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Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with marked potential 
for regenerative medicine because of their strong immunosuppressive and 
regenerative abilities. The therapeutic effects of MSCs are based in part on their 
secretion of biologically active factors in extracellular vesicles known as exosomes. 
Exosomes have a diameter of 30-100 nm and mediate intercellular communication 
and material exchange. MSC-derived exosomes (MSC-Exos) have potential for 
cell-free therapy for diseases of, for instance, the kidney, liver, heart, nervous 
system, and musculoskeletal system. Hence, MSC-Exos are an alternative to MSC-
based therapy for regenerative medicine. We review MSC-Exos and their 
therapeutic potential for a variety of diseases and injuries.

Key words: Exosomes; Mesenchymal stem cells; Cell-free therapy; Regenerative medicine; 
Mesenchymal stem cell-derived exosomes; Extracellular vesicles

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Mesenchymal stem cell-derived exosomes (MSC-Exos) contain a variety of 
functional proteins, mRNAs, microRNAs, and signaling lipids. MSC-Exos are more stable 
than their parent cells and do not have the safety issues of living cells, such as 
tumorigenesis and occlusion of the microvasculature. MSC-Exos represent an alternative 
to MSC-based therapies for regenerative medicine. In this review, we summarize the 
characteristics of MSC-Exos and highlight their functions and therapeutic potential for 
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tissue/organ regeneration and for kidney, liver, cardiovascular, neurological, and 
musculoskeletal diseases, as well as cutaneous wound healing.
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INTRODUCTION
Regenerative medicine, aimed at promoting the repair and regeneration of tissues and 
organs, is multidisciplinary. It can be understood as the use of biology and tissue 
engineering to find effective and feasible treatments that promote self-repair and 
regeneration or the generation of new tissues or organs to maintain, improve, and 
repair damaged bodies. Stem cell transplantation is the main method for tissue 
regeneration. Stem cells are immature tissue precursor cells that are capable of self-
renewal to form a cloned cell population and, thus, differentiate into multiple cell 
lineages[1,2]. Stem cells can be classified as (1) Embryonic stem cells derived from early 
embryos; (2) Induced pluripotent stem cells; and (3) Adult stem cells, including 
hematopoietic stem cells, neural stem cells, and mesenchymal stem cells (MSCs). The 
therapeutic potential of stem cells can be attributed to three key mechanisms[3]. The 
first is homing, the migration of stem cells to the site of injury; the mechanism is 
thought to be similar to that of leukocyte migration and to involve cell-surface 
receptors, such as chemotactic receptors. Integrins, vascular cell adhesion molecule 1, 
and G protein receptor signals are also likely to play important roles in this process. 
The second is differentiation into diverse cell types, enabling supplementation or 
replacement of damaged cells[4]. The third is secretion of biologically active factors that 
affect surrounding tissues. Adult stem cells promote the maintenance and repair of 
adult tissues and organs[5]. MSCs are one of the most important types of adult stem cell 
and have been used for cell-based therapy of diverse diseases[6].

MSCs were discovered in 1968 by Friedenstein et al[7], who described them as 
fibroblasts capable of secreting hematopoietic growth factors and cytokines. Later 
studies showed that MSCs are ubiquitous and can be isolated from a variety of tissues, 
including bone marrow, adipose tissue, dental pulp, umbilical cord, umbilical cord 
blood, placenta, amniotic fluid, Wharton’s jelly, the brain, spleen, liver, kidney, lung, 
thymus, and pancreas. Moreover, MSCs have self-renewal ability and can differentiate 
into multiple cell types[8,9]. MSCs can be isolated and expanded from the stroma of 
many tissues, e.g., bone marrow and subcutaneous adipose tissue[10]. MSCs show 
promise for cell therapy because of the their ease of isolation, self-renewal and in vitro 
expansion ability, low immunogenicity, multidirectional differentiation, and release of 
trophic materials that promote tissue renovation or direct cell replacement[11]. 
However, the disadvantages of MSCs include the difficulty in producing cells with a 
stable phenotype, the deleterious effect of the presence of large cells in the pulmonary 
microvasculature, host cell rejection, ectopic tissue formation, and tumor formation. 
These disadvantages have restricted their clinical use[12-15]. Thus, alternative MSC-based 
and complication-free therapeutic strategies are needed. The therapeutic potential of 
MSCs is determined by their paracrine secretion of a range of growth factors, 
chemokines, and cytokines[16-18]. Therefore, finding a cell-free therapeutic strategy with 
the same output and efficacy seems to be necessary.

Research has focused on extracellular vesicles (EVs) secreted by MSCs as a possible 
non-cellular therapy[19]. MSCs release numerous EVs, including microvesicles (MVs), 
exosomes, and apoptotic bodies, which may act as paracrine mediators between MSCs 
and target cells[20]. MVs and exosomes exert a pro-regenerative effect, which is 
mediated by their protein, mRNA, and regulatory non-coding RNA (e.g., microRNA 
[miRNA]) contents. Exosomes are the most prominent type of EV and have potential 
for cell-free therapy because of their biological activities and ability to mediate 
intercellular communication[21,22]. MSC-derived exosomes (MSC-Exos) replicate the 
biological activity of MSCs and are thus an alternative to whole-cell therapy[23,24]. In 
addition, the surface of exosomes can be modified to enable targeting of specific cell 
types, suggesting their promise for cell-free therapy.
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MSC-Exos have potential for tissue engineering and regenerative therapy. In this 
review, we summarize the characteristics of MSC-Exos and highlight their functions 
and potential as a novel cell-free strategy for regenerative medicine.

CHARACTERISTICS AND BIOLOGICAL FUNCTIONS OF MSCS
Characteristics
MSCs are an undifferentiated adult stem cell population with self-renewal ability, low 
immunogenicity, and multilineage differentiation potential. MSCs have plastic 
adhesion properties and can be easily isolated from a variety of tissues, such as 
adipose tissue, umbilical cord blood, liver, amniotic fluid, placenta, and dental 
pulp[8,9]. The International Therapeutic Association of MSCs established the recognition 
characteristics of human MSCs in 2006. These include maintenance of adherence under 
standard culture conditions; expression of CD105, CD73, CD90, STRO-1, CD29, and 
CD44; no expression of CD45, CD34, CD14, CD11b, CD79a, CD19, or HLA-DR; and the 
ability to differentiate into osteoblasts, adipocytes, and chondrocytes in vitro[25]. The 
ease of isolation and biological functions of MSCs make them suitable in preclinical 
and clinical trials of cell therapy (Figure 1).

Biological functions
Multilineage differentiation potential: MSCs can differentiate into multiple 
mesenchymal (such as osteoblasts, chondrocytes, adipocytes, endothelial cells, and 
cardiomyocytes) and non-mesenchymal (such as neurons, glial cells, and hepatocytes) 
lineages. These characteristics make MSCs good seed cells for tissue engineering and 
regenerative medicine (e.g., bone and cartilage reconstruction, nerve regeneration, and 
vascular tissue repair)[26].

Promotion of tissue repair: After systemic adoptive transfer, MSCs may occur with 
lodging in non-specific tissues, homing to natural walls or migration into damaged 
and/or diseased tissues[27]. MSCs can migrate to injured tissue and release cytokines, 
inflammatory mediators, extracellular matrix (ECM) components, and antibacterial 
proteins, thereby generating a suitable microenvironment for tissue repair. MSCs are 
suitable for repair of tissue injury and treatment of, for instance, diabetes, graft-vs-host, 
cardiovascular, inflammatory, liver, lung, kidney, nerve, autoimmune, and bone and 
cartilage diseases[28,29]. In a rat model of lipopolysaccharide (LPS)-induced acute lung 
injury, allogeneic MSCs transplantation ameliorated the redox environment by 
upregulating heme oxygenase 1 and protected against lung injury[30]. In a clinical trial, 
autologous bone-marrow-derived MSCs (BMSCs) ameliorated the motor disability and 
cognitive impairment in stroke patients[31].

Immunosuppression: The therapeutic effect of MSCs is mainly attributed to their 
immunoregulatory activity. MSCs exert immunomodulatory and anti-inflammatory 
effects by regulating lymphocytes associated with the innate and adaptive immune 
system[32]. MSCs modulate the immune response by inhibiting a wide range of immune 
cells, including T, B, and natural killer (NK) lymphocytes, and affecting the function of 
myeloid cells such as monocytes, dendritic cells (DCs), and macrophages[11,33]. 
Specifically, MSCs inhibit T-cell proliferation, activation, and secretion of 
inflammatory factors [such as interleukin (IL)-2, tumor necrosis factor (TNF)-α, and 
interferon-γ], reduce the Th1/Th2 ratio, and decrease the number of Th17 cells[33]. Also, 
MSCs induce the generation of regulatory T cells (Tregs), including classic CD4+ CD25+ 
FoxP3+ Tregs and non-classical Tregs (such as CD8+ CD28- regulatory T cells), and IL-
10+ Tr1 cells[34,35]. In addition, MSCs suppress the differentiation of B lymphocytes into 
plasma cells and their secretion of immunoglobulins[36]. Furthermore, MSCs inhibit the 
cytotoxicity potential of NK lymphocytes, and promote the transformation of M1 
macrophages (pro-inflammatory) to M2 macrophages (anti-inflammatory)[37,38]. MSCs 
modulate antigen presentation by antigen-presenting cells by downregulating MHC 
and co-stimulatory molecules (CD40, CD86, and CD80) and suppressing the 
maturation of DCs[38]. The immunomodulatory properties of MSCs suggest their 
therapeutic potential for a variety of diseases.

Neuroprotective effect: MSCs transdifferentiate into neural cells and secrete 
neurotrophic and anti-inflammatory factors following transplantation, thus exerting 
strong trophic and neuroprotective effects. The therapeutic role of MSCs has been 
evaluated in preclinical models of neurodegenerative diseases, including amyotrophic 
lateral sclerosis (ALS), Huntington disease, multiple sclerosis (MS), Parkinson disease, 
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Figure 1  Schematic diagram of mesenchymal stem cells-based regenerative medicine. Mesenchymal stem cells can be easily isolated from a 
variety of tissues, and the multiple differentiation and immunomodulatory properties of mesenchymal stem cells make them ideal candidates for cell therapy. ESCs: 
Embryonic stem cells; iPSCs: Induced pluripotent stem cells; CD: Cluster of differentiation; MSCs: Mesenchymal stem cells; DC: Dendritic cells; NK cells: Natural 
killer cells; M1: Microglia M1 phenotype; M2: Microglia M2 phenotype; Treg: Regulatory cell.

and spinal cord injury (SCI)[39]. The neuroprotective effect of MSCs is mediated by 
production of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), 
ciliary neurotrophic factor, glial cell line-derived neurotrophic factor, nerve growth 
factor, and neurotrophin-3 (NT-3)[39,40]. The BDNF and NT-3 released by MSCs act on 
neural progenitor cells in the lesion, improving neurogenesis[40,41].

Mechanisms underlying MSC based therapy
MSCs have diverse functions but the underlying mechanisms are unclear. The 
therapeutic potential of MSCs is based mainly on their immunoregulatory activity and 
replacement of damaged tissue by differentiating into various cell lineages. It has long 
been thought that the effect of MSCs on damaged or diseased tissue is based on their 
immunoregulatory effect[11]. However, the therapeutic benefit of MSCs is attributable 
not only to their differentiation capacity but also their secretion of soluble factors that 
exert immunoregulatory, angiogenetic, and ECM remodeling, and anti-apoptotic, anti-
fibrotic, and antioxidant effects[8,16]. In this way, MSCs directly or in a paracrine manner 
rescue damaged cells, reduce tissue damage and, ultimately, accelerate organ repair[42].

Haynesworth et al[42] in 1996 first reported the paracrine effect of MSCs. MSC-
derived paracrine factors have been shown to promote angiogenesis, protect against 
acute renal, liver, and tissue injury, promote neovascularization, and enhance 
arteriogenesis[5,18,43]. MSCs secrete mediators that directly activate target cells or 
stimulate neighboring cells to secrete active factors[43]. Interestingly, MSC-derived EVs, 
including exosomes, exert other paracrine effects on tissue regeneration by 
transferring information to damaged cells or tissue and have biological activity similar 
to that of MSCs[19]. Moreover, compared with MSCs, MSC-Exos can cross biological 
barriers, can be modified to load molecular drugs, have fewer side effects and less 
immunogenicity, and remain active during storage[44]. Therefore, the regenerative 
potential of MSC-Exos as cell-free therapy has been evaluated.
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EXOSOMES
Definition and morphological characteristics of exosomes
Exosomes are one of the main subclasses of EVs, which were discovered in sheep 
reticulocytes in 1983[45]; the term “exosome” was coined in 1987[46]. Exosomes are small 
lipid membrane vesicles, which are formed by endocytosis, integration, and efflux. 
Exosomes are secreted by a wide range of mammalian cell types, including MSCs, B 
cells, cytotoxic T cells, neurons, cancer cells, oligodendrocytes, platelets, epithelial 
cells, DCs, and mast cells[47]. Exosomes are present in body fluids such as saliva, blood, 
bile, urine, semen, cerebrospinal fluid, ascites fluid, amniotic fluid, and colostrum[48]. 
Morphologically, exosomes are described as cup-shaped or saucer-like when observed 
by transmission electron microscopy[48,49]. Similar to other lipid vesicles, exosomes float 
in a sucrose gradient and have a density of 1.13 g/mL (B-cell-derived exosomes) to 
1.19 g/mL (intestinal cell-derived exosomes)[49,50]. B-cell exosomes are the most 
homogeneous in terms of size (60-80 nm)[50].

EVs are classified as exosomes, MVs, or apoptotic bodies, depending on their origin. 
Exosomes are 30-100 nm in diameter, MVs are 100-1000 nm in diameter, and apoptotic 
bodies are 1-5 μm in diameter[49,51,52]. There are overlaps in the sizes of EVs, and the lack 
of standardization is an issue. The major EV subtypes currently recognized, together 
with their basic characteristics, are summarized in Table 1.

Biogenesis of exosomes
Exosomes originate from the endocytosis-exogenous pathway, while other EVs are 
derived directly from the plasma membrane. Exosome biogenesis occurs via the 
endocytosis-ectopic pathway when cells absorb a small amount of intracellular fluid in 
specific membrane regions and form early endosomes. Those early endosomes begin 
to mature and expand into late endosomes, which undergo inward germination to 
form intraluminal vesicles (ILVs) with a diameter of 30 nm to 100 nm. Late endosomes, 
often referred to as multivesicular bodies (MVBs) due to their inclusion of ILVs, fuse 
with lysosomes, resulting in degradation of their contents, or fuse with the cell 
membrane and are released into the extracellular environment – these are defined as 
exosomes[48,52]. The exosomes are subsequently taken up by recipient cells. Exosomes 
can be endocytosed or interact with recipient cells through ligand-receptor or direct 
binding[53] (Figure 2). Although the endosomal-dependent pathway is the main route 
of exosome biogenesis, direct budding of the plasma membrane can also produce 
exosomes. Two major MVB and ILV biogenesis pathways have been identified: The 
endosomal sorting complex required for transport (ESCRT)-dependent and ESCRT-
independent pathways (Figure 2). The ESCRT comprises four complexes and their 
associated proteins, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III, which are involved 
in identifying ubiquitinated proteins in the endosomal membrane, and budding and 
separating of the endosomal membrane then modulate the integration process that 
ultimately produces ILVs[54]. In contrast, the ESCRT-independent pathway integrates 
cellular content into exosomes via budding of ceramide-induced ILVs[55]. The 
classification of other proteins is mediated by variations in the normative ESCRT-
dependent pathway[56]. In addition, there are other mechanisms in exosome biogenesis, 
and this finding suggests that ILV formation requires sphingolipid ceramide. 
Moreover, neutral sphingomyelinase enhances ILV formation by promoting MVB 
budding[48].

Isolation of exosomes
Various exosome separation techniques, including ultracentrifugation-based 
separation technology, size-based technology, precipitation technology, and 
immunoaffinity capture, as well as novel combinations of these, are available or under 
development (Table 2).

Ultracentrifugation: The method most commonly used to isolate exosomes is 
ultracentrifugation, frequently in combination with a sucrose density gradient or a 
sucrose cushion[57]. Cells and larger particles are removed by increasing the centrifugal 
force, and exosomes are pelleted by centrifugation at ≥ 100000 × g for > 2 h. This 
method is simple and cost-effective but requires specialized equipment and lacks 
specificity, so exosomes may be contaminated with other EVs of similar diameter[58].

Membrane filtration: Exosomes can be isolated by membrane filtration[58]. After 
removing cell debris and macromolecules, the sample is ultrafiltered to remove 
contaminants. Membrane filtration is rapid and easy to perform. However, it can be 
difficult to separate exosomes from contaminants, such as apoptotic bodies or vesicles 
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Table 1 Characteristics of different types of extracellular vesicles

Feature Exosomes Microvesicles Apoptotic bodies

Diameter and 
shape

30-100 nm, cup shape 100-1000 nm, irregular shape 1-5 μm, heterogeneous shape

Sucrose gradient 1.13-1.19 g/mL 1.04-1.07 g/mL 1.18-1.28 g/mL

Sedimentation 100000 g 10000 g 16000 g

Protein markers CD63, CD81, CD9, Alix, Tsg101, annexins, 
heat-shock proteins

Integrins, selectins, CD40, flotillins, CD40, 
ARF6, VCAMP3

TSP, C3b, histones

Origin Fusion of multivesicular bodies with cell 
membrane

Outward budding of cell membrane Outward budding of apoptotic cell 
membrane

Lipid content Ceramide Phosphatidylserine Phosphatidylserine

Nucleic acids DNA, mRNA, miRNA, non-coding RNA DNA, mRNA, miRNA, non-coding RNA Fragmented DNA, mRNA, miRNA, non-
coding RNA

Table 2 Summary of exosome isolation methods

Methods Mechanism Advantages Disadvantages

Ultracentrifugation Physical method A golden standard; low cost; a wide range of 
volumes

Low yield; low purity; time-
consuming

Membrane filtration Physical method using filters Simple; fast; high yield; keeps exosomes intact Low purity; deformation of 
exosomes

Precipitation Physical/chemical method High yield; easy; high recoveries Low purity; contaminants

Size exclusion 
chromatography

Use columns packed with pore 
beads

High yield; reduces exosome aggregation; 
keeps exosomes intact

A small number of bands; time-
consuming

Immunoaffinity capture 
technology

Magnetic beads bound to specific 
antibodies

High yield; high purity; specialty Time-consuming; high cost

of similar diameter, depending on the pore size of the filter[59].

Precipitation: Polyethylene glycols (PEGs) can be used for precipitation[60]. ExtraPEG 
was adapted from a PEG-based virus isolation method and can be applied to various 
vesicle types and biological fluids[61]. PEG-mediated exosome isolation involves low-
speed centrifugation followed by a single small-volume filtration purification step. 
This method is rapid and inexpensive[58], but the exosomes produced are of low purity 
and the technique is costly[57].

Size exclusion chromatography: Exosome isolation by size exclusion chromatography 
(SEC) involves a column packed with porous polymeric beads. SEC involves removal 
of cells and larger particles by low-speed centrifugation, followed by two filtration 
steps using 0.2 μm pore filters with a 100 kDa molecular weight cut-off and 
purification by SEC[62]. High yield and no need for specialized equipment are the main 
advantages of this approach but the exosomes produced have low purity and 
clogging, vesicle capture, and exosome loss due to membrane attachment can 
occur[57,58].

Immunoaffinity capture: Immunoaffinity capture of exosomes involves antibodies 
against exosome markers (including CD81, CD63, or CD9) and specialized lectins 
targeting mannose[62,63]. This method enables production of exosomes with high purity 
but is costly, has a low yield, and requires cell-free samples[57].

In addition, exosome isolation kits and precipitation solutions can be used to isolate 
exosomes. However, there is no one-size-fits-all technique, and it is impractical to 
separate exosomes completely from other components. Therefore, the most 
appropriate technique for isolating exosomes should be selected. After isolation, 
exosomes can be stored at -80 °C.

Characterization and identification of exosomes
Exosomes are identified based on their morphology, size, and marker proteins. 
Methods for identifying exosomes include transmission electron microscopy (TEM), 
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Figure 2  Exosome biogenesis and its application. A: Exosome biogenesis and intercellular communication; B: Exosome components; C: Exosome 
application. The applications include: (1) Drug deliver. Therapeutic agents such as chemicals, peptides, and RNAs can be delivered into patients; (2) diagnosis: 
Exosomes derived from patients can be used for disease diagnosis; and (3) therapy: Exosomes derived from mesenchymal stem cells can be used for various 
diseases. MVB: Multivesicular body; ILV: Intraluminal vesicle; MCH 1, 2: Major histocompatibility complex 1, 2; TSG101: Tumor susceptibility gene 101; ALIX: ALG-2-
Interacting Protein X; RAP1B: Member of RAS oncogene family.

scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoparticle 
tracking analysis (NTA), flow cytometry analysis, Western blot, and enzyme-linked 
immunosorbent assay (ELISA)[47,62]. TEM, SEM, and AFM are used to determine the 
size and morphology of exosomes; of these, TEM is the most frequently used[64]. NTA 
is frequently applied to evaluate the size distribution and concentration of exosomes. 
Flow cytometry and Western blot can be used to identify exosome surface marker 
proteins[65], for example, CD9, CD63, CD81, and CD82. The proteins in exosomes can 
be quantified by Bradford or bicinchoninic acid assay or ELISA[65]. Two or three of 
these methods are often used in combination to analyze exosomes.

Exosome contents and function
Because exosomes are formed by budding from early endosomes, they have a lipid 
bilayer membrane, which protects the resident genetic material (DNA, mRNA, 
miRNA, pre-miRNA, and other non-coding RNAs), lipids, and proteins during 
transportation to target cells[66]. The most common exosomal surface proteins are 
members of the tetraspanin family, a group of scaffold membrane proteins including 
CD63, CD81, and CD9, which serve as markers. Other common proteins include 
membrane transporters and fusion proteins (such as GTPases and annexins), heat 
shock proteins (such as HSP60, 70, and 90), MVB biogenic proteins (such as ESCRT 
complex, Alix, and TSG101), lipid-related proteins, and phospholipases[21,67]. The 
exosome membrane also contains cholesterol, sphingomyelin, and ceramide in a large 
number of lipid rafts[68]. Exosomes also contain mRNA and miRNA, which, upon 
endocytosis by the recipient cell, modulate protein synthesis and cell function[68]. The 
protein, lipid, and nucleic acid contents of exosomes vary according to the identity and 
physiological condition of the source cell and the extracellular environment. Therefore, 
the content of exosomes serves as an indicator of their source cell. Unique exosomes 
containing different proteins and RNAs determine their various subpopulations and 
therefore exert different effects on recipient cells.

Exosomes have various functions. Depending on their characteristics, exosomes can 
be used for disease diagnosis, drug delivery, and as therapeutic agents (Figure 2). 
Exosomes engage in specific interactions with the recipient cells, promoting 
information and material exchange between widely separated anatomic sites[69]. 
Because they can cross the blood–brain barrier, exosomes have potential for drug 
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delivery to the brain[70]. The nanometer-scale size and stability of exosomes suggest 
their diagnostic potential. Finally, exosomes are a cell-free alternative to cellular 
therapy. Following injection, exosomes are safer and easier to control than live cells, 
which can undergo uncontrolled growth and tumor formation[24]. The roles of 
exosomes in immunology and cancer biology have been established[71].

Unlike cells, exosomes do not undergo malignant transformation, do not replicate, 
and do not induce metastasis. In this review, we focus on the potential of MSC-Exos in 
regenerative medicine.

MSC-EXOS
MSCs have been isolated from a variety of sources. Because of their ease of isolation, 
no ethical considerations, and low immunogenicity, MSCs have therapeutic potential 
for various diseases. However, injection of MSCs may cause malignant transformation 
and spread of tumors. Also, differentiation of MSCs induces tissue ossification or 
calcification in animal models. MSC-Exos have the same functions as MSCs, without 
the above complications.

Properties and functions of MSC-Exos
MSC-Exos were first isolated by Lai et al[72] in 2010, and the purified exosomes reduced 
the infarct area in a mouse model of myocardial ischemia/reperfusion (I/R) injury. 
Therefore, exosomes represent novel biological agents for promoting tissue repair. 
MSCs are the most prolific exosome producers[73], and the exosomes produced by 
MSCs have similar morphological characteristics, isolation methods, and preservation 
conditions to those from other cell types. The composition of exosomes depends on 
their cellular origin. MSC-Exos harbor membrane-bound proteins such as CD44, CD73, 
and CD29; the surface protein profile of exosomes is dependent on the medium used 
to culture the source MSCs. mRNAs and miRNAs are encapsulated in MSC-Exos; the 
miRNAs participate in the exchange of information between cells and modulate the 
function and fate of the recipient cell[73].

MSC-Exos carry proteins, lipids, DNA, and RNA from MSCs, which is the basis for 
their therapeutic effect. MSC-Exos have biological functions similar to MSCs, but have 
a smaller volume, can penetrate biofilm, have low immunogenicity, and can be stored. 
The lipid bilayer of exosomes protects the contents and protects nucleic acids from 
RNases[74]. Furthermore, exosomes transport a variety of biologically active 
components and reflect the physiological and pathological state of the source cell; they 
transmit information, remove intracellular components, and can transport drugs[73]. 
Also, MSC-Exos can suppress apoptosis; promote cell regeneration and migration; 
regulate the immune and inflammatory responses; and promote angiogenesis, nerve 
regeneration, and tissue repair and regeneration (Figure 3). MSC-Exos have potential 
for regenerative medicine, as shown in animal models of disease and injury[75].

Regenerative advantages of exosomes over MSCs
Ease of collection: Various types of MSCs secrete exosomes, and each produces 1000 
to 10000 exosomes. Exosomes can be extracted from culture medium by, for example, 
ultracentrifugation. Exosomes can be produced on a large scale using specialized cell 
lines[76]. Compared with MSCs, the production of MSC-Exos is simpler and less costly 
and time-consuming.

Stability for long-term storage: The volume of exosomes is about one millionth that of 
MSCs, and they are less complex, have a stable structure, and are easy to produce and 
store. Exosomes are unaffected by storage at -20 °C for 1 wk, and their activity is 
maintained during long-term storage at -80 °C[73].

Safety: MSC-based therapies have issues with cell survival, regenerative ability, 
immune rejection, and differentiation to tumors. These problems can be avoided by 
using exosomes as cell-free therapy. Due to the low content of exosome membrane-
bound proteins, the possibility of immune rejection is very low even after allogeneic 
administration. In addition, exosomes do not proliferate, so there is no possibility of 
tumor formation[77]. Therefore, MSC-Exos have better safety than MSCs for clinical 
applications.

Exosomes as ideal carriers: Exosomes can transfer active substances into recipient cells 
for cell-to-cell information exchange. Therefore, exosomes can be used as carriers for 
drugs and biological macromolecules. Sun et al[78] in 2010 reported that curcumin 
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Figure 3  Main functions of mesenchymal stem cell-derived exosomes. MSCs: Mesenchymal stem cells.

transported in exosomes had a stable structure, improved dissolution ability, a higher 
blood concentration, and greater anti-inflammatory activity. In animal models, 
curcumin in exosomes protected mice from LPS-induced septic shock. Furthermore, 
unlike non-host vehicles, exosomes have low immunogenicity and so do not induce 
immune rejection or other complications.

Targeting: The exosome membrane harbors proteins with binding affinity for the 
target cell membrane or a ligand in the ECM. These membrane-bound molecules 
facilitate the targeting of exosomes to specific tissues or microenvironments. The 
bilayer membrane of exosomes can be modified with specific factors to enable 
targeting of cells and tissues[48].

THERAPEUTIC POTENTIAL OF MSC-EXOS IN REGENERATIVE MEDICINE
Based on the advantages of MSC-Exos as cell-free therapy, their regenerative and 
therapeutic potential has been explored in vitro and in vivo. Below we will summarize 
recent studies on the effects of MSC-Exos on conditions of the kidney, liver, 
cardiovascular system, nervous system, skin, bone, and muscle (Figure 4).

MSC-Exos in kidney diseases
Acute kidney injury: Renal I/R injury (I/RI) is one of the causes of acute kidney 
injury (AKI) and is caused by sudden obstruction of blood flow to the kidneys. It is 
associated with morbidity and mortality in patients with AKI[79]. In addition, AKI is a 
potential risk factor for progressive chronic kidney disease (CKD), and there is no 
effective treatment[79]. Wang et al[80] assessed the effect of human bone marrow-derived 
MSC-Exos in rats with I/R-induced AKI. MSC-Exos improved renal I/RI and renal 
function by reducing the urea and creatinine levels and inhibiting inflammation and 
apoptosis. In a mouse model of I/RI, C-C motif chemokine receptor-2 (CCR2)-enriched 
mouse bone marrow-derived MSC-Exos strongly bound extracellular CCL2 and 
reduced its concentration, inhibiting the recruitment and activation of peripheral 
monocytes/macrophages. Importantly, CCR2 knockdown MSC-Exos failed to bind 
CCL2 and did not protect against renal I/RI[81]. Moreover, miRNAs in MSC-Exos also 
exert a reno-protective effect. Zhu et al[82] studied the effect of human bone marrow-
derived MSC-Exos containing miR 199a 3p on renal I/RI in a mouse model. Injection 
of MSC-Exos into mice with I/R injury induced recovery of renal function and 
histologic protection and reduced the cleaved caspase 3 and semaphorin 3A levels. An 
in vitro study by the same group showed that MSC-Exos increased the expression of 
the anti-apoptotic protein Bcl-2 and decreased that of the pro-apoptotic proteins Bax 
and caspase 8 by activating the AKT and ERK pathways in oxygen-glucose 
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Figure 4  Therapeutic effects of mesenchymal stem cell-derived exosomes in kidney, liver, cardiovascular, neurological, and 
musculoskeletal diseases, as well as cutaneous wound healing. MSCs: Mesenchymal stem cells.

deprivation (OGD)-induced HK-2 cells. Co-culture with miR 199a 3p knockdown 
MSC-Exos reversed these effects[82]. Therefore, exosomal miR 199a 3p plays a crucial 
role in MSC-Exos mediated suppression of I/R induced apoptosis.

Drug-induced nephrotoxicity is a common cause of AKI, with an incidence as high 
as 60%. The anticancer drug cisplatin can induce kidney disease and elevate the levels 
of BUN and creatinine, inducing oxidative stress and apoptosis[79]. Zhou et al[83] showed 
that injection of human umbilical cord-derived MSC-Exos repaired cisplatin-induced 
AKI in rats and NRK-52E cell injury by ameliorating oxidative stress and apoptosis 
and promoting cell proliferation in vivo and in vitro. Human umbilical cord MSC-Exos 
promoted autophagy of renal tubule epithelial cells and in kidney tissue by inhibiting 
mTOR, thus alleviating apoptosis and inflammation[84]. Jia et al[85] reported that human 
umbilical cord-derived MSC-Exos-mediated delivery of 14-3-3ζ enhanced autophagy 
by modulating ATG16L, thus preventing cisplatin-induced AKI.

CKD: CKD is a progressive disease with complex symptoms and multiple causes. 
Several factors influence the severity and rate of progression of CKD. AKI is associated 
with an increased risk of development of CKD, and no effective treatment is available. 
Zhu et al[86] investigated the effect of human adipose tissue-derived MSC-Exos on the 
AKI-CKD transition. MSCs upregulated the expression of Sox9 in the renal tubules, 
promoted the regeneration of renal tubules, ameliorated AKI, and reduced renal 
fibrosis. These effects were reversed by an inhibitor of MSC-Exos release. Further, the 
MSCs activated tubular Sox9 and prevented TGF-β1-induced transformation of 
tubular epithelial cells (TECs) into a pro-fibrotic phenotype via exosome shuttling in 
vitro. Therefore, MSC exosomes suppressed the AKI-CKD transition by TEC-
dependent activation of Sox9[86]. Furthermore, MSC-Exos-mediated delivery of miR-
let7c to injured kidneys improved kidney architecture and reduced collagen 
accumulation in unilateral ureteral obstruction-injured mice, ultimately ameliorating 
renal fibrosis[87].

Diabetic nephropathy: Diabetic nephropathy (DN) is a serious complication of 
diabetes and a common cause of end-stage renal disease. Nagaishi et al[88] reported that 
BMSCs ameliorated DN via the paracrine effect of renal trophic factors, including 
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exosomes. Also, bone marrow-derived MSC-Exos markedly improved renal function, 
promoted histological restoration of renal tissue, significantly increased LC3 and 
Beclin-1 expression, and significantly decreased mTOR and fibrotic marker expression 
in renal tissue in a rat model of DN. These effects were in part abolished by the 
autophagy inhibitors chloroquine and 3-MA[89]. These findings suggest the therapeutic 
potential of MSC-Exos for DN.

MSC-Exos in liver diseases
Liver injury: MSC-Exos can be used for treatment of liver injury. The liver injury 
caused by I/R affects liver function and increases mortality after liver transplantation 
and liver resection[90]. Nong et al[91] evaluated the effect of human-induced pluripotent 
stem cell (hiPSC)-derived MSC-Exos on a rat model of hepatic I/R injury. MSC-Exos 
markedly suppressed hepatocyte necrosis, sinusoidal congestion, and the levels of 
markers of hepatocyte injury [aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT)], inflammation (TNF-α and IL-6), apoptosis (caspase-3 and 
Bax), and oxidative stress (GSH, GSH-Px, and SOD). Therefore, the hiPSC-MSC-Exos 
alleviated hepatic I/R injury, possibly by inhibiting inflammation, oxidative stress, 
and apoptosis. Additionally, hiPSC-MSC-Exos alleviated hepatic I/R injury by 
activating the sphingosine kinase and sphingosine-1-phosphate pathway in 
hepatocytes and promoting cell proliferation in vitro and in vivo[92]. MiRNAs associated 
with MSC-Exos also exert a hepatoprotective effect. Zhang et al[90] reported that 
umbilical cord-derived MSC-Exos containing miR-20a alleviated liver I/R injury. 
Furthermore, MSC-Exos containing miR-20a stimulated the expression of miR-20a 
target genes, such as Beclin 1 and FAS, in LO-2 cells. These target genes are involved in 
apoptosis and autophagy, which are implicated in the pathogenesis of liver I/RI.

Drug-induced liver injury accounts for more than 50% of acute liver failure (ALF) 
cases in the United States and has become a major clinical problem[93]. Tan et al[93] found 
that human embryonic (HuES9.E1)-derived MSC-Exos exert a hepatoprotective effect 
in in vitro models of acetaminophen and H2O2-induced hepatocyte injury and in a 
mouse model of carbon tetrachloride (CCl4)-induced acute liver injury. The effect was 
mediated by increasing hepatocyte proliferation, as demonstrated by upregulation of 
two proliferation factors (PCNA and cyclin D1) and an anti-apoptotic factor (Bcl-xL). 
Also, the antioxidant activity of human umbilical cord-derived MSC-Exos reportedly 
suppresses CCl4-induced liver injury[96]. Importantly, MSC-Exos exerted a 
hepatoprotective effect via antioxidant defenses in the progression from initial liver 
injury to fibrosis and liver tumor[94]. Additionally, in a CCl4-induced liver injury mouse 
model, miR-455-3p-enriched exosomes from human umbilical cord MSCs attenuated 
macrophage infiltration and local liver damage and reduced the serum levels of 
inflammatory factors, thereby improving liver histology and ameliorating liver 
injury[95].

Tamura et al[96] evaluated the effect of MSC-Exos on concanavalin-A-induced liver 
injury as a model of immune-induced liver injury. Bone marrow derived-MSC-Exos 
reduced the serum ALT level, decreased the hepatic necrotic area, apoptosis, and the 
production of proinflammatory cytokines, and increased the levels of anti-
inflammatory cytokines and regulatory T cells, suggesting an anti-inflammatory effect.

Liver fibrosis: Liver fibrosis is a common outcome of severe chronic liver injury and is 
characterized by excessive accumulation of the ECM or scar tissue in the liver. If liver 
fibrosis is not well controlled, it can progress to cirrhosis but, in principle, it is 
reversible[97]. In a CCl4-induced liver injury model, transplantation of human umbilical 
cord derived-MSC-Exos reduced the surface fibrous capsules and softened their 
texture, alleviated hepatic inflammation and collagen production, and inhibited the 
epithelial-to-mesenchymal transition in the CCl4-induced fibrotic liver[98]. MSC-Exos 
significantly restored serum AST activity and inactivated the TGF-β1/Smad signaling 
pathway by decreasing collagen type I/III and TGF-β1 and the phosphorylation of 
Smad2[100]. Moreover, in vivo administration of human bone marrow derived-MSC-
Exos alleviated liver fibrosis by reducing collagen accumulation, enhancing liver 
functionality, inhibiting inflammation, and increasing hepatocyte regeneration, by 
inhibiting hepatic stellate cell (HSC) activation through the Wnt/β-catenin 
pathway[99]. Also, exosomes containing miR-181-5p increased autophagy and 
ameliorated TGF-β1-induced liver fibrosis by inhibiting the STAT3/Bcl-2/Beclin 1 
pathway in HST cells and a CCl4-induced liver fibrosis mouse model[100]. Moreover, 
adipose tissue-derived MSC-Exos expressing miR-122 decreased the proliferation and 
activation of HSCs in a liver fibrosis model. Furthermore, MSC-Exos containing miR-
122 stimulated the expression of miR-122 target genes such as insulin-like growth 
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factor receptor 1, cyclin G (1), and prolyl-4-hydroxylase α1 in HSCs. These genes are 
involved in cell proliferation and collagen maturation[101].

Liver failure: ALF is a clinical syndrome caused by inflammation-induced hepatocyte 
injury, apoptosis, and necrosis, and is a major challenge worldwide. The LPS/D-GalN-
induced mouse is generally used as a model of ALF and reflects human liver failure 
precisely; also, LPS and D-GalN are used to create an animal model of ALF[102]. Jiang 
et al[102] showed that human umbilical cord derived-MSC-Exos repaired damaged liver 
tissue and decreased the levels of ALT and AST and the expression of the NLRP3 
inflammasome and downstream inflammatory factors in a LPS/D-GalN-induced 
mouse model of ALF. Moreover, pretreatment with exosomes from human umbilical 
cord derived-MSCs plus TNF-α alleviated ALF by inhibiting the activation of the 
NLRP3-related inflammatory pathway, at least in part, by increasing the expression of 
miRNA-299-3p[103]. In a model of hepatocyte injury and apoptosis induced by LPS/D-
GalN, bone marrow derived-MSC-Exos increased the expression of the autophagy 
marker proteins LC3 and Beclin-1 and promoted the formation of autophagosomes. 
MSC-Exos significantly decreased the expression levels of the proapoptotic proteins 
Bax and cleaved caspase-3 and increased that of the anti-apoptotic protein Bcl-2. 
However, the autophagy inhibitor 3MA significantly reversed the inhibition of 
apoptosis by MSC-Exos. Therefore, MSC-Exos reduced hepatocyte apoptosis by 
promoting autophagy after ALF[104].

MSCs-Exos in cardiovascular diseases
Myocardial ischemia-reperfusion injury: Myocardial ischemia-reperfusion (MI/R) 
can induce apoptosis and necrosis of myocardial cells, and even cause cardiac arrest, 
thereby affecting the outcome of heart disease treatment. Practical and effective 
therapeutic modalities for MI/R injury are urgently needed. Lai et al[72] reported that 
human embryonic stem cell-derived MSC-Exos reduced infarct size in a mouse model 
of MI/R injury. A subsequent study by the same group showed that MSC-Exos 
increased the levels of ATP and nicotinamide adenine dinucleotide (NADH), 
decreased oxidative stress, increased phosphorylated-Akt and phosphorylated-GSK-
3β (anti-apoptotic factors), and reduced phosphorylated-c-JNK (proapoptotic factor) in 
I/R hearts, ultimately preventing left ventricular dilatation and improving cardiac 
performance. MSC-Exos also reduced neutrophil and macrophage infiltration[105]. 
Hence, MSC-Exos are a potential adjuvant to reperfusion therapy for myocardial 
infarction (MI). Liu et al[106] found that rat bone marrow-derived MSC-Exos 
significantly reduced apoptosis and the myocardial infarct size, upregulated 
myocardial LC3B expression, and improved cardiac function in rats with I/R injury. 
Also, in vitro, MSC-Exos reduced H2O2-induced ROS production and apoptosis and 
enhanced autophagy via the AMPK/mTOR and Akt/mTOR pathways in rat H9C2 
cardiomyocytes. Moreover, rat bone marrow-derived MSC-Exos reduced MI/R injury, 
possibly by inhibiting apoptosis and promoting autophagy[107]. Cui et al[108] reported 
that adipose-derived MSC-Exos significantly attenuated I/R-induced MI, decreased 
the serum levels of creatine kinase-myocardial band, lactate dehydrogenase, and 
cardiac troponin I in a rat model of MI/R. MSC-Exos antagonized I/R-induced 
myocardial apoptosis, upregulated Bcl-2, and downregulated Bax and caspase-3 
activity in rat myocardium. Furthermore, MSC-Exos activated Wnt/β-catenin 
signaling by attenuating the I/R-induced inhibition of Wnt3a, p-GSK-3β (Ser9), and β-
catenin expression.

MiRNAs associated with MSC-Exos are also important in protecting against MI/R 
injury. In an MI/R injury model in which H9C2 cells are subjected to hypoxia/ 
reoxygenation, Sun et al[109] found that miR-486-5p carried by bone marrow-derived 
MSC-Exos suppressed PTEN expression, activated the PI3K/AKT signaling pathway, 
and inhibited the apoptosis of injured cardiomyocytes. MiR-125b reduced the 
myocardial infarct area and thus ameliorated MI/R. Chen et al[110] loaded miR-125 into 
bone marrow-derived MSC-Exos, and the resulting MSC-Exos-miR-125b significantly 
increased cell viability; decreased apoptosis; downregulated Bax and caspase-3; 
upregulated Bcl-2; decreased the levels of IL-1β, IL-6, and TNF-α in cardiomyocytes; 
and restored the cardiac function of I/R rats by regulating SIRT7. Also, miRNA-181a 
delivery by human umbilical cord blood-derived MSC-Exos suppressed inflammation 
and increased the Treg ratio by inhibiting c-Fos, thus exerting a therapeutic effect on 
MI/R injury[111]. Therefore, MSC-Exos facilitate the targeted delivery of small RNAs to 
treat MI/R injury.

Myocardial infarction: MI typically results in irreversible loss of myocardial cells and 
heart failure due to limited blood supply and is a leading cause of death worldwide. 
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Zhao et al[112] used human umbilical cord derived-MSC-Exos in an acute MI (AMI) rat 
model. Administration of MSC-Exos significantly improved cardiac systolic function 
and reduced cardiac fibrosis. Moreover, MSC-Exos protected myocardial cells from 
apoptosis and promoted tube formation by, and migration of, human umbilical vein 
endothelial cells (EA.hy926 cells). Therefore, MSC-Exos improved cardiac systolic 
function by protecting myocardial cells from apoptosis and promoting angiogenesis. 
Subsequently, the same group reported that human umbilical cord derived-MSC-Exos 
promote Smad7 expression by suppressing miR-125b-5p to improve myocardial 
repair[113]. In a follow-up study, adipose-derived MSC-Exos alleviated MI-induced 
cardiac damage by inhibiting cardiac dysfunction, apoptosis, fibrosis, and 
inflammation in vitro and in vivo by activating the S1P/SK1/S1PR1 signaling pathway 
and promoting M2 macrophage polarization[114]. Xu et al[115] reported that exosomes 
from adipose tissue, bone marrow, and umbilical cord blood derived-MSCs inhibited 
cardiomyocyte apoptosis and promoted angiogenesis, thereby improving cardiac 
function and protecting the myocardium in rats with MI. Notably, adipose tissue 
derived MSC-Exos stimulated the production of cardioprotective factors[115].

MSC-Exos have been genetically modified to enhance their protective effect against 
MI. Kang et al[116] produced CXCR4-enriched exosomes from rat bone marrow derived 
MSCs overexpressing CXCR4, which promoted cardiac functional recovery by 
increasing angiogenesis and cell survival, reducing infarct size, and improving cardiac 
remodeling by activating the PI3K/Akt signaling pathway following MI. Tissue matrix 
metalloproteinase inhibitor 2 (TIMP2) is a member of the tissue inhibitor family of 
metalloproteinases. Because TIMP2-mediated inhibition of matrix metalloproteinases 
is an important determinant of post-MI remodeling, Ni et al[117] analyzed the 
therapeutic effects of exosomes from TIMP2-overexpressing human umbilical cord 
derived-MSCs (MSC-ExosTIMP2) in a rat model of MI. MSC-ExosTIMP2 improved cardiac 
function by alleviating MI-induced oxidative stress and cardiomyocyte apoptosis, and 
promoting angiogenesis and ECM remodeling, in part via the Akt/Sfrp2 pathway. 
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, plays a 
key role in regulating cell homeostasis. Liu et al[118] found that bone marrow derived-
MSC-ExosMIF are superior to MSC-Exos for ameliorating MI injury; the effect was 
mediated by enhancing cardiac function and reducing cardiac remodeling, 
cardiomyocyte mitochondrial fragmentation, reactive oxygen species generation, and 
apoptosis.

MiRNAs associated with MSC-Exos also protect against MI. Luther et al[119] 
demonstrated that bone marrow-derived MSC-Exos expressing miR-21a-5p 
downregulated the expression of the pro-apoptotic gene products PDCD4, PTEN, 
Peli1, and FasL, and reduced cardiomyocyte death in an AMI model. Moreover, miR-
301 in exosomes secreted by bone marrow derived MSCs protected against MI by 
inhibiting myocardial autophagy. In a follow-up study, exosomes from human MSCs 
transfected with the lncRNA KLF3-AS1 were injected into rats with MI. The 
overexpression of KLF3-AS1 in exosomes reduced the MI area, apoptosis, and 
pyroptosis, and attenuated MI progression by acting as a competing endogenous RNA 
(ceRNA) to sponge miR-138-5p that can regulate Sirt1 so as to suppress cell pyroptosis 
and attenuate MI progression[120]. Moreover, human umbilical cord derived MSC-Exos 
protected cardiomyocytes from AMI injury by transferring miR-19a, targeting SOX6, 
activating AKT, and inhibiting JNK3/caspase-3 activation[121]. Also, bone marrow 
derived exosomal miR-185 suppressed ventricular remolding, myocardial injury, and 
cardiomyocyte apoptosis, and improved the cardiac function of MI mice by inhibiting 
SOCS2[122].

In summary, MSC-Exos improve cardiac function and myocardial remodeling by 
transporting specific factors with anti-apoptotic, anti-inflammatory, antioxidant, and 
pro-survival effects.

MSC-Exos in neurological diseases
Traumatic brain injury: Traumatic brain injury (TBI) is characterized by functional 
and structural impairment. There is a need for modalities that improve the recovery 
rate. Zhang et al[123] found that rat bone marrow derived MSC-Exos improved 
functional recovery by promoting neurovascular remodeling (angiogenesis and 
neurogenesis) and by reducing inflammation in rats with TBI. Thus, MSC-Exos may be 
beneficial for TBI and possibly other neurological diseases. Subsequently, Ni et al[124] 
investigated the neuroprotective role of rat bone marrow derived MSC-Exos on early-
stage controlled cortical impact (CCI)-induced TBI. Administration of MSC-Exos 
reduced the lesion size and improved neurobehavioral performance; they also 
inhibited the expression of a pro-apoptotic protein (Bax) and proinflammatory 
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cytokines (TNF-α and IL-1β) and increased the expression of an anti-apoptotic protein 
(Bcl-2). MSC-Exos also decreased the activation of microglia/M1 macrophages and 
increased that of M2 macrophages after TBI. Therefore, MSC-Exos exert a 
neuroprotective effect by inhibiting early neuroinflammation in mice with CCI-
induced TBI via modulating microglia/macrophage M2 phenotype polarization[124]. 
Furthermore, human bone marrow derived MSC-Exos exerted a neuroprotective effect 
and improved the long-term neurologic outcomes in a porcine model of TBI[125].

Stroke: Stroke is one of the leading causes of death and disability worldwide. Stroke 
can cause highly dynamic changes in neurovascular units and promote the 
development of brain injury. MSC-Exos play an important role in neurological and 
function recovery from stroke. Xin et al[126-128] investigated the effect of rat bone marrow 
derived MSC-Exos on stroke. The intravenous administration of MSC-Exos improved 
functional recovery and enhanced neurite remodeling, neurogenesis, and 
angiogenesis[126]. Also, miR-133b in the exosomes released from MSCs is transferred to 
neural cells, leading to regulation of gene expression, promotion of neurite 
remodeling, and improvement of functional recovery in a rat model of stroke[127]. Also, 
Xin et al[128] reported that MSC-Exos enriched with the miR-17-92 cluster increased 
neural plasticity and functional recovery from stroke in rats, possibly by inhibiting 
GSK-3β activity and targeting PTEN to activate the PI3K/AKT/mTOR signaling 
pathway. In a follow-up study, adipose-derived MSC-Exos promoted angiogenesis by 
brain microvascular endothelial cells after OGD via the miR-181b-5p/TRPM7 axis, 
suggesting their therapeutic potential for stroke[129]. Similarly, in the OGD induced rat 
oligodendrocyte (OL) injury model, miR 134 in rat bone marrow-derived MSC-Exos 
prevented OL apoptosis by negatively regulating the caspase 8 dependent apoptosis 
pathway and so have therapeutic potential for ischemic stroke[130]. Moreover, mouse 
BMSC-Exos promoted the proliferation, and inhibited the apoptosis of, astrocytes 
injured by OGD, accompanied by inhibition of the expression of inflammatory factors 
by downregulating lipocalin 2. More importantly, MSC-derived exosomal miR-138-5p 
reduced neuronal injury following stroke in mice[131].

Spinal cord injury: SCI is a severe central nervous system (CNS) injury for which few 
efficacious drugs are available. Huang et al[132] reported that systemic administration of 
rat bone marrow-derived MSC-Exos significantly attenuated lesion size, apoptosis, 
and inflammation, and promoted angiogenesis, thus enhancing functional recovery 
from SCI in rats. Therefore, MSC-Exos show potential as a cell-free therapeutic 
strategy for SCI. Sun et al[133] reported that human umbilical cord-derived MSC-Exos 
significantly promoted locomotor functional recovery and reduced inflammation after 
SCI, possibly inducing macrophage polarization from the M1 (proinflammatory) to the 
M2 (anti-inflammatory) phenotype. In a rat model of traumatic SCI, Liu et al[134] 
showed that injection of rat bone marrow-derived MSC-Exos attenuated neuron 
apoptosis, suppressed glial scar formation and inflammation, and promoted axonal 
regeneration and angiogenesis, ultimately enhancing functional behavioral recovery 
after traumatic SCI. Administration of MSC-Exos suppressed the activation of A1 
neurotoxic reactive astrocytes. Furthermore, rat bone marrow-derived MSC-Exos 
ameliorated SCI by inhibiting complement mRNA synthesis and release and inhibiting 
activation of NF-κB signaling by binding to microglial cells[135]. Additionally, rat bone 
marrow-derived MSC-Exos reduced tissue damage, promoted recovery of motor 
function, and inhibited neural cell apoptosis after SCI by activating the Wnt/β-catenin 
signaling pathway[136]. Accordingly, bone marrow-derived MSC-Exos show therapeutic 
potential for acute SCI.

MSC-Exos have been genetically modified (mainly by miRNAs) to enhance the 
protective effect against SCI. Li et al[137] found that systemic injection of exosomes from 
miR-133b-modified rat bone marrow-derived MSCs (MSC-ExosmiR-133b) resulted in 
transfer of miR-133b into the injured spinal cord, promoting functional recovery after 
SCI. Also, tail vein injection of MSC-ExosmiR-133b significantly improved the recovery of 
hindlimb function, reduced lesion volume, preserved neurons, and promoted axon 
regeneration after SCI, which was attributed in part to the activation of ERK1/2, 
STAT3, and CREB, and the inhibition of RhoA expression. Moreover, exosomes 
secreted from miRNA-29b-modified rat bone marrow-derived MSCs relieved SCI in 
rats, possibly by regulating proteins involved in neuronal regeneration, such as NF200, 
GAP-43, and GFAP[138]. Two consecutive studies assessed the effect of exosomes 
secreted from miRNA-126-modified rat bone marrow-derived MSCs on SCI in 
rat[139,140]. Huang et al[139] indicated that MSC-ExosmiR-126 induce angiogenesis and 
neurogenesis, inhibit apoptosis, and promote functional recovery after SCI. Yuan 
et al[140] indicated that MSC-ExosmiR-126 protect the neurons of rats with SCI, stimulate 
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axon regeneration, and improve the recovery of limb motor function after SCI, in part 
by activating ERK1/2, STAT3, and CREB and inhibiting RhoA expression. Therefore, 
exosomes from miRNA-modified MSCs is a novel therapeutic approach for SCI.

Neurodegenerative diseases: MSC-Exos play a pivotal role in neuroprotection and 
neuroregeneration in diverse neurodegenerative diseases. Alzheimer disease (AD) is 
one of the most common neurodegenerative diseases and causes cognitive and 
memory disorders. Amyloid-β (Aβ) peptide induces neuroinflammatory processes in 
the CNS of AD patients, leading to excessive Aβ accumulation. Lee et al[141] reported 
that human adipose-derived MSC-Exos reduced β-amyloid pathology, and reduced 
apoptosis of AD neurons. In an AD mouse model, human umbilical cord-derived 
MSC-Exos reversed cognitive impairment and cleared Aβ deposits. Also, MSC-Exos 
modulated microglial activation, alleviating neuroinflammation[142]. Moreover, MSC-
Exos stimulated neurogenesis in the subventricular zone and alleviated beta amyloid 
1-42-induced cognitive impairment in a mouse model of AD[143]. Taken together, these 
findings demonstrate the therapeutic potential of MSC-Exos for AD. Huntington’s 
disease (HD) is a hereditary neurodegenerative disease caused by the aggregation of 
mutant Huntingtin (mHtt). Lee et al[144] investigated the therapeutic role of exosomes 
from human adipose-derived MSC-Exos in an in vitro model of HD. MSC-Exos 
significantly decreased mHtt aggregates and reduced mitochondrial dysfunction and 
apoptosis in R6/2 mouse-derived neurons. ALS is a fatal neurodegenerative disease 
characterized by selective degeneration and death of upper and lower motor neurons. 
Treatment of neurons from G93A ALS mice with human adipose-derived MSC-Exos 
alleviated aggregation of superoxide dismutase 1, and normalized the cellular 
phenotype, restoring to normal the levels of mitochondrial proteins including p-CREB 
and PGC-1α[145]. Subsequently, two studies by the same group showed that mouse 
adipose tissue-derived MSC-Exos exerted an anti-apoptotic effect and rescued the 
function of mitochondria in an in vitro model of ALS[146,147]. MS is a chronic 
demyelinating disease caused by CNS inflammation and immune dysfunction, which 
can result in severe physical disability. Li et al[148] reported that in a model of immune-
induced demyelination, rat bone marrow-derived MSC-Exos improved motor function 
and reduced demyelination and neuroinflammation in rats by regulating M2 
polarization of microglia. Thus, bone marrow-derived MSC-Exos have therapeutic 
potential for MS.

MSC-Exos in musculoskeletal diseases
Osteoarthritis: Osteoarthritis (OA) is the most common chronic degenerative OA 
disease. Because of the limited self-healing ability of cartilage, there is no cure for OA. 
Exosomes secreted by MSCs show therapeutic potential for OA. Zhu et al[149] compared 
the effect of exosomes secreted by induced pluripotent stem cell-derived MSCs (iMSC-
Exos) and those secreted by synovial membrane MSCs (SMMSC-Exos) on OA. 
Injection of iMSC-Exos and SMMSC-Exos attenuated OA in the collagenase-induced 
mouse model – iMSC-Exos had a superior therapeutic effect. Wang et al[150] examined 
the therapeutic potential for OA of exosomes from human embryonic stem cell-
induced MSCs. In vitro, MSC-Exos maintained the phenotype of IL-1β-induced 
primary mouse chondrocytes by increasing collagen type II synthesis and reducing 
ADAMTS5 expression. In a mouse model of destabilization of the medial meniscus 
induced-knee joints, MSC-Exos prevented cartilage destruction[150]. Also, mouse bone 
marrow-derived MSC-Exos re-established chondrocyte homeostasis, prevented 
chondrocyte apoptosis, and stimulated macrophage polarization toward an anti-
inflammatory phenotype in vivo. Moreover, MSC-Exos protected against cartilage and 
bone degradation in vivo[151]. Zhang et al[152] demonstrated that human embryonic stem 
cell-derived MSC-Exos alleviated subchondral bone deterioration, suppressed 
inflammation, and restored matrix homeostasis in a model of temporomandibular joint 
OA and, ultimately, promoted temporomandibular joint repair and regeneration. 
Lumbar facet joint OA (LFJ-OA) is a common cause of lower-back pain (LBP). Li 
et al[153] evaluated the effect of mouse bone marrow-derived MSC-Exos in an LFJ-OA 
mouse model. MSC-Exos relieved pain by abrogating aberrant CGRP positive nerves 
and abnormal H type vessel formation in the subchondral bone. Also, MSC-Exos 
attenuated cartilage degeneration and suppressed tartrate resistant acid phosphatase 
expression and RANKL RANK TRAF6 signaling activation to facilitate subchondral 
bone remodeling. Therefore, bone marrow-derived MSC-Exos can ameliorate LBP and 
LFJ-OA.

MiRNAs and long noncoding RNAs (lncRNAs) associated with MSC-Exos also 
protect against OA. Tao et al[154] overexpressed miR-140-5p in human synovial MSCs, 
and the resulting MSC-ExosmiR-140-5p promoted chondrocyte proliferation and migration 
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and restored ECM secretion by rescuing SOX9, by inhibiting RalA. In an OA rat 
model, MSC-ExosmiR-140-5p prevented OA and the severe damage to knee articular 
cartilage caused by instability of the knee joint. Also, human bone marrow-derived 
MSC-Exos increased the expression of the chondrogenic genes type II collagen alpha 1 
and aggrecan and decreased that of the chondrocyte hypertrophy markers matrix 
metalloproteinase-13 and Runx2 (runt-related transcription factor 2) in chondrocytes 
from mice with OA. Furthermore, MSC-Exos attenuated the IL-1β-induced inhibition 
of chondrocyte proliferation and apoptosis via the lncRNA-KLF3-AS1/miR-206/GIT1 
axis[155]. Liu et al[156] investigated the effect of human MSC-Exos on IL-1β-induced OA 
chondrocytes in vitro and in a collagenase-induced rat model of OA in vivo. The 
lncRNA KLF3-AS1 was markedly enriched in MSC-Exos, which ameliorated IL-1β-
induced cartilage injury and suppressed IL-1β-induced apoptosis of chondrocytes in 
vitro. Also, the exosomal lncRNA KLF3-AS1 promoted cartilage repair and 
chondrocyte proliferation in a rat model of OA in vivo. Infrapatellar fat pad (IPFP)-
derived MSC-Exos ameliorated OA in vivo and inhibited apoptosis, enhanced matrix 
synthesis, and reduced the expression of catabolic factors in vitro[157]. In addition, IPFP-
MSC-Exos partially inhibited mTOR and significantly enhanced autophagy in 
chondrocytes. However, intra-articular injection of miR-100-5p antagonists 
significantly suppressed the IPFP-MSC-Exos-mediated protection of articular cartilage 
in vivo. In summary, IPFP-MSC-Exos improve OA by maintaining cartilage 
homeostasis, which is likely to be mediated by inhibiting miR-100-5p-regulated 
mTOR-dependent autophagy[157]. Moreover, human bone marrow-derived MSC-Exos 
carrying miR-26a-5p inhibited inflammation, proliferation, and migration and 
promoted apoptosis, thus attenuating OA progression[158].

Osteoporosis: Osteoporosis is an age-related disease that results from an imbalance 
between bone formation and resorption and is characterized by systemic damage to 
bone mass and microstructure, ultimately increasing the risk of fragile fractures. 
Osteoporosis is particularly associated with postmenopausal estrogen deficiency. Qi 
et al[159] reported that in vitro, human induced pluripotent stem cell-derived MSC-Exos 
enhanced cell proliferation and alkaline phosphatase activity and upregulated the 
mRNA and protein levels of osteoblast-related factors in bone marrow MSCs from 
ovariectomized rats. In vivo, MSC-Exos stimulated bone regeneration and angiogenesis 
in critical-sized calvarial defects in ovariectomized rats. Zhao et al[160] investigated the 
effect of rat bone marrow-derived MSC-Exos on osteoblasts in vitro. Co-culture with 
MSC-Exos promoted the proliferation of hFOB 1.19 osteoblasts cells via the MAPK 
signaling pathway, alleviating the progression of osteoporosis. Rescue experiments 
indicated that MSC-Exos promoted the growth and cell cycle of hFOB 1.19 cells; these 
effects were reversed by p-JNK knockdown. Yang et al[161] showed that the human bone 
marrow-derived MSC-derived exosomal lncRNA MALAT1 enhanced osteogenic 
activity and alleviated symptoms of osteoporosis in a mouse model by acting as a miR-
34c sponge to upregulate SATB2 expression. Radiotherapy for cancer causes damage 
to normal tissue, including bone. Radiation-induced bone marrow-derived MSC 
damage is the main cause of radiation-induced bone loss. Zuo et al[162] investigated the 
ability of bone marrow-derived MSC-Exos to restore the function of recipient bone 
marrow-derived MSCs and alleviate radiation-induced bone loss. MSC-Exos 
attenuated radiation-induced bone loss in a rat model by reducing oxidative stress, 
accelerating DNA damage repair, promoting proliferation, and increasing the levels of 
senescence-associated proteins.

MSC-Exos in cutaneous wound healing
Skin wound healing is a complex pathophysiological process involving multiple cells 
and cytokines. MSC-Exos can accelerate skin healing and reduce excessive scar 
formation. Zhang et al[163] investigated the use of human induced pluripotent stem cell-
derived MSC-Exos in cutaneous wound healing. Transplanting MSC-Exos to wound 
sites accelerated re-epithelialization, reduced scar width, and promoted collagen 
maturity. In addition, MSC-Exos not only promoted the formation of new blood 
vessels but also accelerated the maturation of the skin wound in a rat model. Also, 
MSC-Exos stimulated the proliferation and migration of human dermal fibroblasts and 
human umbilical vein endothelial cells and promoted the secretion of types I and III 
collagen and elastin[163]. Moreover, human umbilical cord-derived MSC-Exos 
significantly accelerated re-epithelialization, and increased expression of CK19, PCNA, 
and collagen I (compared to collagen III) in vivo in a rat model of skin burn. In vivo 
studies confirmed that MSC-Exos-mediated activation of Wnt/β-catenin promotes 
wound re-epithelialization and cell proliferation. Disruption of Wnt4 expression in 
MSC-Exos reduced the therapeutic effect in vivo[164]. Hu et al[165] investigated the roles of 
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human adipose-derived MSC-Exos in cutaneous wound healing. MSC-Exos were 
taken up and internalized by fibroblasts and stimulated their migration, proliferation, 
and collagen synthesis in a dose-dependent manner; also, the expression of N-
cadherin, cyclin-1, PCNA, and collagens I and III was increased. Systemic 
administration of MSC-Exos increased collagens I and III production during the early 
stages of wound healing, while MSC-Exos inhibited collagen expression to reduce scar 
formation in the later stages. Therefore, MSC-Exos promote cutaneous wound healing 
by optimizing the characteristics of fibroblasts[167]. Ma et al[166] exposed HaCaT 
keratinocytes to H2O2 to establish a skin lesion model. Human adipose-derived MSC-
Exos promoted the proliferation and migration of HaCaT cells and inhibited their 
apoptosis. In addition, activation of Wnt/β-catenin signaling was confirmed by an 
increased β-catenin protein level. Therefore, MSC-Exos promote cutaneous wound 
healing by modulating Wnt/β catenin signaling[168]. He et al[167] found that human bone 
marrow-derived MSC-Exos accelerated cutaneous wound healing by inducing M2 
polarization of macrophages in part by transferring donor exosome-derived miRNAs. 
Therefore, the miRNAs in MSC-Exos could be applied to enhance the healing of 
cutaneous wounds.

Diabetic foot ulcer (DFU) is a catastrophic medical problem caused by diabetes, 
which affects 15% of people with diabetes and increases the risk of amputation. MSC-
Exos reportedly accelerate cutaneous wound healing in DFU. In the study of 
Dalirfardouei et al[168], a full-thickness excisional wound was established on the dorsal 
skin of streptozotocin induced diabetic mice. Menstrual blood derived MSC-Exos 
enhanced neoangiogenesis by upregulating vascular endothelial growth factor A, 
inhibited inflammation by inducing M1-M2 macrophage polarization, accelerated re 
epithelialization, and reduced scar formation by decreasing the Col1:Col3 ratio. 
Therefore, menstrual blood derived MSC-Exos ameliorated cutaneous nonhealing 
DFUs. Moreover, Li et al[169] showed that bone marrow-derived MSC-Exos carrying 
lncRNA H19 promoted wound healing in mice with DFU by promoting fibroblast 
proliferation and migration and suppressing apoptosis and inflammation by inhibiting 
miR-152-3p and promoting PTEN expression.

CLINICAL STUDIES WITH MSC-EXOS
Although MSC-Exos had shown good clinical application prospects in preclinical 
studies, a limited number of human clinical studies are already available on the use of 
MSC-Exos products according to the ClinicalTrials.gov (Table 3). Among them, 
determining the optimal dose, the appropriate time window for MSC-Exos 
administration, and the route of administration to achieve maximum efficacy without 
side effects are the most important issues[170]. A preliminary study demonstrated that 
increasing dosage of MSC-Exos in a patient with severe treatment-refractory graft-vs-
host grade IV disease, affecting the skin and intestinal tract, was well tolerated and 
showed a significant and sustainable improvement of symptoms, which remained 
stable for 5 mo[171]. Another clinical trial applied umbilical cord-blood-derived MSC-
Exos for improving β-cell mass in type 1 diabetes mellitus patients (NCT02138331). 
Many more studies are expected to be initiated shortly (Table 3).

LIMITATIONS OF MSC-EXOS
MSC-Exos are effective and safe for regenerative medicine. However, MSC-Exos have 
several limitations that should be mentioned[44,172]. First, ultracentrifugation can 
damage or destroy exosomes and the product is typically of low purity. There is no 
standardized technique for the isolation, quantification, and purification of MSC-Exos. 
The difficulty of extracting and purifying exosomes increases the cost of their 
application. Second, the potential of MSC-Exos in tissue repair and regeneration is 
unclear, as are the components/properties of MSC-Exos that promote tissue 
regeneration. Also, how to determine the amount of MSC-Exos needed for treatment is 
unknown, as is whether excess MSC-Exos cause irreversible tissue damage. Third, 
there is no guidance, supervision, or safety assessment of MSC-Exos. Fourth, it is 
worth exploring whether MSC exosomes are effective when administered systemically 
by the intravenous, subcutaneous, or intramuscular route[173]. As an emerging 
therapeutic agent, the safety, challenges, and risks of MSC-Exos need to be evaluated 
for their use in tissue repair and regenerative medicine.
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Table 3 Clinical studies with mesenchymal stem cell-derived exosomes

Study title Disease Intervention Phase NCT

Allogenic mesenchymal stem cell derived exosome in 
patients with acute ischemic stroke

Cerebrovascular 
disorders

Biological: Exosome Completed NCT03384433

A pilot clinical study on inhalation of mesenchymal 
stem cells exosomes treating severe novel coronavirus 
pneumonia

Coronavirus Biological: MSCs-derived exosomes Phase 1 NCT04276987

Effect of microvesicles and exosomes therapy on β-cell 
mass in type I diabetes mellitus (T1DM)

Diabetes mellitus type 1 Biological: MSC Exosomes Phase 2, 
Phase 3

NCT02138331

iExosomes in treating participants with metastatic 
pancreas cancer with KrasG12D mutation

Metastatic pancreatic 
adenocarcinoma

Drug: Mesenchymal stromal cells-
derived exosomes with KRAS G12D 
siRNA

Phase 1 NCT03608631

Effect of UMSCs Derived exosomes on dry eye in 
patients with cGVHD

Dry eye Drug: Umbilical mesenchymal stem 
cells derived exosomes

Phase 1, 
Phase 2

NCT04213248

Evaluation of adipose derived stem cells exo.in 
treatment of periodontitis

Periodontitis Biological: Adipose derived stem cells 
exosomes

Early phase 
1

NCT04270006

A tolerance clinical study on aerosol inhalation of 
mesenchymal stem cells exosomes in healthy 
volunteers

Healthy Biological: Low level of MSCs-Exo 
Biological: High level of MSCs-Exo

Phase 1 NCT04313647

MSC-Exos promote healing of MHs Macular holes Biological: Exosomes derived from 
mesenchymal stem cells (MSC-Exo)

Early Phase 
1

NCT03437759

CONCLUSION
MSC-based therapies are widely used worldwide, and the mechanisms underlying 
their effects may include induced differentiation, immune regulation, cell fusion, 
paracrine effects, carriage of mRNA or miRNA, and mitochondrial metastasis. MSC-
Exos have therapeutic potential because they have most of the therapeutic effects of 
MSCs themselves. Exosomes can cross biological barriers, can be modified to load 
molecular drugs, have few side effects and are relatively non-immunogenic, and 
maintain their activity during storage. MSC-Exos have received attention because of 
their ability to, for example, promote tissue regeneration, suppress inflammation, and 
regulate the immune system. In addition, MSC-Exos do not have the safety 
implications of injecting live cells. The therapeutic efficacy of MSC-Exos against 
diseases of the kidney, liver, heart, brain, muscle, and skin has been demonstrated, 
and further research will enable their large-scale production.

The following issues related to MSC-Exos need to be overcome: (1) Lack of 
standardization of molecular characteristics, comparability, and reproducibility, and 
difficulty in obtaining high-purity exosomes of defined size; (2) Biodistribution, 
toxicity, and clearance of MSC-Exos after injection, and verification of their safety; and 
(3) Most studies of MSC-Exos are short-term, and so their long-term therapeutic effect 
is unknown, as is the safe dose for humans.

To promote the clinical application of exosomes, we suggest that: (1) Guidelines and 
standards for use of MSC-Exos are needed; (2) The pathways and recognition signals 
of MSC-Exos for target cells and organs need to be identified. Exosomal surface 
molecules can be modified to target MSC-Exos to particular cell types; (3) A standard 
method of collecting and enriching exosomes is needed, and the purity of MSC-Exos 
needs to be increased to enhance their therapeutic efficacy; and (4) Because they can 
pass biological barriers, loading of genes or drugs in MSC-Exos facilitates their 
targeted delivery.

In summary, MSC-Exos are theoretically superior to intact MSCs for regenerative 
medicine. However, a series of challenges and difficulties need to be addressed so that 
the therapeutic potential of exosomes can be realized.
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