreted by MSCs, HGF is an important factor known 
for its antifibrotic effects[60]. HGF inhibits TGF-β1 expression and subsequent cytokine 
signalling. Indeed, MSCs with artificially enhanced HGF expression exhibited a higher 
antifibrotic capacity than control MSCs in a pulmonary fibrosis model[61].

Safety & derivative cell-free therapeutics: A major concern regarding cell-based 
therapy is patient safety. MSCs, as a long-established cell pool, have been used in 
phase 1 clinical trials, an important milestone to confirm the absence of treatment-
related adverse effects[62]. With respect to the COVID-19 pandemic, which is associated 
with an overwhelming number of cases of induced pneumonia, a new era with 
numerous clinical trials using MSCs has begun.

Moreover, these trials have yielded indirect benefits through inspiring the 
development of spin-off cell-free therapies from existing basic research, which have 
further implied the efficacy of these therapies in combating inflammation/inducing 
immunomodulation (e.g., promotion of the T regulatory cell phenotype shift and 
control of NK cell activity[45,47]), improving cell survival[44], and promoting tissue 
regeneration[49] and anti-ageing[63] and are useful for confirming the absence 
of/addressing graft-host immunity concerns[64]. The increasing potential of such an 
approach is apparent, as exosomes derived from umbilical cord MSCs have been used 
for diverse applications in other fields, such as wound and fracture healing, 
myocardial infarction and liver failure models[64].

However, MSC do not feature direct capabilities against pathogenic virus. 
Corresponding downsides of MSC therapies include: (1) Poor lymphocyte proliferative 
responses; and (2) Inhibition of the proliferation and cytotoxicity of influenza-specific 
T cells[65].

MSC-derived extracellular vesicles, their cargo factors and their protective effects 
against pneumonia
Extracellular vesicles are important cell-derived membranous structures that 
participate in intercellular signalling via the transport of various protein factors and 
nucleic acids. MSC-derived extracellular vesicles (MSC-EVs) harbour their own native 
proteome, through which they offer a spectrum of therapeutic efficacy similar to that 
of other stem cell therapies. These effects include the following: (1) VEGF-mediated 
protection against neonatal hyperoxic lung injury[66]; (2) CD44-mediated reductions in 
lung inflammation, protein permeability and pulmonary oedema through prevention 
of actin reorganization and restoration of junction protein (ZO-1 and VE-cadherin) 
localization in injured lung endothelial cells[67]; CD44-mediated restoration of alveolar 
fluid clearance and improvements in airway and haemodynamic parameters in 
transplanted human lungs ex vivo[68]; (3) Inhibition of hypoxic signal transducer and 
activator of transcription-3 and miR-204 signalling (resulting from upregulation of the 
miR-17 superfamily of microRNA clusters[69]), which relieves hypoxia-induced 
pulmonary hypertension; and (4) Decreases in cytoskeletal rearrangement and 
vasculoprotective effects in haemorrhagic shock-induced lung injury via inhibition of 
the Rho GTPase pathway[70], effects similar to those of MSCs in vivo.

The anti-inflammatory properties of MSC-EVs are considerable and involve many 
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players. Like their cells of origin, MSC-EVs have also been reported to modulate 
adaptive and innate immune responses through interaction with immune cells, 
including T, B, NK, and dendritic cells[71]. Immunomodulatory proteins (e.g., LG3BP 
and PTX3) were found to be upregulated in inflammation-primed MSC-EVs[72]. These 
MSC-EVs downregulated the PI3K-AKT signalling pathway and actin cytoskeleton 
remodelling during B cell spreading, hence suppressing proliferation and 
differentiation upon internalization by activated B cells[72]. Similar to the protein 
cocktail released from MSCs, inflammation-primed MSC-EVs exhibit elevated 
expression of COX2, which participates in TNF-α-mediated inhibition of immune cells, 
as discovered by Harting et al[73]. In addition, Mokarizadeh et al[74] demonstrated in 
studies on autoimmunity that MSC-EVs produce tolerogenic molecules such as 
programmed death ligand-1, galectin-1, and TGF-β1, which inhibit the proliferation of 
autoreactive lymphocytes. Additionally, in parallel to the TGF-β-mediated 
immunosuppressive effects of MSCs, MSC-EVs contain TGF-β and enhance the 
secretion of anti-inflammatory cytokines (IL-10 and TGF-β) to suppress CD4+ T cell 
proliferation and produce regulatory T cells[74-76]), subsequently suppressing 
inflammation.

EV uptake by immune effector cells has been reported to directly correlate with 
immunomodulation, suggesting that such effects are transferable, and functional 
proteins of MSC-EVs have recently been reviewed for their immunomodulatory 
functions[77]. Recent studies have attempted to understand the functional proteins 
underlying the angiogenic, anti-apoptotic and immunomodulatory properties of 
MSCs. Anderson et al[78] provided evidence supporting the enhancement of 
angiogenesis via nuclear factor-KappaB signalling mediated by human bone marrow-
derived MSC-EVs. A proteomic analysis by Kim et al[79] identified 730 MSC-EV-
harboured proteins related to MSC self-renewal and differentiation. These proteins 
included members of the self-renewal GF receptor signalling pathway (PDGFRB, 
EGFR, TGFBI and IGF2R) and members of the Wnt signalling pathway (CTNNB1, 
RAC1/2, PPP2R1A, CHP, CAMK2D, PRKCB, PRKCB, PRKACA, and CAMK2G), as 
well as various components of the TGF, MAPK, PPAR and BMP pathways, which 
regulate MSC self-differentiation.

The signalling molecules in MSC-EVs identified by Kim et al[79] can be categorized 
into three major signalling pathways: (1) RAS-MAPK (RRAS/NRAS, MAPK1, and 
VAV); (2) RHO (GNA13); and (3) CDC42 (GNG12 and CDC42), likely activated by 
fibronectins and integrins. Further subdivision of the MSC-EV proteome by Kim et al[79] 
into five groups shed light on their therapeutic efficacy. Group II (whose members 
promote actin cytoskeleton organization via fibronectin/integrin-activated RAS-
MAPK, RHO, and CDC42; angiogenesis; blood vessel development; wound healing; 
epidermis and ectoderm development; and protein signal transduction) likely 
accounts for the protection of alveolar epithelial cells and the prevention of pulmonary 
fibrosis from clinical studies, as described by Leng et al[51]. The actions of Group I 
members (which promote cell adhesion, migration and the response to hormone 
stimuli) leads to enhanced recruitment of cells and suggests improvements in the 
microenvironment to promote endogenous repair of the lungs (see Leng et al[51]).

Later findings by Angulski et al[80] expanded and supported the findings by Kim 
et al[79]; the proteome identified by Angulski et al[80] had 60% overlap with that 
identified by Kim et al[79], highlighting the capacity of human MSC-EVs to modulate 
efficient differentiation (e.g., via STAT1 and CDC42), innate immune responses (e.g., via 
LTF and C1QBP) and migration (e.g., via CD47, ITGA11 and ITGB3) of target cells.

In conclusion, MSCs can home to and inhibit inflammation, preventing tissue 
fibrosis, secondary injury and exacerbation of pneumonia conditions. Collectively, the 
merits and therapeutic potentials summarized above suggest novel multipronged 
strategies that could be translated to future clinical applications, possibly enhancing 
the recovery of pneumonia patients.

CLINICAL PROGRESS IN MSC THERAPIES FOR PNEUMONIA
MSCs are a safe and ready source of stem cells without ethical concerns and have a 
rich history of use in regenerative medicine. However, there are still no Food and 
Drug Administration-approved MSC therapeutics designated for respiratory 
diseases[19]. Because of their immunomodulatory and protective properties discussed 
above and the current demands, MSCs have recently been featured in multiple 
licensed trials and compassionate treatments to treat patients in critical condition with 
COVID-19-induced pneumonia.
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Two pioneering clinical studies in COVID-19-induced pneumonia
After the outbreak of COVID-19, two pioneering clinical trials (Leng et al[51], Liang 
et al[81]) were conducted in China in January 2020. Clinical-grade MSCs [51] and MSCs 
sourced from human umbilical cords[81] were employed. Both studies included patients 
with critical and severe disease as a therapy combined with antiviral and supportive 
treatment.

A critically ill patient (with severe pneumonia, acute respiratory distress, multi-
organ injury and acute gastrointestinal bleeding) showed improved breathing capacity 
and autonomic capabilities days after administration of allogeneic umbilical cord-
derived MSCs. Circulating T cell counts and other vital parameters were restored 
towards normal levels, and no obvious side effects were observed[81].

Leng et al[51] highlighted a clinical trial that involved the treatment of 7 enrolled 
patients (ranging in age from 45 to 75 years old) with COVID-19 pneumonia-1 with 
critical severity, 4 in severe condition and 2 in mild condition. All patients had high 
fever, shortness of breath, and low oxygen saturation (at rest). After intravenous 
administration of clinical-grade ACE2-negative MSCs (1 × 106 cells/kilogram body 
weight), no allergic or adverse effects were observed over the 14-d period post-
transplantation. A series of clinical benefits were exhibited, including: (1) Marked 
suppression of inflammation through inhibition of T and B lymphocyte proliferation 
and downregulation of inflammatory cytokines; (2) Protection of alveolar epithelial 
cells and prevention of pulmonary fibrosis; (3) Remodelling of immune cell subsets 
(increase in regulatory T cells and dendritic cells in severe patients) and functions; and 
(4) Improvements in the microenvironment to promote endogenous repair. These 
findings are supported by those of Chan et al[56] and Lee et al[69], as human 
mesenchymal stromal cells have also been indicated to be effective in treating H5N1-
induced acute lung injury by improving alveolar epithelial protein permeability and 
fluid clearance.

The transplanted MSCs were profiled to evaluate their expression of anti-
inflammatory and trophic factors and were found to express high levels of TGF-β, 
HGF, LIF, GAL, NOA1, FGF, VEGF, EGF, BDNF, and NGF. This pattern demonstrated 
that the immunomodulatory properties of these MSCs were enduring for treating 
pneumonia. This finding was supported by the reversal of symptoms, which was also 
promising in the patient with critical disease. The anti-inflammatory effect of the 
treatment was particularly manifested in the setting of critical disease, as (1) the level 
of pro-inflammatory cytokines in the blood serum of the treatment group was 
significantly decreased (accompanied by an increase in the level of the anti-
inflammatory cytokine IL-10); (2) a phenotypic shift in peripheral lymphocytes 
towards the regulatory phenotype occurred for both CD4+ T cells and dendritic cells 
and (3) the plasma C-reactive protein (also a marker of myocardial damage) level was 
decreased tenfold, which reflected quick alleviation of the critical status. Moreover, 
significant restoration of lymphopenia and pulmonary function within 2 days post-
transplantation was observed.

Leng et al[51] also projected beneficial properties of cell-based therapies using 
mesenchymal-lineage stem cells. As cell entry by COVID-19 is mediated via ACE2 
(which is widely expressed in the heart, kidneys and digestive organs) and 
TMPRSS2[11,12], mesenchymal-lineage stem cells bestowed immunity against SARS-
CoV-2 because of their lack of ACE2 receptors while secreting anti-inflammatory 
factors to prevent cytokine storm. This finding provided inspiration for cell-based 
therapies without concern of infection in the near future.

In both pilot studies (Leng et al[51] and Liang et al[81]), marked reversal of symptoms 
was observed even in patients with severe or critical acute inflammatory pneumonia, 
adding further impetus to harness the innate immunomodulatory and antiviral 
properties established in basic studies of MSCs against ARDS, haemorrhagic lung 
injury[70], and secondary haemophagocytic lymphohistiocytosis hyperinflammatory 
syndrome[6,9].

The COVID-19 pandemic challenge, implications of MSC therapies and trends in the 
development of MSC therapies for pneumonia
The COVID-19 global pandemic constitutes an urgent and continuing threat that has 
motivated ongoing clinical trials of MSCs and their derivatives for COVID-19-induced 
pneumonia across Eurasia, South America and Australia in 2020, as summarized in 
Table 1. MSCs derived from diverse sources, including the umbilical cords, adipose 
tissue, olfactory mucosa, and dental pulp, as well as the clinically patented NestCell® 
product, has been used to combat pneumonia in COVID-19 patients. These studies 
may shed light on future alternative treatments for pneumonia patients threatened by 
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Table 1 Summary of clinical trials using mesenchymal stem cells against pneumonia till November 2020

Categories Clinical trial 
ID Status                     Study description & target 

conditions Form/source of MSCs/derivatives Locations

NCT04252118 Recruiting MSCs treatment for pneumonia patients 
infected with COVID-19

MSCs Beijing 302 Military Hospital of China, Beijing, China

NCT04288102 Recruiting Treatment with MSCs for COVID-19 MSCs Maternal and Child Hospital of Hubei Province, Wuhan, Hubei, China and 
Wuhan Huoshenshan Hospital, Wuhan, Hubei, China

NCT04313322 Recruiting Treatment of COVID-19 patients using 
Wharton's jelly MSCs

Wharton's jelly MSCs Stem Cells Arabia, Amman, Jordan

NCT04366063 Recruiting MSCs therapy for SARS-CoV-2-related 
acute respiratory distress syndrome

MSCs Royan Institute, Tehran, Iran, Islamic Republic

NCT04392778 Recruiting Clinical use of stem cells for the 
treatment of COVID-19

MSCs Istinye University, Istanbul, TurkeySBÜ Dr. Sadi Konuk Eğitim ve Araştırma 
Hastanesi, Istanbul, Turkey

NCT04315987 Not yet recruiting NestCell® MSCs to treat patients with 
severe COVID-19 pneumonia

NestCell® Hospital Vera Cruz, Campinas, São Paulo, BrazilHospital de Barueri, São Paulo, 
BrazilIncCOR, São Paulo, BrazilUNIFESP, São Paulo, Brazil

MSCs

NCT02013700 Completed Allogeneic human cells in patients with 
idiopathic pulmonary fibrosis via 
intravenous delivery

Allogeneic adult human MSCs Interdisciplinary Stem Cell Institute / University of Miami, Miami, Florida, 
United States

MSCs with 
drugs

NCT04371601 Active,not recruiting Safety and effectiveness of MSCs in the 
treatment of pneumonia of COVID-2019

MSCs combined with drugs 
(oseltamivir/hormones)/oxygen 
therapy

Fuzhou General Hospital, Fuzhou, Fujian, China

NCT01919827 Completed Study of autologous MSCs to treat 
idiopathic pulmonary fibrosis

Autologous bone marrow-derived 
MSCs (adult) via endobronchial infusion

Servicio de Neumología, Clínica Universidad de Navarra, Pamplona, Navarra, 
Spain Servicio de Neumología. Hospital Universitario de Salamanaca, Pamplona, 
Navarra, Spain

NCT02594839 Completed Safety and efficacy of allogeneic MSCs in 
patients with rapidly progressive 
idiopathic interstitial pneumonia

Bone marrow-derived MSCs Federal Research Clinical Center FMBA of Russia, Moscow, Russian Federation

Bone marrow-
derived MSCs

NCT04346368 Recruiting Bone marrow-derived MSCs treatment 
for severe patients with COVID-19

Bone marrow-derived MSCs Guangzhou Institute of Respiratory Health, Guangzhou Medical University, 
Guangzhou, Guangdong, China

NCT04348435 Recruiting A clinical trial to determine the safety 
and efficacy of hope biosciences 
autologous MSCs therapy to provide 
protection against COVID-19

Human umbilical cord derived CD362 
enriched MSCs

Hope Biosciences Stem Cell Research Foundation, Sugar Land, Texas, United 
States 

NCT04269525 Recruiting Umbilical cord-derived MSCs treatment 
for the 2019-novel coronavirus 
pneumonia

Umbilical cord MSCs Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China

NCT04273646 Not yet recruiting Study of human umbilical cord MSCs in 
the treatment of severe COVID-19

Umbilical cord MSCs Union Hospital, Tongji Medical College, Huazhong University of Science and 
Technology, Wuhan, Hubei, China

Umbilical cord 
MSCs
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NCT04282928 Not yet recruiting Safety and efficacy of umbilical cord 
MSCs for the treatment of severe viral 
pneumonia

Umbilical cord MSCs Shanghai East Hospital, Shanghai, Shanghai, China

NCT04339660 Recruiting Clinical research of human MSCs in the 
treatment of COVID-19 pneumonia

Umbilical cord MSCs Puren Hospital Affiliated to Wuhan University of Science and Technology, 
Wuhan, Hubei, China

NCT04490486 Not yet recruiting Umbilical cord tissue derived MSCs vs 
placebo to treat acute pulmonary 
inflammation due to COVID-19

Umbilical cord MSCs University of Miami, Miami, Florida, United States

NCT04398303 Not yet recruiting ACT-20 in patients with severe COVID-
19 pneumonia

ACT-20-MSC N/A

Umbilical cord 
MSCs with 
drugs

NCT04457609 Recruiting Administration of allogenic umbilical 
cord-MSCs as adjuvant therapy for 
critically-Ш COVID-19 patients

Umbilical cord MSCs with drugs 
(oseltamivir/azithromycin )

Cipto Mangunkusumo General Hospital, Jakarta Pusat, DKI Jakarta, 
IndonesiaPersahabatan General Hospital, Jakarta, DKI Jakarta, Indonesia Sulianti 
Saroso Center for Infectious Disease, Jakarta, DKI Jakarta, IndonesiaUniversitas 
Indonesia Hospital, Depok, West Java, Indonesia

NCT04349631 Enrolling by invitation Adipose mesenchymal cells for 
abatement of SARS CoV-2 respiratory 
compromise in COVID-19 

Hope biosciences-adipose derived MSCs Hope Biosciences Stem Cell Research Foundation, Texas, United States

NCT04352803 Not yet recruiting Adipose mesenchymal cells for 
abatement of SARS-CoV-2 respiratory 
compromise in COVID-19

Autologous adipose MSCs N/A

Adipose MSCs

NCT04366323 Recruiting Safety and efficacy of intravenous 
administration of allogeneic adult MSCs 
of expanded adipose tissue in patients 
with severe pneumonia due to COVID-
19

Allogeneic and expanded adipose 
tissue-derived MSCs

Hospital Universitario de Jerez de la Frontera, Jerez de la Frontera, Cádiz, Spain 
Hospital Reina Sofía, Córdoba, Spain Hospital Universitario Virgen de las 
Nieves, Granada, Spain Hospital Universitario Virgen Macarena, Sevilla, Spain 
Hospital Unversitario Virgen del Rocío, Sevilla, Spain Hospital Nuestra Señora 
de Valme, Sevilla, Spain 

NCT04302519 Not yet recruiting Novel coronavirus induced severe 
pneumonia treated by dental pulp MSCs

Dental pulp MSCs N/A

NCT04336254 Recruiting Safety and efficacy study of allogeneic 
human dental pulp MSCs to treat severe 
COVID-19 patients

Allogeneic human dental pulp stem 
cells

Renmin Hospital of Wuhan University (East Campus), Wuhan, Hubei, China

NCT04382547 Enrolling by invitation Treatment of COVID-19 associated 
pneumonia with allogenic pooled 
olfactory mucosa-derived MSCs

Allogenic pooled olfactory mucosa-
derived MSCs

Institute of Biophysics and Cell Engineering of National Academy of Sciences of 
Belarus, Minsk, Belarus

MScs derived 
from other 
tissues

NCT01385644 Completed A study to evaluate the potential role of 
MSCs in the treatment of idiopathic 
pulmonary fibrosis

Placental MSCs The Prince Charles Hospital, Brisbane, Queensland, Australia

NCT04276987 Completed A pilot clinical study on inhalation of 
mesenchymal stem cells exosomes 
treating severe COVID-19 induced 
pneumonia

MSC-derived exosomes Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 
Shanghai, China

Safety and efficiency of method of 

MSC-derived 
exosomes

NCT04602442 Enrolling by invitation MSC-derived exosomes Medical Centre Dinasty, Samara, Russian Federation
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exosome inhalation in COVID-19 
associated pneumonia 

Others NCT04299152 Not yet recruiting Stem cell educator therapy treat the viral 
inflammation in COVID-19

Stem cell educator-treated mononuclear 
cells apheresis

N/A

Information retrieved and reconstructed from the United States National Library of Medicine. MSC: Mesenchymal stem cell; COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; N/A�Not 
applicable.

critical cytokine storms and/or secondary infections.
Derivative therapies, in the form of extracellular vesicles, have also been employed 

to treat pneumonia. A pilot clinical study on the treatment of severe COVID-19 
pneumonia by inhalation of MSC-derived exosomes was conducted in Wuhan in 
February of 2020 aiming to exploit the anti-inflammatory and beneficial properties 
described above to treat pneumonia patients.

The frontiers of cell-based therapy highlight the cell as a flexible vehicle for the 
delivery of therapeutic factors to target the microenvironment controlled by the 
disease[82]. Directly administered drugs often have a short action timespan due to 
metabolization and degradation in the recipient, and a cell-based vehicle can 
compensate for these effects through sustainable delivery of numerous and 
considerable quantities of factors to combat the pathogenic cause. MSCs may also be 
used in combination treatments, ideally with antibiotics, to synergistically improve the 
therapeutic effects. When MSCs were administered in combination with linezolid to 
treat severe pneumonia induced by methicillin-resistant Staphylococcus aureus 
infection, significantly reduced inflammation, along with recovery, were observed[83]. 
Although MSC therapies offer promising effects and advances, many matters remain 
to be addressed before they can be widely applied, including: (1) The establishment of 
an application timeframe corresponding to the disease; (2) Determination of the 
optimal dosage of cells; (3) Selection of the optimal frequency of administration; and 
(4) Calculation of post-cell-administration survival rates of patients.

While transgenic modifications could better meet the requirements of the disease to 
maximize the efficacy of cell-based therapies, alternatively harvesting MSC-derived 
EVs for cell-free therapeutic approaches is another possibility. This approach could be 
considered in combination with priming/conditional extraction for enrichment of 
functional proteins. Site-/organ-specific (or non-systemic) homing via surface 
engineering-mediated exosome clearance could reduce exosome loss via off-target 
uptake from the blood circulation by the mononuclear phagocyte system post-
intravenous injection[84].

Future challenges to the development of MSC clinical therapies
With the MSC clinical trials sprouting globally, there are still many ethical, political, 
economic and legal challenges to be addressed before popular applications could be 
seen.
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Regenerative stem cells therapies as a further step to current trials should see rescue 
against human patient-specific dysfunctions and tailored to cater requirements of the 
individual. State-of-art genetic/molecular engineering to optimize therapeutic 
potentials should be compounded with prior screenings of donor source, immune-
compatibility and compact quality control. This is ideally achieved by the 
establishment of officially-licensed stem cell banks, to secure the safety, privacy and 
well-fare of patients.

The sudden necessities of the pandemic have led to the surging human clinical stem 
cell trials. Even though the reviewed compassionate treatments demonstrated 
promising efficacy, many are conducted upon special considerations to research ethics 
[based upon Helsinki declaration (2013)], without clear distinctions of clinical 
treatment and scientific research in the very period[85]. This manifests a gap in the 
existing laws worldwide and necessities for regulation establishment for stem cell 
research management. This point towards the need of effective supervision from an 
ethical review committee system, to speed up reviewing and update relevant 
regulations for the best of the field’s development.

Bioeconomic concerns manifested as funding requirements, time concerns and legal 
allowance currently limits the nature and numbers of available trials and that able to 
pass all four phases of clinical trials. To produce cost-effective, time-sensitive and 
finally an affordable treatment for the public, a burning need exists for effective 
assessments of the respective potentials of regenerative medical trials and thus, 
strategic boosts for translating promising trials into functionally productive flagships.

Currently guidelines are established for clinical regenerative medicine-translation 
research in the United States, while other countries have also attempted to establish 
their own systems of regenerative medicine sector. Yet, the lack of budget planning, 
combined with insufficient financial support render such systems improvable[86]. This 
is best tackled by combinative support from: (1) Government subsidies; (2) Investment 
from private equities; and (3) Tax incentives, for better development of stem cell 
therapies for the world.

CONCLUSION
Currently, no MSC-based therapies have passed phase 4 clinical trials for the 
prevention and/or treatment of pneumonia, but amidst the surge and demands of the 
COVID pandemic, a total of 23 therapies (completed, active or recruiting) 
incorporating MSCs and their derivatives have been actively featured in pioneering 
clinical trials or promoted as compassionate treatments, being a good indication of 
corresponding advances and prospectively legitimate therapies. The results from these 
trials are expected to offer further promising revelations and additional motivation for 
the use of MSC therapies and their derivatives as conventional treatments for various 
forms of pneumonia and lung diseases in the coming decade.
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