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INTRODUCTION
Daxx was first identified as a death-associated protein 
capable of  binding the cytosolic domain of  fas, an 
apoptosis-inducing member of  the tumor necrosis 
factor (TNF) receptor family[1]. Daxx co-localizes with 
Promyelocytic Leukemia Protein (PML) within nuclear 
promyelocytic oncogenic domains (PODs)[2,3]. PML 
and/or POD-associated proteins may function as an 
important cofactor in governing nuclear hormone receptor 
transcriptional activity and function[4,5]. Recent studies[6,7] 
implied Daxx could negatively modulate androgen receptor 
(AR) transcriptional activity. Androgens affect lipogenic 
gene expression not only in tumor cells, but also in normal 
androgen target tissues in vivo[8]. AR can directly upregulate 
sterol regulatory element-binding protein (SREBP) 
cleavage-activating protein (SCAP) by binding an androgen 
response element in intron 8 of  the SCAP gene[9]. Activated 
SREBP can increase the mRNA and protein levels of  
genes involved in fatty acid (fatty acid synthase and acetyl-
CoA-carboxylase), and cholesterol synthesis (HMG-CoA-
reductase and farnesyl diphosphate synthase)[10]. These 
results indicate that Daxx could possibly regulate cellular 
cholesterol metabolism by the SREBP pathway.

In the present study, we investigated the correlations 
between Daxx expression and cholesterol accumulation in 
liver cells. The findings herein show that overexpression of  
Daxx in HepG2 cells may decrease intracellular cholesterol, 
which may be associated with inhibition of  SREBP activity 
related to cholesterol synthesis and an increase in caveolin-1 
expression related to excretion. 

MATERIALS AND METHODS
Materials
Modified Eagle medium (MEM) and fetal bovine serum 
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Abstract
AIM: To study the effect of Daxx on cholesterol accumulation 
in hepatic cells.

METHODS: Sprague Dawley (SD) rats were fed a 
normal or high fat diet for 6 wk, and serum lipids and 
Daxx expression of hepatic tissues were measured 
by immunoblot assays. HepG2 cells were transfected 
with the pEGFP-C1/Daxx or pEGFP-C1 plasmid. Cells 
stably transfected with Daxx were identified by RT-
PCR analysis. Total cholesterol levels were determined 
by high performance liquid chromatography. Activated-
SREBP and caveolin-1 were assayed by western blotting. 

RESULTS: Hepatic Daxx protein was higher in normal 
rats than in high fat diet-fed rats. Noticeable negative 
correlations were seen between Daxx and LDL-C  
(γ = -7.56, P  = 0.018), and between Daxx and TC  
(γ = -9.07, P  = 0.01), respectively. The total cholesterol of 
HepG2/GFP-Daxx cells was lower than that of control cells 
or HepG2/GFP cells (9.28 ± 0.19 vs  14.36 ± 4.45 or 13.94 
± 2.62, both P  < 0.05). Furthermore, in HepG2/GFP cells, 
the expression of activated SREBP was lower than that of 
control cells, whereas caveolin-1 expression was higher.

CONCLUSION: Overexpression of Daxx in HepG2 cells 
decreased intracellular cholesterol accumulation, which 
might be associated with inhibition of SREBP activity and 
an increase in caveolin-1 expression.

© 2008 WJG. All rights reserved.
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were purchased from Gibco BRL. An antibody (Santa 
Cruz) directed against active SREBP was used to detect the 
activation of  SREBP, and polyclonal anti-Daxx antibody or 
anti-caveolin-1 antibody (Santa Cruz) was used to assay the 
respective protein expression. The plasmids of  pEGFP-C1/
Daxx and pEGFP-C1 were gifts from Dr. Yanping[11]. The 
pEGFP-C1/Daxx contains a full-length cDNA of  hDaxx 
in pEGFP-C1 vector. All reagents were of  analysis grade.

Animal and diets 
Male Sprague Dawley (SD) rats (210 g ± 10 g) were 
obtained from the animal laboratory of  Nanhua University. 
The animals were individually housed in plastic cages in 
a temperature (23℃ ± 2℃) and light (alternating 12 h 
periods of  light and dark) controlled room. The rats were 
randomly divided into two groups. The control group was 
fed a normal diet, and another group was fed a high-fat 
diet (15%, lard, wt/wt, HFD) for 6 wk. Rats were allowed 
free access to food and deionized water throughout the 
test period. At the end of  the experiment, the rats were 
anesthetized with ketamine and injected with 150 IU of  
heparin per kilogram of  body weight. Fifteen minutes later, 
the rats were sacrificed by disarticulation. Blood samples 
were taken from the neck into glass tubes, and serum was 
obtained by centrifugation (2000 × g for 10 min at 4℃). 
The livers were removed and rinsed with physiological 
saline. All samples were stored at -70℃ until use.

Estimation of serum lipids
For determination of  serum total cholesterol (TC), low 
density lipoprotein-cholesterol (LDL-C), triacylglycerol (TG) 
concentration, and high density lipoprotein-cholesterol 
(HDL-C), the corresponding diagnostic kits (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China) were 
used according to the manufacturer’s instructions. 

Cell culture and transfections  
HepG2 cells, a human hepatocyte cell line, were obtained 
from Zhong Shan University (Guangzhou, China). The 
cells were maintained in RPMI 1640 medium (Gibco BRL, 
Grand Island, NY) supplemented with 10% heat-inactivated 
fetal bovine serum (FBS) and penicillin/streptomycin, at 
37℃ in a humidified incubator containing 5% CO2. Cells 
were seeded at a density of  1 × 105 cells/well in a 24-well 
plate and cultured for 24 h to 60%-80% confluency. To 
obtain stable transfectants, HepG2 cells were transfected 
with the pEGFP-C1/Daxx or pEGFP-C1 plasmid using 
Lipofect 2000 Plus reagent (Invitrogen) in serum-free 
medium for 4 h at 37℃, according to the manufacturer’s 
recommendations. The transfection medium was removed, 
and fresh complete growth medium was added. After  
24 h post-transfection, the cells in two wells were split into 
10-cm dishes in a medium containing 500 μg/mL geneticin 
(G418; Amresco, Solon, USA), and the medium was 
changed every 3 d until G418-resistant colonies were clearly 
evident. Individual colonies were transferred into 6-well 
plates to continue incubation with G418 selection medium. 
Individual colonies were evaluated for Daxx expression by 
Immunofluorescent Microscopy, and a monoclonal cell line 
was used for all experiments successively.

Reverse transcription-PCR 
Total RNA was extracted from the cells using Trizol 
reagent (Gibco BRL) according to the manufacturer’s  
protocol. Three micrograms of  total RNA were used for 
reverse transcription in a total volume of  20 μL with the 
SuperScript preamplification system (Promega, Madison, 
MI). Aliquots of  2 μL cDNA were subsequently amplified 
in a total volume of  25 μL using the GeneAmp PCR kit 
(Promega) following conditions recommended by the 
manufacturer. The sense and antisense primers for Daxx 
were 5'-TGGCGCTCTATGTGGCAGAGATC-3' and 
5'-CTGCATCTGTTCCAGATCCTCCT-3' (829 bp); the 
sense and antisense primers for actin that were used as an 
internal control were 5'-GGTGGCACCTGTGGTCCACC
T-3' and 5'-CTTCACTTGTGGCCCAGATAG-3' (420 bp),  
respectively. The cycling conditions were as follows: 94℃ 
for 5 min, followed by 28 cycles of  94℃ for 30 s, 58℃ for 
30 s, and 72℃ for 1 min, and a final extension of  72℃ for 
10 min. PCR products were separated on the 1.5% agarose 
gel viewed by ethidium bromide staining. These data were 
acquired with Alpha Imager 2200 software.

Lipid analysis by high performance liquid chromatography 
(HPLC)
Cells were scraped from culture flasks into 0.9% NaCl 
(1 mL per 50 cm2 flask) and homogenized by sonication 
for 10 s on ice. The protein concentration of  cell lysate 
was determined by a bicinchoninic acid (BCA) kit. An 
equal volume of  freshly prepared cold (-20℃) KOH 
in ethanol (150 g/L) was added. The cell lysate was 
repeatedly vortexed until clear. An equal volume of  hexane-
isopropanol 3:2 (v/v) was then added. The mixture was 
vortexed for 5 min, followed by centrifugation at 800 × g  
(15℃ for 5 min). The extraction procedure was repeated 
twice. The combined organic phase was transferred to clean 
tapered glass tubes and thoroughly dried under nitrogen at 
40℃. The tubes were allowed to cool to room temperature. 
One hundred μL of  isopropanol-acetonitrile 20:80 (v/v) was 
added. The sample was solubilized in an ultrasound water 
bath at room temperature for 5 min. After centrifugation 
at 800 × g for 5 min, the samples were introduced into the 
HPLC device using an Agilent 1100 series. Cholesterol was 
eluted at a flow rate of  1 mL/min, temperature of  40℃ 
using an eluent consisting of  isopropanol-acetonitrile 20:80 
(v:v), and detected by UV-absorption at 206 nm[12].

Western blot analysis
Liver tissues excised from rats were analyzed by western 
blot with an antibody directed against Daxx. HepG2 
cells were washed with PBS, and then 0.5 mL of  TME 
lysis buffer (10 mmol/L Tris, pH 7.5, 5 mmol/L MgCl2,  
1 mmol/L EDTA, and 25 mmol/L NaF) containing fresh 
100 μmol/L Na3VO4, 20 μg/mL leupeptin, 1 μg/mL 
pepstatin A, 4 μg/mL aprotinin, and 1 mmol/L DTT were 
added. Cell lysates were prepared by freezing and thawing of  
the cells on ice, and subsequent scraping and sonicating for 
30 s. The cell lysates were centrifuged for 30 min at 15 000 × g. 
Protein concentrations in the supernatants were determined 
by a BCA protein assay kit, and the samples were stored 
at -80℃. For western blot analysis, 20 μg of  protein was 
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subjected to SDS-PAGE under reducing conditions, and 
proteins were then transferred to polyvinylidene difluoride 
membrane as described previously[13]. The membrane was 
blocked for 2 h at room temperature with a commercial 
blocking buffer from Life Technologies, Inc. The blots were 
incubated for 1 h at room temperature with the respective 
primary antibody (1:2000 dilution), which was followed 
by 1 h incubation with a secondary antibody (horseradish 
peroxidase-conjugated, 1:4000 dilution). Target proteins 
were visualized by a chemiluminescent assay (Amersham-
Pharmacia Biotech).

Statistical analysis
The values are expressed as the mean ± SE. The correlation 
between cholesterol of  serum and Daxx was analyzed by 
SPSS. Statistical analysis of  the data was performed using 
student’s t test or ANOVA. Values with P < 0.05 were 
considered statistically significant.

RESULTS
Correlation of Daxx and cholesterol
HFD feeding for 6 wk resulted in the development of  
hyperlipidemia in experimental rats, as shown in Figure 1A. 
Significant increases in TC (211%), TG (231%), HDL-C 
(197%), and LDL-C (246%) contents were observed in 
HFD-fed rats compared with those in control rats. At 
the same time, hepatic Daxx expression in the HFD-fed 
rats was decreased to one third of  the control (Figure 1B  
and C). These data suggested that Daxx might have 
possible association with the change of  blood lipid content 
as determined by correlation analysis. Further analysis 
revealed that there were negative correlations between 
Daxx and LDL-C (γ = -7.56, P = 0.018) and between 
Daxx and TC (γ = -9.07, P = 0.01), respectively. 

Location and expression of Daxx in HepG2 hepatocytes
HepG2 cells were transfected with pEGFP-C1-Daxx or 
pEGFP-C1 plasmid. Daxx was mostly located in the nucleus 
of  HepG2 cells (Figure 2A). Because the efficiency of  
transient-transfection was low, we screened out G418-resistant 
colonies. The majority of  the colonies had fluorescence. PT-
PCR analysis indicated that Daxx mRNA expression was 
significantly increased in HepG2/GFP-Daxx cells when 
compared with control or HepG2/GFP cells (Figure 2B).
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Figure 1  The correlation between Daxx expression of Hepatic tissues and serum 
cholesterol. A: The effect of control or high fat (HF) food on serum cholesterol 
and triglycerides in rats; B: Hepatic Daxx expression of rats as estimated by 
western blotting; C: Quantitative data of Daxx expression, results were normalized 
to β-actin. Data are the mean ± SE of three independent experiments. Control: 
normal food. HF: Added high fat to normal food. TC: Total cholesterol; TG: 
Triglyceride; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density 
lipoprotein cholesterol. aP < 0.05 vs control.
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Figure 2  Daxx expression in HepG2 hepatocytes. Cultured HepG2 cells were 
untransfected (control, A) or transfected with pEGFP-C1-Daxx or pEGFP-C1 
vectors (B, C). Images show the location and expression of Daxx in HepG2 cells, 
which were taken at 400 × magnitude. (D) RT-PCR of Daxx mRNA expression.
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Effect of Daxx on cholesterol content in HepG2 hepatocytes
Figure 3 shows the effect of  Daxx on cholesterol concen-

tration in HepG2 cells as analyzed by HPLC. The arrows 
show the area of  apices which represent the contents of  free 
cholesterol. The area of  apices before the arrow represents 
the total cholesterol (Figure 3A). There was a significant 
decrease (P < 0.05) of  the cholesterol concentration in 
HepG2/GFP-Daxx cells compared with other samples. The 
free cholesterol in HepG2/GFP-Daxx cells was 6.74 ± 0.13 
(mg/mg protein), whereas those of  control and HepG2/
GFP cells were 9.21 ± 0.37 and 8.66 ± 1.72, respectively. 
The total cholesterol in HepG2/GFP-Daxx cells was lower 
than that of  control or HepG2/GFP cells (9.28 ± 0.19 vs  
14.36 ± 4.45 or 13.94 ± 2.62, both P < 0.05). The empty 
vectors did not show obvious effects on cholesterol 
concentrations in HepG2 cells (Figure 3B).

Effect of Daxx on SREBP and caveolin-1 protein 
expression in HepG2 hepatocytes 
Overexpression of  Daxx in HepG2 cells significantly 
decreased the expression of  activated-SREBP from 1 ± 0.23 
to 0.21 ± 0.05. Likewise, caveolin-1 expression increased 
nearly 3.5 times compared to the control (1 ± 0.31 to 3.48 
± 0.56). The empty vectors did not show any effect on the 
proteins of  HepG2 cells (Figure 4A and B).

DISCUSSION
In the animal experiment, we observed that expression 
of  Daxx in hepatic tissues was negatively correlated 
with hyperlipidemia. The liver is a very important organ 
for maintaining the physical balance of  lipids, and has 
many proteins (such as SREBP and caveolin) responsible 
for mediating cholesterol synthesis and excretion[14-16]. 
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Figure 3  Effect of Daxx overexpression on cholesterol accumulation in HepG2 
hepatocytes. A: Representative change of intracellular cholesterol levels in HepG2 
cells, as determined by HPLC; B: The contents of free and total cholesterol in HepG2 
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It has been reported that hepatic cells predominantly 
express Daxx[17], but the direct relation between Daxx 
and cholesterol still remains unclear. Recently, Daxx has 
been shown primarily to function as a transcriptional 
regulator[18-20]. These results indicate that Daxx could 
possibly affect cholesterol accumulation in hepatic cells. 

In cultured HepG2 cel ls, Daxx overexpression 
decreased the levels of  FC and TC compared to those 
untransfected or transfected with GFP, which indicated 
that Daxx could affect cholesterol homeostasis of  hepatic 
cells. HMG-CoA-reductase is a key enzyme of  cholesterol 
synthesis and is regulated by sterol regulatory element 
binding proteins (SREBPs)[21,22]. SREBP-1 represents an 
important protein of  the transcription regulator family 
(SREBP-1a, -1c, and -2) controlling lipid homeostasis in 
cells[23,24]. SREBP-1 are synthesized as 125-kDa inactive 
precursor proteins, and inserted into the membranes of  the 
endoplasmic reticulum where they form tight complexes 
with SCAP. SREBP is proteolyt ical ly cleaved and 
activated by SCAP when the complex translocates to the 
Golgi apparatus[25]. The active 68-kDa SREBP fragment 
migrates to the nucleus and increases the transcription 
of  sterol-responsive element (SRE) that contains many 
genes encoding lipogenic enzymes belonging to the 
pathways of  cholesterol synthesis[26]. Daxx can inhibit 
AR transcriptional activity[6,7], which can down-regulates 
the activity of  SCAP[9]. Thus, we checked the activity of  
SREBP-1 and detected that Daxx has the potential to 
decrease the expression of  active SREBP-1. This also 
revealed that Daxx might mediate intracellular cholesterol 
accumulation by inhibiting cholesterol synthesis.

SREBP-1 represses caveolin expression by the SRE/
SREBP pathway. In this case, SREBP inhibits caveolin gene 
transcription in contrast to its stimulating effect on other 
gene promoters[27,28]. Caveolin-1, a type of  free cholesterol-
binding protein, is another significant protein involved 
in cholesterol homeostasis[29]. Transfection of  cells with 
full-length caveolin-1 cDNA resulted in the expression 
of  morphologically authentic caveolae structure and 
FC efflux[30]. The expression of  caveolin may represent 
a mechanism, by which FC excretion became facile[31]. 
The results of  experiments showed that Daxx promoted 
the expression of  caveolin-1. These findings show the 
possibility of  Daxx mediating intracellular cholesterol 
accumulation presumably by increasing cholesterol 
excretion.

In conclusion, our results confirm that Daxx is likely 
to decrease the intracellular cholesterol accumulation by 
regulating cholesterol synthesis and excretion. One of  the 
main future challenges will be the generation of  suitable 
animal models to be used to dissect Daxx function in 
cholesterol homeostasis.

 COMMENTS
Background
Death-associated protein (Daxx) could negatively modulate androgen receptor 
(AR) transcriptional activity. Androgens affect lipogenic gene expression not only 
in tumor cells but also in normal androgen target tissues in vivo. AR can directly 
upregulate sterol regulatory element-binding protein (SREBP) cleavage-activating 
protein (SCAP) by binding an androgen response element in intron 8 of SCAP 

gene. Activated SREBP can increase the mRNA and protein levels of genes 
involved in fatty acid, and cholesterol synthesis. These results indicate that Daxx 
could possibly regulate cellular cholesterol metabolism by the SREBP pathway. 

Research frontiers 
Hypercholesrerolemia is mainly a pathologic feature of cardiovascular diseases. 
The liver is a very important organ for maintaining the physical balance of 
cholesterol. In liver SREBPs are very important proteins which have been 
responsible for mediating cholesterol metabolism. Some studies have shown Daxx 
can regulate SREBP indirectly, but no evidences have suggested Daxx can affect 
cholesterol balance.  

Innovations and breakthroughs
In the present study, we investigated the correlations between Daxx expression 
and cholesterol accumulation in liver cells. The findings herein show that 
overexpression of Daxx in HepG2 cells may decrease intracellular cholesterol, 
which may be associated with inhibition of SREBP activity related to cholesterol 
synthesis and increase in caveolin-1 expression related to excretion.

Applications 
Our study will provide academic value in finding a new function of Daxx, and 
experimental reference for clinical treatment of hypercholesterolemia.

Peer review
The authors demonstrated the inverse relationship between Daxx expression and 
cholesterol accumulation in hepatocytes. It appears that the effect of Daxx on 
cholesterol level in liver cells may be associated with inhibition of SREBP activity 
and an increase in caveolin-1 expression. The study was well performed and the 
data are clearly presented.
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