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Abstract
The chronic inflammatory process underlying inflammatory 
bowel disease (IBD), comprising Crohn’s disease and 
ulcerative colitis, derives from the interplay of several 
components in a genetically susceptible host. These com
ponents include environmental elements and gut micro
biota a dysbiosis. For decades, immune abnormalities 
have been investigated as critically important in IBD 
pathogenesis, and attempts to develop effective therapies 
have predominantly targeted the immune system. 
Nevertheless, immune events represent only one of the 
constituents contributing to IBD pathogenesis within the 
context of the complex cellular and molecular network 
underlying chronic intestinal inflammation. These fact
ors need to be appreciated within the milieu of non-
immune components. Damage-associated molecular 
patterns (DAMPs), which are essentially endogenous 
stress proteins expressed or released as a result of cell 
or tissue damage, have been shown to act as direct pro-
inflammatory mediators. Excessive or persistent signal
ling mediated by such molecules can underlie several 
chronic inflammatory disorders, including IBD. The re
lease of endogenous DAMPs amplifies the inflammatory 
response driven by immune and non-immune cells and 
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promotes epigenetic reprogramming in IBD. The effects 
determine pathologic changes, which may sustain chronic 
intestinal inflammation and also underlie specific disease 
phenotypes. In addition to highlighting the potential use 
of DAMPs such as calprotectin as biomarkers, research 
on DAMPs may reveal novel mechanistic associations in 
IBD pathogenesis and is expected to uncover putative 
therapeutic targets.

Key words: Damage-associated molecular patterns; 
Environmental factors; Epigenetics; Inflammatory bowel 
disease; Therapeutic targets

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Damage-associated molecular patterns (DAMPs) 
are basically endogenous stress molecules expressed or 
released as a consequence of cell or tissue damage. The 
release of endogenous DAMPs precipitates a secondary 
inflammatory response in inflammatory bowel disease 
(IBD), which may determine a self-sustaining chronic 
inflammatory process. DAMPs amplify the inflammatory 
response driven by immune and non-immune cells and 
promote several pathologic changes, which may be as
sociated with specific disease phenotypes. Excessive 
or persistent DAMP-mediated signalling can result in 
epigenetic modifications, which may sustain chronic in
flammation and also characterize IBD phenotypes. Preli
minary studies targeting DAMPs have shown promising 
beneficial therapeutic effects both in human and ex
perimental IBD.

Nanini HF, Bernardazzi C, Castro F, de Souza HSP. Damage-
associated molecular patterns in inflammatory bowel disease: 
From biomarkers to therapeutic targets. World J Gastroenterol 
2018; 24(41): 4622-4634  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v24/i41/4622.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i41.4622

INTRODUCTION
Inflammatory bowel disease (IBD), including Crohn’s 
disease (CD) and ulcerative colitis (UC), constitutes a 
chronic inflammatory condition that primarily affects 
the gastrointestinal tract. Although the aetiology of IBD 
remains largely unclear, evidence to date supports a 
multifactorial background[1,2]. From a clinical perspective, 
IBD has been considered to be a heterogeneous con­
dition, with a wide range of clinical manifestations that 
usually change throughout the course of the disease. 
Despite the remarkable accumulation of knowledge regar­
ding disease mechanisms in the last decades, therapeutic 
options are still relatively scarce. Moreover, defining the 
best treatment for individual patients remains a chal­
lenge.

Within the context of chronic inflammation, particu­
larly when severe injury ensues, the tissue damage 

occurring in cell death results in the release of a multitude 
of potentially pro-inflammatory endogenous molecules. 
Damage-associated molecular patterns (DAMPs) are such 
endogenous molecules released from cells in response to 
endogenous or exogenous stimuli. DAMPs can function 
as signalling mediators of stress responses and the 
immune response via specific membrane or intracellular 
receptors or after endocytic uptake[3,4]. DAMPs may 
originate from diverse cellular compartments, including 
the cytosol, nucleus, and mitochondria, and also from 
tissue components such as the extracellular matrix[5].

Evidence accumulated in the last decade indicates 
that abnormal signalling through receptors associated 
with DAMPs occurs in several diseases[6-8]. Such findings 
have attracted attention regarding the potential role of 
DAMPs in both IBD pathogenesis and clinical practice[9-12].

Here, we review mechanisms involving DAMPs in 
chronic intestinal inflammation and the potential use 
of DAMPs as biomarkers. Promising novel therapeutic 
targets for IBD are also discussed. 

DAMPS AND THE INFLAMMATORY 
RESPONSE
The human body harbours an efficient defence system 
against potentially harmful elements in the environment. 
This protective mechanism is composed of several 
components, including cells programmed to combat 
exogenous elements utilizing a complex immunological 
system that consists of innate and adaptive responses. 
Cells of the innate immune system respond to a variety 
of molecules from different microorganisms known 
as pathogen-associated molecular patterns (PAMPs). 
Nevertheless, infectious and non-infectious challenges 
invariably result in host tissue damage, which directs the 
release of components normally found in intracellular 
compartments. Several molecules released into the 
extracellular milieu by damaged cells have been termed 
DAMPs[13,14].

DAMPs comprise various endogenous molecules that 
are capable of activating pattern recognition receptors 
(PRRs). DAMPs may be released after plasma membrane 
disruption secondary to several forms of cell death or 
may be actively secreted via non-classical pathways by 
cells under stress[15]. In addition to the ubiquitous origin 
of DAMPs, such as intracellular proteins and purinergic 
molecules in distinct sub-cellular compartments, DAMPs 
may also be derived from the extracellular matrix[5]. 
Although DAMPs are not recognized by the innate 
immune system under physiological conditions, extra­
cellularly released DAMPs signal danger upon tissue 
damage and induce both inflammatory and repair pro­
cesses[14]. However, within the context of significant 
tissue injury, the persistent release of DAMPs may fuel a 
stress-inflammation amplification loop that underlies the 
pathogenesis of several chronic inflammatory disorders. 

PRRs can be activated by DAMPs within the scenario 
of “sterile inflammation”, in which tissue damage occurs 
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in the absence of invasive microorganisms[16,17]. PRRs 
comprise several cell surface or endosomal receptors of 
four major types: Toll-like receptors (TLRs); cytoplasmic 
nucleotide-binding and oligomerization domain (NOD)-
like receptors (NLRs) and inflammasomes; RIG-like 
receptors (RLRs); and C-type lectin receptors (CLRs)[18]. 
Although the precise mechanisms underlying the inter­
action between DAMPs and PRRs have yet to be clarified, 
it is interesting to note that regardless of their structural 
diversity, DAMPs and PAMPs are frequently recognized 
by the same receptors. After detecting PAMPs or DAMPs, 
PRRs activate intracellular signalling pathways, resulting 
in upregulation of pro-inflammatory genes and stimu­
lation of mechanisms involved in the inflammatory re­
sponse as well as antimicrobial actions[19] (Figure 1). 

The pathways associated with NLR activation are 
poorly understood and remain under investigation. Never­
theless, two distinct mechanisms have been proposed: 
direct binding and indirect binding of PAMPs and DAMPs 
to receptors. These mechanisms are based on three 
models. The most studied model involves activation 
of the NLRP3 inflammasome, whereby the purinergic 
P2X7 receptor is stimulated by adenosine triphosphate 
(ATP), which triggers K+ efflux and opening of the 
pannexin-1 pore. This allows passage of the NLRP3 ago­
nist into the cytosol, leading to the direct activation of 
NLRP3[20] (Figure 2). The second model relates to the 
observation that crystalline and particulate structures can 
be phagocytosed and released into the cytosol following 

damage to the phagolysosome, thus directly activating 
NLRP3. The third model proposes that DAMPs and PAMPs 
induce production of reactive oxygen species (ROS), 
indirectly activating the inflammasome[21]. 

Overexpression of interleukin (IL)-1β and IL-18, 
as well as IL-18 and NLRP3 polymorphisms described 
in patients with CD, also supports the involvement of 
inflammasomes in IBD[22-24]. Studies using experimental 
models typically corroborate these findings. For instance, 
NLRP6-deficient mice develop spontaneous intestinal 
hyperplasia and show inflammatory cell recruitment 
and exacerbation of chemically induced colitis[25]. NLRP6 
is highly expressed in the intestine; by preserving the 
integrity of the intestinal epithelial barrier, NLRP6 exhibits 
protective effects against the development of intestinal 
inflammation[26,27]. In accordance with these findings, 
most studies have reported that NLRP3-deficient 
mice are more likely to develop colitis[28,29]. However, 
another independent study has shown opposing results, 
suggesting a protective effect of NLRP3 deficiency against 
chemically induced colitis[30]. Independent of the exact 
role of the NLRP3 inflammasome in experimental colitis, 
the fact that NLRP3-, ASC-, and caspase-1-deficient 
mice do not develop colitis in the absence of chemical 
stimuli indicates that inflammasome impairment alone 
does not lead to intestinal inflammation[31]. Regardless, 
these data support the importance of PRR function in 
maintaining intestinal homeostasis and highlight the role 
of intracellular signalling via DAMPs in the pathogenesis 
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in the intestinal mucosa. Pathogens such as viruses, bacteria and fungi present pathogen-associated molecular patterns that are able to stimulate cellular receptors 
such as toll-like receptors and nucleotide-binding and oligomerization domain-like receptors to promote the production of proinflammatory cytokines and recruitment 
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agent[33-35]. During the inflammatory response, cells of 
the innate immune system release their intracellular 
contents into the extracellular milieu in a degranulation 
process; this results in increased concentrations of cal­
protectin at various body sites, including the intestinal 
lumen, and in faeces[36]. As a non-invasive tool to aid 
in the detection of intestinal inflammation, faecal cal­
protectin (FC) levels can be measured using enzyme-
linked immunosorbent assays (ELISAs) or, more re­
cently, a home-use kit associated with a smartphone 
application[37]. Such measurement has a relatively good 
correlation with clinical and endoscopic results in patients 
with UC[38] and in those with CD, for which FC has also 
been used to monitor the risk of disease relapse[39]. 

Lactoferrin 
Lactoferrin, which binds iron, is an indicator of neutrophil 
degranulation and acts as an alarmin[40]. Because lac­
toferrin is relatively resistant to degradation and pro­
teolysis, it can be measured in stool and serve as a 
biomarker of intestinal inflammation. Thus, lactoferrin 
has been utilised to differentiate functional diseases from 
IBD. However, similar to calprotectin, lactoferrin has been 
most highly correlated with colonic inflammation, as op­
posed to ileal activity[41]. 

Calreticulin 
Calreticulin (CRT) is a calcium-binding protein and an 
endoplasmic reticulum (ER)-resident lectin-like chaperone 
that is induced by ER stress[42]. In addition, CRT has been 
shown to induce ER stress accompanied by a significant 
increase in proteasome activity[43]. Recently, CRT has 

of intestinal inflammation. 

DAMPS IMPLICATED IN INTESTINAL 
INFLAMMATION
Several studies have contributed to our understanding of 
the role of DAMPs in IBD. DAMPs are currently thought to 
contribute to the development of intestinal inflammation, 
particularly via activation of lamina propria cells, which 
are directly involved in innate immunity[32]. In fact, se­
veral types of molecules identified as being involved 
during the course of IBD, such as calprotectin, lactoferrin, 
calreticulin, high-mobility group box 1 (HMGB1), ATP, 
IL-1α, IL-33, and fragments of the extracellular matrix, 
are considered DAMPs[5] (Figure 1). Below, we attempt 
to delineate the role of DAMPs in the pathogenesis of 
IBD by highlighting certain molecules and their potential 
importance as biomarkers of inflammatory activity and 
as therapeutic targets. 

Calprotectin
Calprotectin, a calcium-binding protein belonging to 
the S100 family, is basically composed of S100A8 and 
S100A9 heterodimers. The S100 family comprises more 
than 20 members with multiple functions, with calpro­
tectin typically being associated with intestinal inflam­
mation. Calprotectin, which is also known as Mrp8/14, 
calgranulin A/B, and cystic fibrosis antigen, is commonly 
found in cells of the immune system, mainly in neu­
trophils but also in reactive monocytes and macrophages. 
This protein potentially functions as an antimicrobial 
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Figure 2  Intracellular signalling via damage-associated molecular patterns. Multiple mediators released by dying or stressed cells provide a secondary signal 
to amplify immune and inflammatory responses. Damage-associated molecular patterns (DAMPs) can activate proteins such as the purinergic receptor P2X7. P2X7 
is capable of activating pannexin-1, a membrane channel involved in activation of the multiprotein inflammasome complex, promoting the inflammatory response. 
Immunological memory may develop via epigenetic reprogramming after exposure to pathogen-associated molecular patterns or DAMPs. This functional adaptation 
of the immune system may directly exacerbate inflammatory responses upon subsequent challenges. TLR: Toll-like receptor; NLR: NOD-like receptor; IL: Interleukin; 
NFκB: Nuclear factor kappa B; MAPK: Mitogen-activated protein kinase; PAMPs: Pathogen-associated molecular patterns.
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been recognized as a potent DAMP capable of influencing 
homeostasis through immune regulation. In this regard, 
new evidence has indicated that CRT can translocate 
to the cell surface and serve as a signal for immune-
mediated cell death[44]. Moreover, a significant decrease 
in the basal transcriptional activity of nuclear factor kappa 
B (NF-κB) has been observed in CRT-deficient cells. In an 
experimental model of inflammation, the tubular epithe­
lial cells of rats subjected to unilateral ureteric obstruction 
showed an upregulation of CRT[45]. 

HMGB1
In contrast to cellular components and endogenous 
DAMPs such as DNA, RNA, and ATP, another subset of 
intracellular proteins released from necrotic cells also 
appears to participate in sterile inflammatory processes. 
These proteins, including members of the IL-1 family 
such as IL-1α, IL-33, and HMGB1, are characteristically 
bifunctional, acting as cytokines and performing yet-
unclear nuclear functions[46]. In contrast to the signalling 
mediated by DAMPs, which are usually recognized by 
PAMP receptors such as TLRs, activation of the HMGB1 
signalling pathway occurs through interaction with several 
cell surface receptors. As a result, HMGB1 exerts effects 
on a multitude of processes, including cell proliferation, 
survival and death, as well as inflammation[47,48].

HMGB1 is a DNA-binding protein that may be trans­
located to the cytoplasm when cellular stress occurs. 
During chronic inflammatory processes, high rates of 
cellular necrosis result in the abundant release of HMGB1 
into the extracellular milieu. As a consequence, extra­
cellular HMGB1 participates in the induction of intestinal 
epithelial cell autophagy[49], increased expression of 
adhesion molecules, and secretion of proinflammatory 
cytokines and chemokines[50,51].

HMGB1 levels have been shown to be elevated in the 
dextran sodium sulphate (DSS)-induced colitis model[52]. 
In addition, genetically modified HMGB1-deficient mice 
(Vil-Cre Hmgb1fl/fl) had more apoptosis of intestinal cells 
following induction of colitis with DSS[53].

IL-1α
IL-1α is an IL-1 family member synthesized as a pre­
cursor protein (pIL-1α) with a molecular weight of appro­
ximately 31 kDa that may be cleaved into mature 17-kDa 
forms. The two forms are biologically active and serve 
as ligands for the receptor IL-1R1[54]. These proteins are 
constitutively expressed in different immune cells as 
well as in intestinal epithelial cells[55]. IL-1α expression 
is upregulated in response to growth factors or to pro-
inflammatory or stressful stimuli; the molecule then is 
translocated from the cytosol to the nucleus, where it 
acts as a pro-inflammatory transcription factor[54]. For 
example, upon stimulation with lipopolysaccharide (LPS) 
or tumor necrosis factor alpha (TNFα), IL-1α translocates 
to the nucleus to promote expression of inflammatory 
genes, including IL-8 and IL-6[56]. However, cells under­
going necrosis can release pIL-1α, which results in cell 

chemotaxis and inflammation[57]; therefore, pIL-1α 
functions as a DAMP. In fact, in the extracellular milieu, 
IL-1α appears to induce a pro-inflammatory response 
via binding with IL-1R1[58]. 

With regard to chronic intestinal inflammation, high 
levels of IL-1α have been detected in lamina propria 
mononuclear cells from patients with IBD[59] and in super­
natants of colonic explant cultures from CD or UC pa­
tients[11]. In experimental colitis, release of IL-1α from da­
maged intestinal epithelial cells has been associated with 
the initiation and propagation of colonic inflammation[60]. 
IL-1α has also been shown to amplify gut inflammation 
in experimental colitis by inducing cytokine production in 
mesenchymal cells[61].

IL-33
IL-33 is a member of the IL-1 cytokine family that is pre­
dominantly expressed in stromal cells and in the epithe­
lium lining surfaces in contact with the environment[62]. 
Primarily is described as a proinflammatory cytokine 
that induces the Th2 immune response and is involved 
in defence against parasitic infections. IL-33 has also 
been proposed as an inducer of Th1 cells, group 2 
innate lymphoid cells, regulatory T (Treg) cells, and 
CD8+ T cells[63]. In addition, IL-33 may act as a signalling 
molecule that alerts the immune system to danger 
or tissue damage[64]. IL-33 localises to the nucleus; 
however, once released into the extracellular milieu upon 
membrane disruption, it may act as a dual-function 
alarmin, similar to HMGB1 and IL-1 alpha[65]. 

IL-33/ST2 signalling in the gut has been implicated 
in the pathogenesis of inflammatory processes. In fact, 
abnormal expression of IL-33/ST2 has been detected 
in the inflamed mucosa of patients with IBD, as well as 
in experimental models of chemically induced colitis[66]. 
Because a predominant Th2 immune response underlies 
UC pathogenesis, several studies have attempted to 
investigate the role of IL-33 in this specific condition. For 
example, investigators found a significant increase in 
mucosal IL-33 mRNA expression in patients with active 
UC compared to healthy controls. Moreover, a significant 
reduction in IL-33 was detected after anti-TNF therapy, 
thus supporting the notion that enterocyte-derived IL-33 
is induced and maintained by the inflammatory milieu[67]. 

ATP
Under normal conditions, nucleotides such as ATP are 
present in high concentrations intracellularly. However, 
upon stimulation by different stresses such as necrosis, 
apoptosis, hypoxia, or pathogen invasion, cells may 
release nucleotides into the extracellular milieu. ATP 
in the extracellular environment is thought to act as a 
messenger and behave as a danger signal capable of 
modulating immunity and inflammation[68] via activation 
of transmembrane receptors known as P2 receptors. 
The family of P2 receptors comprises P2Y (G-coupled 
proteins) and P2X (ionic channels)[69]. Among all P2 
family members, P2X7 receptors, which are expressed 
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on different cell types such as monocytes, macrophages, 
dendritic cells, lymphocytes, neurons, fibroblasts, and 
epithelial cells, have been studied the most[70]. 

Upon activation, ATP-P2X7 signalling promotes the 
release of pro-inflammatory cytokines such as IL-1β and 
IL-18[71], stimulates free radical production, and parti­
cipates in cell cycle regulation and apoptosis induction[69]. 
We previously showed that the P2X7 receptor is posi­
tively modulated by IFN-gamma in intestinal epithelial 
cells[72] and that its activation induces apoptosis and 
autophagy via ROS production[73]. With regard to 
human IBD, we showed that P2X7 receptors are over­
expressed in inflamed colonic mucosa, particularly in 
CD patients[74]. Moreover, we demonstrated that P2X7 
receptors promote intestinal inflammation by triggering 
the death of mucosal regulatory T cells[75]. In addition, 
we found that systemic blockade of P2X7 receptors 
prevents the development of chemically induced colitis in 
rats[76], whereas P2X7-deficient mice essentially do not 
develop intestinal inflammation[74]. Taken together, these 
findings strongly support a role for ATP-P2X7 signalling 
in the pathogenesis of IBD and may offer avenues for 
the development of inflammatory biomarkers and new 
therapeutic options. 

Extracellular matrix components and hyaluronan
The extracellular matrix (ECM) comprises a complex 
and dynamic non-cellular network that is present within 
all tissues. The ECM provides the architectural structure 
for cellular components and a microenvironment for 
the chemical and mechanical interactions necessary for 
tissue homeostasis. Although the ECM basically consists 
of water, proteins and polysaccharides, its composition 
is tissue specific[77]. Proteoglycans permeate most of 
the interstitial space within a tissue[78], and in the gas­
trointestinal tract, hyaluronan is a highly prevalent proteo­
glycan component of the ECM[79]. 

Hyaluronan, a non-sulphated glycosaminoglycan 
that interacts with different proteins, including ECM com­
ponents and membrane receptors[80], has been shown 
to induce leukocyte recruitment in the extravascular 
space within the context of intestinal injury[81]. In fact, 
hyaluronan accumulates in the vicinity of infiltrating 
leukocytes in the colon, both in human IBD[82] and in 
experimental colitis tissues[83]. Under normal conditions, 
hyaluronan exists as a high molecular weight molecule 
that may function as an anti-angiogenic factor[84], pre­
vent immune cell recognition, and block phagocytosis 
by macrophages[85,86]. In addition, high molecular weight 
hyaluronan prevents T cell-mediated liver injury[87] and 
promotes the persistence of tolerogenic regulatory T 
cells[88] in experimental models. 

Conversely, hyaluronan displays an altered distri­
bution in inflammatory settings and consists of a variety 
of polymers with different lengths and functions[89,90]. 
Small fragments resulting from hyaluronan degradation 
have been implicated in activation of the innate immune 
response via TLR2, whereas the intact hyaluronan mo­
lecule is capable of inhibiting activation of the same 
receptor[91]. In another study, investigators observed 
that fibroblasts from CD patients produce high levels 
of KIAA1199, a protein responsible for excessive hyalu­
ronan degradation, which leads to the generation of pro-
inflammatory fragments, potentially enhancing inflam­
mation[92]. 

Table 1 summarises information on specific disease 
phenotypes and also presents details on human and 
experimental studies. 

DAMPS AND EPIGENETIC 
REPROGRAMMING
Recent progress in epigenetics has suggested that ge­

DAMP Human IBD Experimental IBD

Calprotectin Increased levels in the intestinal lumen and stools in both UC and 
CD[36,38,39]

-

Lactoferrin Mostly correlates with colonic inflammation[41] Beneficial therapeutic effects in colitis models[93,94]

Calreticulin Related to inflammatory activity[44] -
HMGB1 Increased levels in the stools of both adult and paediatric IBD 

patients[113]
Increased levels in DSS-induced colitis mice[52]

IL-1 alpha Increased levels in the lamina propria of both UC and CD[59] Associated with colonic inflammation initiation and 
amplification[60,61]

IL-33 Increased levels in the inflamed intestinal mucosa of IBD patients, 
especially in UC[66,67]

Increased levels in chemically induced colitis[66]; beneficial effects 
upon ST2 blockage[121]

ATP-P2X7 Overexpressed in IBD patients, particularly in CD[74] Increases intestinal inflammation in chemically induced colitis[75]; 
P2X7-deficient mice essentially do not develop intestinal 

inflammation[74]

S 100 proteins Increased faecal[95-98], mucosal[99], and serum[99-101] levels
HSPs Increased levels[102-105] Beneficial therapeutic effects in colitis models[106]

Galectins Increased serum levels in UC and CD[107] Galectins 1 and 2 show anti-inflammatory action[108,109] 
Galectin 4: Antibody blockage reduces inflammation[110]

Hyaluronan ECM components accumulate in the colon of IBD patients[82], 
particularly in UC[115]

ECM components accumulate in experimental colitis tissues[83]

Table 1  Findings on the role of damage-associated molecular patterns in human and experimental inflammatory bowel diseases

DAMPs: Damage-associated molecular patterns; IBD: Inflammatory bowel disease; CD: Crohn’s disease; UC: Ulcerative colitis; HSPs: Heat shock proteins; 
ECM: Extracellular matrix; IL: Interleukin; HMGB1: High-mobility group box 1.
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nome modifications may be more dynamic than pre­
viously thought. For instance, immune cells, including 
monocytes and macrophages, and epithelial cells are 
known to promote an inflammatory response upon 
LPS stimulation. This phenomenon involves the repro­
gramming of cell-specific gene expression, which can 
occur through different mechanisms, including epigenetic 
modifications[111,112]. Nevertheless, in the case of LPS, 
epigenetic modifications are likely not exclusively asso­
ciated with the acute response but also may be asso­
ciated with the establishment of epigenetic memory, 
thus impacting the future response mediated by expo­
sure to new microorganisms[113]. In parallel, tissue da­
mage per se is known to induce a local inflammatory 
response, which may be followed by subsequent 
regenerative processes involving macrophages and 
other immune cells as well as non-immune cells[114]. In 
such circumstances, similar to the events that follow 
microbial stimulation[115], cells of the innate immune 
system develop immunological memory via epigenetic 
reprogramming after exposure to non-microbial li­
gands[116]. This functional adaptation of the immune 
system may direct exacerbated inflammatory responses 
upon subsequent challenges and may explain the long-
term reprogramming of inflammatory genes induced by 
endogenous DAMPs[117] (Figure 2).

Atherosclerosis, a fundamental mechanism under­
lying most cardiovascular diseases and progressively 
recognized as an inflammatory disorder, is one 
ubiquitous example of epigenetic reprogramming. 
Indeed, the inflammatory nature of atheromatous 
plaques comprises interaction between elements such 
as modified low-density oxidized lipoproteins func­
tioning as DAMPs and macrophage foam cells filled 
with cholesterol droplets; these foam cells produce 
chemokines that attract additional circulating leucocytes 
to atherosclerotic plaques[118]. Evidence for an epigenetic 
background underlying the atherogenic phenotype 
has been demonstrated by the observation that macro­
phages trained by exposure to beta-glucan display 
transcriptional activation at several loci encoding both 
inflammatory mediators and genes directly associated 
with basic metabolic processes in the development of 
atherogenesis[119]. In fact, the hypothesis that trained 
monocytes/macrophages may become pro-atherogenic 
has been further confirmed by the demonstration that 
oxidized LDL can train primary human monocytes to 
upregulate expression of proinflammatory cytokines, 
PRRs and LDL receptors[120].

Due to their wide range of participation in several 
disorders that directly or indirectly involve the immune 
system, regulatory T cells (Tregs), a subset of CD4+ T 
cells that play a fundamental role in peripheral immune 
tolerance, continue to attract attention. New progress in 
this field points to potential Treg immune plasticity and 
regulation by receptors for PAMPs and DAMPs[121-123] as 
well as to the epigenetic regulation of Treg phenotypes 
and functions[124]. In light of these relatively novel 

findings, Yang et al[125] proposed an innovative concept 
in which Tregs might be subjected to re-shaping from a 
physiological phenotype into a pathological phenotype 
within the setting of diverse pathological conditions. 
Based on a similar line of evidence, macrophages are 
known to polarize into distinct phenotypes in vitro upon 
exposure to different stimuli; in vivo, these cells respond 
to signals, including PAMPs and DAMPs, that control 
their homeostatic functions[126,127]. Recently, polarization 
of macrophages in response to complex tissue damage 
and wound repair signals has been associated with 
expression of Rev-erb nuclear receptors. Interestingly, 
Rev-erbs repress subsets of genes activated by TLR 
ligands, IL-4, TGF beta, and DAMPs. Thus, Rev-erbs have 
been postulated to function as key molecules integrating 
signalling pathways involved in tissue injury to promote a 
wound repair phenotype[128].

The recent discovery that CRT possesses transace­
tylase activity, which is involved in a critical post-trans­
lational modification capable of shaping epigenetic regu­
lation and signal transduction, suggests additional roles 
for CRT in diseases involving immune regulation. In this 
sense, CRT can also be considered a potential target for 
the development of anti-inflammatory therapies based 
on semi-synthetic acetyl donors such as polyphenolic 
acetates and related agents[129].

The above considerations represent a first attempt to 
relate the ability of endogenous signals such as DAMPs 
to promote trained immunity to IBD, offering a new prin­
ciple for understanding the chronic and persistent nature 
of the inflammatory process that occurs in IBD. In the 
near future, the detailed epigenetic scenario in each 
IBD phenotype may become even more relevant, thus 
allowing for new therapeutic approaches directed towards 
the mediators or enzymes involved in the induction of 
relevant epigenetic modifications.

DAMPS AS BIOMARKERS AND 
THERAPEUTIC TARGETS
In light of the inconsistency among the currently avai­
lable tests and the cost and potential risks of invasive 
procedures, contributing to a scenario of remarkable 
clinical variability, biomarkers of gut inflammation in IBD 
have been persistently investigated in recent decades. In 
addition, the fluctuating course of IBD creates a demand 
for more precise predictors of clinical outcomes to inform 
therapeutic decisions. In particular, the quantification of 
inflammatory activity, identification of specific disease 
behaviours, and prediction of responses and adverse ef­
fects due to a certain medication appear critical for the 
appropriate management of IBD. 

Currently, FC and lactoferrin have been utilized as indi­
cators of intestinal mucosal inflammation; together with 
other clinical and imaging approaches, these indicators, 
despite their limitations, contribute to the diagnosis 
and follow-up of patients with IBD[130]. Nonetheless, se­
veral other DAMPs have been proposed as promising 
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biomarkers for IBD[5]. 
Among IL-1 family proteins, HMGB1 released fol­

lowing cellular necrosis has been detected in chronically 
inflamed intestinal tissues and found abundantly in the 
stool of both adult and paediatric patients[131]. Notably, 
faecal HMGB1 has been supported as a reliable biomarker 
of intestinal inflammation; it significantly correlates with 
FC and may identify histological inflammation in IBD 
patients in clinical and endoscopic remission[132]. 

Another IL-1 family member, IL-1α, has been de­
tected in the supernatants of intestinal explant cultures 
from patients with IBD[11]. IL-33, another member of the 
IL-1 family, is also released in the extracellular milieu 
upon cell or tissue damage, and it has been detected in 
the inflamed mucosa of IBD patients[66]. 

Because CRT is involved in processes related to 
inflammatory activity and translocates to the cell sur­
face and signals immune-mediated cell death, CRT is 
both a DAMP[44] and a potential biomarker. In another 
category of DAMPs, a positive correlation between high 
concentrations of serum-derived hyaluronan-associated 
protein and intestinal inflammation has been found in 
intestinal samples and serum from experimental colitis 
models and patients with IBD, particularly those with 
UC[133]. Therefore, hyaluronan and possibly other ECM 
components are emerging as relevant DAMPs in intestinal 
inflammation and potential new biomarkers for IBD.

Considering the relatively disappointing results of 
current IBD therapies, one of the limitations of orthodox 
drug development is the lack of consideration of crucial 
aspects already known about IBD pathogenesis[134,135]. In 
this regard, DAMPs constitute interesting, underexplored 
factors, even though they are not the primary causative 
agents of IBD. Regardless, targeting DAMPs as a 
novel therapeutic approach for IBD appears to be an 
arduous but fascinating task. As such, current strategies 
propose to block the release of DAMPs, to inhibit their 
downstream signalling pathways, or to interfere with 
factors that may modulate the pathogenicity of the 
molecules involved[5]. 

Data regarding strategies targeting DAMPs for the 
treatment of inflammatory disorders are fundamentally 
based on results from in vitro studies and those involving 
experimental models. For example, tubular epithelial 
cells have been shown to overexpress CRT in a model of 
ureteral obstruction[45], and the association of CRT with 
renal fibrosis progression based on in vitro and in vivo 
approaches appears to implicate CRT in the molecular 
mechanisms that drive renal fibrosis progression[136]. 
Together, these studies suggest that CRT may become 
a new therapeutic target for fibrosis in chronic inflam­
matory disorders. 

In chemically induced experimental colitis, HMGB1 
targeting via either neutralizing antibodies or small 
molecules has been successful[137,138]. In addition, bloc­
kade of receptor for advanced glycation end products 
(RAGE), which is a receptor for multiple DAMPs, virtually 
suppresses inflammation in genetically predisposed IL-
10-deficient mice, i.e., a model of colitis[139]. Mitochondrial 
DNA (mtDNA), which shares many similarities with 

immunogenic bacterial DNA and is also recognized as 
a DAMP, is increased in the plasma of patients with UC 
and CD, and levels were significantly correlated with 
inflammatory mediators and endoscopic evidence of 
inflammation. Therefore, the investigators proposed 
that mtDNA may become a new biomarker for disease 
activity and that mtDNA-TLR9 may be a new therapeutic 
target in IBD[140].

With regard to IL-33, blockade of ST2 is reportedly 
beneficial in experimental models of chemically induced 
colitis[141]. From a clinical perspective, while the therapeutic 
success observed in animal studies targeting IL-33 ST2 
may foster future trials directed towards IBD, specifically 
for patients with UC, and human studies have shown 
that loss of IL-33 expression in colonic crypts may be a 
useful marker of disease remission in UC[67]. Although the 
exact pathophysiologic importance of these findings has 
yet to be established, evidence supports dichotomous 
functions for the IL-33/ST2 pathway in IBD: The ability 
to enhance Th2 and Th17 responses in gut-associated 
lymphoid tissues while also stimulating mucosal healing 
following inflammatory tissue damage. 

Recently, in the first phase Ⅱa study designed to 
assess the efficacy and safety of AZD9056, a selective 
orally active inhibitor of the purinergic receptor P2X7, for 
CD, investigators showed a beneficial risk profile with 
improvement of symptoms in patients with moderate-to-
severe disease. However, changes in inflammatory bio­
markers among patients with CD were not detected[142]. 
Although the beneficial effects observed in that study 
will likely prompt the development of new trials for CD, 
some specific points concerning the therapeutic use of 
P2X7 antagonists are noteworthy. Based on our previous 
experience with P2X7 blockade in experimental colitis, 
purinergic activation induces the death of Tregs[75], and 
the beneficial therapeutic effect is characteristically 
associated with prophylactic treatment, particularly 
when administered systemically[76]. Such discrepancies 
might be related to the specific actions of the ATP-P2X7 
pathway during the course of the inflammatory process 
and also to the effects of purinergic signalling in epithelial 
versus immune cells of the intestinal mucosa.

Hyaluronan accumulation in the intestine of patients 
undergoing IBD flares[82] and excessive production of 
ECM fragments, especially smaller polymers, are likely 
to fuel chronic inflammatory conditions such as IBD[92]. 
Nevertheless, it is interesting to note that some DAMPs 
may have a dual role in innate immune defence. In the 
case of hyaluronan, it has been demonstrated that large 
molecules may provide protective effects mediated by 
CD44 and TLR4 in experimental IBD[143]. Furthermore, 
these molecules may act in host defence at the epithelial 
cell surface, thus promoting antimicrobial peptide pro­
duction and improving regulation of the tight junction 
barrier in the gut[144]. 

CONCLUSION
In recent years, considerable advances have been ach­
ieved with regard to the pathogenic mechanisms in IBD. 
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However, a complete understanding of IBD pathogenesis 
will likely depend on more precise recognition and 
assimilation of the molecular and environmental cons­
tituents and the mechanisms by which they interact. 
In addition to potential use as practical biomarkers, 
proinflammatory activities and emerging roles in chronic 
inflammatory processes, including the ability to induce 
epigenetic modifications, DAMPs remain interesting 
targets for new discoveries about and innovative 
therapies for IBD. 
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