
of the biliary tree. The in vivo  models [e.g., bile duct 
ligation (BDL), partial hepatectomy, feeding of bile acids, 
carbon tetrachloride (CCl4) or α-naphthylisothiocyanate 
(ANIT)] and the in vivo  experimental tools [e.g., freshly 
isolated small and large cholangiocytes or intrahepatic 
bile duct units (IBDU) and primary cultures of small 
and large murine cholangiocytes] have allowed us 
to demonstrate the morphological and functional 
heterogeneity of the intrahepatic biliary epithelium.  
These models demonstrated the differential secretory 
act iv i t ies and the heterogeneous apoptot ic and 
proliferative responses of different sized ducts. Similar 
to animal models of cholangiocyte proliferation/injury 
restricted to specific sized ducts, in human liver diseases 
bile duct damage predominates specific sized bile ducts.  
Future studies related to the functional heterogeneity 
of the intrahepatic biliary epithelium may disclose 
new pathophysiological treatments for patients with 
cholangiopathies.

© 2006 The WJG Press. All rights reserved.
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Anatomical and Morphological 
Characteristics of the Biliary Epi-
thelium
Two kinds of  epithelial cells, hepatocytes and cho-
langiocytes, are present in the liver[1-3]. While hepatocytes 
in i t i a l l y secre te b i l e in to the b i l e cana l i cu lus [4], 
cholangiocytes modify bile of  canalicular origin by 
a series of  coordinated spontaneous and hormone/
peptide regulated secretion/reabsorption of  water and 
electrolytes before it reaches the small intestine[3,5-7]. For 
more information on the mechanisms of  bile formation 
we refer to recent reviews[4,5]. The human biliary system is 
divided into extrahepatic bile ducts and intrahepatic bile 
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Abstract
The objectives of this review are to outline the recent 
findings related to the morphological heterogeneity 
of the bi l iary epithel ium and the heterogeneous 
pathophysiological responses of different sized bile ducts 
to liver gastrointestinal hormones and peptides and liver 
injury/toxins with changes in apoptotic, proliferative and 
secretory activities. The knowledge of biliary function 
is rapidly increasing because of the recognition that 
biliary epithelial cells (cholangiocytes) are the targets 
of human cholangiopathies, which are characterized by 
proliferation/damage of bile ducts within a small range of 
sizes. The unique anatomy, morphology, innervation and 
vascularization of the biliary epithelium are consistent 
with function of cholangiocytes within different regions 
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ducts, the latter further sub-divided into large and small 
bile ducts[2,3,8]. The intrahepatic bile ducts represent that 
part of  the biliary tree proximal to the confluence of  the 
hepatic ducts[9] extending from the canals of  Hering to 
the large extrahepatic ducts[2,3,8]. In human liver, a study by 
Ludwig classified the intrahepatic bile duct system upon 
duct diameter[8], small bile ductules (< 15 µm), interlobular 
ducts (15-100 µm), septal ducts (100-300 µm), area ducts 

(300-400 µm), segmental ducts (400-800 µm) and hepatic 
ducts (> 800 µm)[8] (Table 1). Small ductules are lined by 
4-5 cholangiocytes, have a basement membrane, tight junc-
tions between cells and microvilli projecting into the bile 
duct lumen[10,11]. Cholangiocytes are progressively larger 
and more columnar in shape in larger bile ducts (lined by 
10-12 cholangiocytes)[10,11]. 

In rats, morphological studies in liver sections and 
small and large intrahepatic bile duct units (IBDU) have 
shown[2,12-14] that the intrahepatic biliary tree is divided 
into: (1) small ducts (< 15 µm in external diameter) lined 
by small cholangiocytes (approximately 8 µm in diam-
eter)[12,13]; and (2) and large ducts (> 15 µm in diameter) 
lined by large cholangiocytes (approximately 15 µm in 
diameter)[12,13] (Figure 1, Table 1). Specifically, we have 
shown[12] that the rat intrahepatic biliary epithelium is 
formed by ducts of  different sizes (5 to 200 µm in external 
diameter) and cholangiocytes of  different cell areas (3 to 
80 µm2).  Furthermore, a direct relationship exists between 
cholangiocyte area and external duct diameter, a finding 
that demonstrates that small ducts are lined by small chol-
angiocytes, whereas larger ducts are lined by larger cholan-
giocytes[12-14]. The fact that small and large ducts are lined 
by small and large cholangiocytes, respectively, is important 
since it allows for the assignment of  the secretory, apop-
totic and proliferative functions (achieved in isolated small 
and large cholangiocytes) within the different portions 
of  the intrahepatic biliary epithelium. Recently, Masyuk  
et al[15] have reconstructed the intrahepatic biliary epithe-
lium that resembles a tree, with the common and hepatic 
ducts corresponding to the trunk, the intrahepatic bile 
ducts corresponding to the large branches and the small 
ducts corresponding to the smallest tree limbs of  a tree. 

Studies by Phillips et al[16] have shown that no major 
ultrastructural differences exist among cholangiocytes 
lining small and large bile ducts. However, in support 
of  the concept that the intrahepatic biliary epithelium 
is morphologically heterogeneous, electron microscopic 
studies by Benedetti et al[14] in rat liver sections and IBDU 
have demonstrated that large bile ducts are lined by 8-15 
cholangiocytes and small ducts by 4-5 cholangiocytes. The 
studies also showed that small and large cholangiocytes 

Terminology for human bile ducts 
      (diameter in µm)

Terminology for rat bile ducts 
       (diameter in µm)

(Large bile ducts)
    Hepatic ducts (> 800)
    Segmental ducts (400-800)
    Area ducts (300-400)

(Small bile ducts)
    Septal bile ducts (100-300)
    Interlobular bile ducts (15-100) Large bile ducts (> 15)
    Bile ductules (cholangioles) (< 15) Small bile ducts (< 15)

Table 1  Terminology and relationship between human and rat 
intrahepatic bile ducts

These data have been obtained from studies[8,12,13] aimed to define the 
morphological characteristics of the biliary epithelium of rats, and humans. 
Reproduced with permission from Ref 2.

8.75 µm
14.84 µmA B

Figure 1  [Top] Isolation of small (A), approximately 8 µm diameter] and large 
(B), approximately 14 µm diameter] cholangiocytes from small and large ducts, 
respectively, from normal rats.  Small and large cholangiocytes were purified by 
counterflow elutriation followed by immunoaffinity purification. Original magn., × 
625. Reproduced with permission from Ref[12]. [Bottom] Isolation of small (C) and 
large (D) IBDU from normal rat liver. Small (< 15 µm in diameter) and large (> 15 
µm in diameter) IBDU were pruned off from large ducts by a nitrogen pulsed dye 
laser and subsequently separated (D) by picking up IBDU with a micromanipulator 
micropipet. Original magnification × 2000.  Reproduced with permission from  
Ref 13.
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have a multilobulated nucleus, numerous vesicles at the 
subapical region, tight junctions, high density of  microvilli 
and lysosomes and a few mitochondria[14]. Other stud-
ies have shown the presence of  microvilli and cilia in the 
apical plasma membrane of  cholangiocytes[17,18], cilia that 
play an important role in the regulation of  cholangiocyte 
functions[19,20]. While large cholangiocytes are columnar 
in shape, small cholangiocytes have a cuboidal shape[14].  
Abundant Golgi apparatus was observed between the api-
cal pole and the nucleus[14]. Rough endoplasmic reticulum 
was inconspicuous in the smallest ducts and increased 
only slightly in the largest[14]. While large cholangiocytes 
display a small nucleus and conspicuous cytoplasm, small 
cholangiocytes possess a high nucleus/cytoplasm ratio[14]. 
Cholangiocytes have distinct apical and basolateral mem-
branes[14,17,18].Coated pits have also been observed on the 
apical and basolateral membranes of  cholangiocytes, a 
finding suggesting receptor-mediated endocytosis at both 
domains of  cholangiocytes[21]. Functional tight junctions 
are located between adjacent cholangiocytes in proximity 
to the apical domain[17].

Innervation 
There is growing information regarding the role of  the 
nervous system in the regulation of  the pathophysiology 
of  the biliary epithelium[3,22-27]. In the liver, adrenergic 
and cholinergic nerves are located around the hepatic 
artery, portal vein, and the biliary epithelium[28,29]. The 
intrahepatic arteries, veins, bile ducts and hepatocytes 
are also innervated[28,29]. In the autonomic nervous 
system, there are a number of  regulatory peptides 
including neuropeptide tyrosine (NPY)[30,31], calcitonin 
gene related peptide (CGRP), somatostatin, vasoactive 
intestinal polypeptide (VIP) (mostly associated with 
parasympathetic fibers), enkephalin and bombesin[31-35]. 
NPY-positive nerves are present in extrahepatic bile 
ducts[36] and have been suggested to regulate bile flow by 
autocrine/paracrine mechanisms[37]. We have shown that 
NPY inhibits cholangiocarcinoma growth by interaction 
with a G-protein coupled receptor by Ca2+-dependent 
modulation of  Src/ERK1/2 phosphorylation[38]. Nerve 
fibers containing CGRP and substance P are present 
around blood vessels and bile duct radicles within portal 
tracts[39,40]. VIP-positive nerve fibers are located in the walls 
of  hepatic arteries, portal veins and bile ducts[41].

Vascularization 
The intrahepatic and extrahepatic bile ducts are nourished 
by a complex network of  minute vessels [i.e., peribiliary 
vascular plexus (PBP)], which originate from branches 
of  the hepatic artery and flow principally into the hepatic 
sinusoids, either directly (lobular branch) or by portal 
vein branches (prelobular branches)[42,43]. Since the blood 
flows in the opposite direction (from the large towards 
the small ducts) to bile flow, the PBP presents a counter-
current stream of  biliary reabsorbed substances to hepato-
cytes[44,45]. We have previously shown that the function of  
the intrahepatic biliary tree is linked to its vascular supply 
sustained by the PBP[44]. Changes in intrahepatic bile duct 

mass are associated with changes of  the PBP architec-
ture[44]. Following BDL, the PBP undergoes hyperplasia, 
thus supporting the increased nutritional and functional 
demands from the proliferating bile ducts[44]. In support of  
this concept, studies[46] have shown that following chronic 
feeding of  ANIT (which induces increases in both cholan-
giocyte proliferation/apoptosis)[47], the hepatic artery and 
portal vein undergo marked proliferation, presumably to 
support the increased nutritional and functional demands 
of  the proliferated bile ducts[44,46]. However, the prolifera-
tion of  the PBP occurs only after the hyperplasia of  bile 
ducts[44]. Recent studies have shown that small and large 
rat bile ducts have a different vascular supply[44]. The PBP 
is primarily present around large bile ducts and less vis-
ible around small bile ducts[44], a finding that may partly 
explain why large but not small cholangiocytes proliferate 
following BDL in rats[48] and why small and large ducts dif-
ferentially proliferate or are damaged in other experimen-
tal models of  cholangiocyte proliferation/loss including 
chronic feeding of  certain bile acids (e.g., taurocholate and 
taurolithocholate)[49], ΑΝΙΤ[47] or acute gavage administra-
tion of  CCl4[50,51] (Figure 2) or partial hepatectomy[52].

General Background on Cholan-
giocyte Functions
The major function of  cholangiocytes is to modify 
bile of  canalicular origin[4] (by basal and hormone/
pept ide regulated secret ion and reabsorpt ion of  

Figure 2  Measurement of H3 histone gene expression in small and large 
cholangiocytes from 1-wk BDL rats and 1-wk BDL rats treated with CCl4 or mineral 
oil. H3 histone gene expression in large cholangiocytes decreased on d 2 before 
returning to control values on d 7 after CCl4 treatment. H3 histone gene expression 
(which was absent in small cholangiocytes from BDL rats) was expressed by small 
cholangiocytes on d 1 and 2 before returning to control undetectable values on d 
7 after CCl4 treatment.  Administration of mineral oil to 1-wk BDL rats did not alter 
H3 histone gene expression in large cholangiocytes. The message for H3 histone 
gene was absent in small cholangiocytes from oil-treated rats. Comparability 
of RNA used was assessed by hybridization for GAPDH (housekeeping gene). 
Autoradiograms were quantified by densitometry. Densitometric values are means 
of 2 experiments.  Reproduced with permission from Ref 50.
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water and electrolytes) before reaching the small 
intestine[3,5,6]. Ductal secretion is coordinately modulated 
by gastrointestinal hormones (e.g., secretin, gastrin, 
insulin, somatostatin, bombesin and VIP)[3,5-7,12,53-58], 
gastrointestinal peptides (i.e., endothelin-1, ET-1)[59], 
enzymes (e.g., alkaline phosphatase)[60], bile acids (e.g., 
taurocholate, taurolithocholate, taurohyodeoxycholate, 
tauroursodeoxycholate, ursodeoxycholate and taurourso
deoxycholate)[49,61-64] and cholinergic[23,26], adrenergic[65,66], 
serotoninergic[67] and dopaminergic[25] receptor agonists.  
Cholangiocytes, which have a low DNA turnover under 
normal physiological conditions[48,52,68], proliferate or are 
damaged in response to liver injury/toxins[2,3,6,26,47,48,50,52,68-72]. 
In rat liver, secretin is of  particular importance since 
secretin receptors are only expressed by cholangiocytes[53], 
and its expression is upregulated under pathological 
conditions associated with enhanced cholangiocyte 
growth (e.g. , after BDL)[48,71,72] and downregulated 
with cholangiocyte damage/loss (e.g., following acute 
CCl4 administration)[50,51]. Thus, the secretin receptor 
is an important pathophysiological tool that allows us 
to evaluate the secretory, proliferative and apoptotic 
heterogeneity of  the intrahepatic biliary epithelium in 
response to agonists and liver toxins/injury[2,3,12,13,47-51,54,61,7

1,73]. Interaction of  secretin with its receptor is associated 
with increased intracellular cAMP levels[12,13,25,26,48,50-52,54

,59,72]. Enhanced cAMP levels leads to phosphorylation 
of  PKA[74], which induces opening of  the cystic fibrosis 
transmembrane regulator (CFTR) channel[54] leading to the 
activation of  the Cl-/HCO3

- exchanger[12,23,52] resulting in 
biliary bicarbonate secretion[6,52].

Experimental Models
A number of  in vivo models (e.g., BDL, acute admini-
stration of  CCl4, partial hepatectomy, chronic feeding of  
ANIT or bile salts)[47-52] demonstrated that the intrahepatic 
biliary epithelium is functionally heterogeneous, with 
specific sized bile ducts (i.e., small and large) differentially 
responding to l iver injury/toxins with changes in 
proliferative, apoptotic and secretory activities[2,3,12,47-52,5

4,62,71-73]. A number of  in vitro experimental models (i.e., 
small and large cholangiocytes and IBDU and small 
and large immortalized normal murine cholangiocytes) 
(Figure 1)[12,13,47,48,50,51,75] have allowed us to suggest that 
the intrahepatic biliary epithelium is morphologically 
and functionally heterogeneous[2, 3,12,47-52,54,62,71-73]. The very 
first approach that was employed and that significantly 
contributed to lay down the basis of  this field of  research 
was the purification of  small and large cholangiocytes 
from rat liver by counterflow elutriation[12,54,76]. Coupling 
such a technique to immunoaffinity separation[12,18,54], 
it was possible to isolate two distinct subpopulations 
of  small (approximately 8 µm in diameter, obtained 
at the centripetal flow rate of  25 ml/min) and large 
(approximately 14 µm in diameter, collected at the flow 
rate of  55 mL/min) cholangiocytes (Figure 1)[12,54]. The 
two subpopulations of  small and large cholangiocytes are 
further purified by immunoaffinity separation[18] using 
an antibody against an unidentified antigen (expressed 
by all intrahepatic cholangiocytes)[18] and characterized 

morphologically (by computerized image analysis) (Figure 
1)[12,54], phenotypically (expression of  γ-glutamyltransferase 
and cytokeratin-19 genes)[12,54] and functionally (by 
measurement of  gene expression of  secretin receptor, 
CFTR and Cl-/HCO3

- exchanger and basal and secretin-
stimulated cAMP levels, Cl - eff lux and Cl-/HCO3

- 
exchanger activity)[12,54].

In addition, we have developed a technique for 
isolating small (diameter smaller than 15 µm) and large 
(diameter greater than 15 µm) IBDU from small and large 
bile ducts, respectively (Figure 1)[13]. This important tool 
allowed us to directly evaluate the differential secretory 
responses of  different portions of  the biliary epithelium 
to selected gastrointestinal hormones/peptides[13,25,65,77]. As 
shown in Figure 1, the small duct was pruned off  from 
the large duct by a brief  exposure of  a laser focused on 
the junction between large and small ducts (arrow) leading 
to separation of  small from large ducts[13]. Small and large 
IBDU were characterized by morphometric analysis, gene 
expression for secretin receptor, CFTR and Cl-/HCO3

- 
exchanger, secretin-induced cAMP levels, and secretion by 
change in luminal size in response to agonists including 
secretin, insulin, the α1-adrenergic receptor agonist, the 
α2-adrenergic receptor agonist, UK14,304 and the D2 
dopaminergic receptor agonist, quinelorane[13,25,65,66,77].

Most recently. we have immortalized, from normal 
mice (BALB/c), small and large cholangiocytes by 
the introduction of  the SV40 large T antigen gene, 
that allowed, after cloning, to establish small and large 
cholangiocyte cell lines[75]. The characteristics of  the two 
subpopulations were evaluated by electron microscopy 
(EM) and measurement of  trans-epithelial electrical 
resistance (TER), and secretin-stimulated cAMP levels[75]. 
EM, TER and differential cAMP response to secretin 
are consistent with the concept that small and large 
immortalized cholangiocytes originate from small and large 
ducts, respectively[75]. Microarray successfully displayed 
characteristic differential cDNA expression between small 
and large cholangiocytes[75]. Using the above described 
methods individually or in tandem, has allowed us to 
clearly demonstrate heterogeneity of  the intrahepatic 
bi l iar y epi thel ium and to dissect the different ia l 
physiological responses of  these distinct subpopulations 
of  cholangiocytes to endogenous stimuli.

Heterogeneous Expression of Pro-
teins 
The heterogeneous expression of  some enzymes/pro-
teins and membrane transporters/receptors in small and 
large ducts from mice, rats and humans is summarized in  
Table 2. In human liver, large septal bile ducts mainly 
express the sialylated Lewisa blood group antigen[78]. In 
normal and diseased human livers, hepatic, segmental, 
area, and septal bile ducts, and peribiliary glands express 
pancreatic enzymes such as pancreatic lipase, pancreatic 
α-amylase, and trypsin[79,80]. By microarray of  RNA from 
small and large immortalized murine cholangiocytes, we 
have demonstrated the heterogeneous expression of  ap-
proximately 80 proteins between small and large chol-
angiocytes[75]. The pathophysiological relevance of  the 
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differential expression of  these messages remains to be 
addressed.

Secretory activity
Recent studies have demonstrated that large bile ducts are 

the major anatomical sites of  cAMP-dependent ductal 
secretion by activation of  cAMP/PKA/CFTR/Cl-/

HCO3
- exchanger (Figure 3)[3,12,13,48,54]. Specifically, stud-

ies in isolated small and large cholangiocytes and IBDU 
from normal and BDL rats have shown that large (but not 

small) cholangiocytes express the messages for secretin 
receptor, CFTR and Cl-/HCO3

- exchanger and respond 
to secretin with increases in cAMP levels, Cl- efflux and 

Cl-/HCO3
- exchanger activity and IBDU lumen expansion 

(Figure 3)[12,13,48,54]. In rat liver, large ducts express alkaline 
phosphatase and γ-glutamyltranspeptidase[81]. The expres-
sion of  alkaline phosphatase in large ducts is consistent 
with our previous studies[81] showing that alkaline phos-

phatase inhibits secretin-stimulated choleresis by blockage 
of  CFTR activity, which is expressed only in large ducts 
(Figure 3)[54]. Furthermore, large cholangiocytes (which 
is the only cholangiocyte subpopulation expressing the 
somatostatin receptor, SSTR2)[48] are the major anatomi-

cal sites of  somatostatin inhibition of  secretin-stimulated 
ductal secretion (Figure 3)[48,55]. The inhibitory effects of  

somatostatin on secretin-stimulated secretion in large chol-
angiocytes are associated with reduced cAMP levels, Cl- ef-
flux and Cl-/HCO3

- exchanger activity[48,55,54]. The counter-
regulatory effect of  somatostatin on the choleretic effect 
of  secretin is important in modulating ductal secretion 

in pathological conditions associated with cholangiocyte 
proliferation/loss[3]. Parallel with the findings observed in 
rat bile ducts[3,12,13,48, 4], in human liver secretin-stimulated 
duct secretory activity is heterogeneous, since only large 

bile interlobular ducts express the Cl-/HCO3
- exchanger[82]. 

We have demonstrated the presence of  insulin and 

CCK-B/gastrin receptors in large cholangiocytes from 
normal and BDL rats and have shown that these two 
hormones inhibit secretin-stimulated ductal secretion of  
BDL rats by IP3/Ca2+/PKCα-dependent decrease of  
cAMP levels[7,72,77]. Similarly, we found that ETA and ETB 
receptors are expressed by large cholangiocytes and that 
ET-1 inhibits secretin-stimulated cAMP levels and ductal 
bile secretion of  BDL rats by interaction with ETA but not 
ETB receptors[59]. Furthermore, recent data have shown 
that: (1) the D2 dopaminergic receptors are expressed by 
large BDL cholangiocytes; and (2) the D2 dopaminergic 
receptor agonist, quinelorane, inhibits secretin-stimulated 
ductal secretion by activation of  the Ca2+-dependent 
PKCγ[25]. The α2-adrenergic receptor agonist, UK14, 
304, inhibits secretin-stimulated cAMP-dependent Cl- 
efflux and Cl-/HCO3

- in large cholangiocytes and secretin-
stimulated lumen expansion in large IBDU of  BDL 
rats[66]. The α1-adrenergic receptor agonist, phenylephrine, 
stimulates cAMP levels and secretin-stimulated secretion 
of  large BDL cholangiocytes by IP3/Ca2+-dependent 
activation of  PKCα and PKCβⅡ[65]. We have recently 
demonstrated[26] that acetylcholine, by interacting with M3 
receptor subtypes, potentiates secretin-stimulated cAMP 
levels and Cl-/HCO3

- exchanger activity in IBDU and 
purified cholangiocytes by a Ca2+-calcineurin mediated but 
PKC independent modulation of  adenylyl cyclase.

Following hepatocyte secretion[83], bile acids are 
reabsorbed by the biliary epithelium[84], then they return 
via the PBP to the hepatocytes for secretion into bile 
(cholehepatic shunting)[85]. As a mechanism for bile acids 
entry into cholangiocytes, the apical Na+-dependent bile 
transporter, ASBT (structurally identical to the ileal bile 
acid transporter) is expressed on the apical membranes of  
large cholangiocytes[86]. Consistent with functional activity 
for ASBT in cholangiocytes, studies have shown Na+-
dependent and saturable uptake of  taurocholate in normal 

Table 2	 Expression and function of proteins and surface transporters in small and large ducts from rats and human

Markers Small ducts Large ducts Function References

γ-glutamyl transpeptidase Not expressed Interlobular large rat bile ducts Glutathione metabolism [81]
Alkaline phosphatase Not expressed Interlobular large rat bile ducts Inhibition of secretin choleresis [81]
Leucine amino peptidase Not expressed Interlobular large rat bile ducts Undefined [81]
Cytochrome P4502E1 Not expressed Expressed by large rat and 

human ducts
Dehalogenation of CCl4 [50,81,104,105]

Lipase, a-amylase and 
trypsin

Human septal ducts Large human ducts, and 
peribiliary glands

Biliary tree development [79,80]

Bcl-2 Human small ductules Not expressed Anti-apoptotic protein [109,143]
Secretin receptor Not expressed Expressed by large rat ducts Stimulation of bicarbonate secretion [12,13,48,54]
CFTR Human but not rodent small ducts Expressed by large rat ducts Regulation of Cl--secretion [54]
Cl-/HCO3

- exchanger Not expressed Expressed by large rat and 
human ducts

Regulation of ductal bicarbonate 
secretion

[12,13,82]

Somatostatin receptor Not expressed Expressed by large rat ducts Inhibition of secretin choleresis [48]
D2 dopamine receptors Unknown Expressed by large rat ducts Inhibition of secretin choleresis [25]
a-1 adrenergic receptors Expressed by small rat ducts Expressed by large rat ducts Stimulation of secretin choleresis [65]
Endothelin receptors Expressed by small rat ducts Expressed by large rat ducts Inhibition of secretin choleresis [59]
Na+-dependent ABAT Not expressed Expressed by large rat ducts Regulation of ductal secretion [88]

Heterogeneous expression of proteins and membrane transporters that may play a role in the modulation of the heterogeneous properties of the intrahepatic 
biliary tree of rats and human.  Modified with permission from Ref 73.
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cholangiocyte cultures[87] and large cholangiocytes[88]. These 
data suggests that after taurocholate and taurolithocholate 
enter into large cholangiocytes by ABAT, they stimulate 
secretin-stimulated ductal bile flow in these cholangiocyte 
subpopulations[88,89]. Other studies have shown that 
both taurocholate and taurol i thocholate increase 
secretin-stimulated cAMP levels in large but not small 
cholangiocytes[89]. Chronic feeding of  ursodeoxycholate 
and tauroursodeoxycholate to BDL rats inhibits secretin-
stimulated ductal secretion in large cholangiocytes[62].

As evidence against the notion that small cholangio-
cytes may be primitive, undifferentiated cells that do 
not display secretory activity, recent studies have shown 
that in pathological conditions associated with damage 
of  large cAMP-responsive ducts (e.g., after acute CCl4 
administration) (Figure 3)[50,51], small cholangiocytes 
transiently compensate for large cholangiocyte damage 
by de novo activation of  secretory (including expression 
of  secretin receptor and secretin-stimulated cAMP 
response)[50,51] and proliferative[50,51] (see below) activities.  
Following ANIT feeding and partial hepatectomy, small 
cholangiocytes proliferate and secrete by the de novo 
expression of  secretin receptor and activation of  cAMP 
response[47,52]. Since preliminary data and unpublished 
observations (Alpini, 2005) show that small rat and mouse 
cholangiocytes express receptors (ETA, CCK-B/gastrin, 

α1-adrenergic, D2 dopaminergic, insulin, H1 histamine) 
signaling by activation of  IP3/Ca2+/PKC[59,90], we propose 
that there is a secretory gradient in the intrahepatic 
biliary tree with small cholangiocytes secreting water and 
electrolytes by activation of  the IP3/Ca2+/PKC pathway, 
whereas large cholangiocytes secrete bile by activation of  
the cAMP/PKA/CFTR/Cl-/HCO3

- exchanger[2,5,2,13,48,54].

Proliferation and Apoptosis
Cholangiocyte proliferation is coordinately regulated by a 
number of  factors including gastrointestinal hormones/
peptides, growth factors, cAMP and IP3/Ca2+/PKC 
pathways, nerves and bile acids[2,3,24,49,61,62,68,70-72,91-93]. Recent 
studies have shown that different sized cholangiocytes 
differentially proliferate or are damaged by apoptosis in 
response to injury, toxins, nerve resection and selected 
diets [2,26,48-52]. Fol lowing BDL, large but not smal l 
cholangiocytes proliferate with increases in basal and 
secretin-stimulated choleresis (Figure 3)[2,3,48]. We propose 
that large cholangiocytes selectively proliferate in response 
to BDL due to: (1) the predominant expression of  VEGF 
in large compared to small cholangiocytes (Alpini et al, 
2005, unpublished observation); and (2) the presence 
of  the PBP mainly around large bile ducts, and less 
discernable around small bile ducts[44]. In support of  this 

Figure 3  Working model for the heterogeneity of the intrahepatic biliary epithelium.  The model proposes that: (1) bile ducts are morphologically heterogeneous with small 
ducts lined by small cholangiocytes and large ducts lined by large cholangiocytes; (2) small and large ducts similarly express both γ-GT and cytokeratin-19; and (3) large (but 
not small) ducts express the secretin and somatostatin receptor, CFTR and Cl-/HCO3

- and respond physiologically to these two hormones. The model also shows that following 
BDL, only large cholangiocytes proliferate and that a single dose of CCl4 induces damage and loss of large duct function, whereas small cholangiocytes (resistant to CCl4)  
de novo proliferate and secrete to compensate for the loss of large duct function.  Reproduced with permission from Ref. 73.
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concept, in rats with BDL proliferation of  the peribiliary 
plexus occurs only around large ducts[44]. Furthermore, we 
have recently demonstrated[93] that neutralization of  VEGF 
levels of  large cholangiocytes (by administration of  a 
neutralizing anti-VEGF antibodies) reduces cholangiocyte 
growth typical of  BDL rats[6]. In support of  the concept 
that PBP and VEGF play a role in the regulation of  large 
cholangiocyte function, hepatic artery ligation in BDL rats 
is associated with: (1) the disappearance of  the PBP; (2) 
increased apoptosis and impaired proliferation of  large 
cholangiocytes; and (3) decreased cholangiocyte VEGF 
secretion[92]. The effects of  hepatic artery ligation on 
PBP and large cholangiocyte function were prevented by 
chronic administration of  r-VEGF-A that, by maintaining 
the integ ri ty of  the PBP and large cholangiocyte 
proliferation, prevents bile duct damage following ischemic 
injury[92].

A number of  gastrointestinal hormones/peptides have 
been shown to regulate the differential proliferative re-
sponse of  small and large cholangiocytes. We have shown 
that cholangiocytes express α1, α2, β1 and β2 thyroid 
hormone receptors and that the chronic administration of  
the thyroid hormone agonist, 3, 3′, 5 L-tri-iodothyronine 
to BDL rats reduces in vivo the proliferation of  large 
cholangiocytes[94], the only cholangiocyte subpopulation 
proliferating in this model[48]. In addition, in BDL rats we 
have shown that somatostatin inhibits the growth of  large 
cholangiocytes by a decrease in cAMP levels[48]. Further-
more, gastrin inhibits large cholangiocyte proliferation in 
BDL rats by Ca2+/PKC-dependent inhibition of  cAMP 
levels[72].  

We have demonstrated that ovariectomy in BDL female 
rats reduces the proliferation of  large cholangiocytes and 
induces a decrease in the expression of  α and β estrogen 
receptors[69]. We propose that estrogens play a role in the 
management of  chronic cholestatic liver diseases.

Recent studies have shown that nerves regulate the 
differential proliferative response of  intrahepatic ducts.  
We have shown that the activation of  serotonin 1 A and 
1 B receptors in cholangiocytes leads to the inhibition of  
large cholangiocyte proliferation in BDL rats[67]. Serotonin 
inhibition of  large cholangiocyte proliferation was 
associated with activation of  the IP3/Ca2+/PKC signaling 
pathway and the consequent inhibition of  the cAMP/
PKA/Src/ERK 1/2 pathway[67]. Since cholangiocytes 
secrete serotonin, we propose that serotonin limits 
the growth of  intrahepatic bile ducts in the course of  
chronic cholestasis by an autocrine mechanism. Similarly, 
we have shown that cholangiocytes secrete NGF and 
that NGF secretion increases in proliferating BDL 
cholangiocytes compared to normal cholangiocytes[24]. In 
vivo, immunoneutralization of  NGF (with an anti-NGF 
antibody) decreased large cholangiocyte proliferation[24]. 
The data suggest that NGF regulates cholangiocyte 
proliferation by an autocrine mechanism.

We have demonstrated that sensory innervation via 
α-calcitonin gene related peptide (α-CGRP) plays a role 
in adaptive proliferative responses of  large cholangiocytes 
during cholestasis following BDL[95]. Specifically, we have 
shown that small and large murine cholangiocytes express 
the CGRP receptor components (calcitonin like receptor 

or CLR, receptor component protein or RCP and receptor 
activity modifying protein or RAMP1)[95]. Large, but not 
small, cholangiocytes proliferate in response to α-CGRP, 
proliferation that was blocked by CGRP[8-37], α-CGRP 
receptor antagonist[96]. α-CGRP stimulation of  large 
cholangiocyte proliferation was associated with increased 
cAMP levels and phosphorylation of  PKA and p38[96]. We 
observed a decrease in the number of  proliferating large 
cholangiocytes in BDL knock-out mice (lacking α-CGRP) 
compared to BDL wild-type mice[95].

The ro le of  the second messenger, cAMP, in 
the regulation of  hepatic cell proliferation has been 
demonstrated in a number of  animal models that stimulate 
hepatocyte and cholangiocyte proliferation via cAMP 
dependent mechanisms[26,50-52,54,97,98]. Following partial 
hepatectomy, there is an increase in intracellular cAMP 
levels in regenerating hepatocytes[99] and cholangiocytes[52].  
Activation of  Gαs coupled receptors leads to activation 
of  adenylyl cyclase and increased cAMP levels, whereas 
activation of  Gαi coupled receptors results in inhibition 
of  AC activity and lowered intracellular cAMP levels[100]. 
cAMP response elements mediating transcriptional 
activation in response to increased intracellular cAMP 
levels have been identified[101]. In support of  these findings, 
we have shown that chronic administration of  forskolin to 
normal rats increased cAMP levels and the proliferation 
of  large but not small cholangiocytes compared to 
rats receiving saline[70]. In purified cholangiocytes, 
forskolin increased large (but not small) cholangiocyte 
proliferation[70], which was blocked by Rp-cAMPs (a 
PKA inhibitor)[74], PP2 (a Src inhibitor)[102] and PD98059 
(a MEK inhibitor)[103]. The effects of  forskolin on large 
cholangiocyte proliferation were associated with increased 
phosphorylation of  PKA, Src Tyr 139 and ERK1/2[70].  
Maintenance of  cAMP levels by forskolin administration 
prevents the effects of  vagotomy on large cholangiocyte 
apoptosis (activation) and proliferation (inhibition)[26].

The acute administration of  CCl4 to normal and BDL 
rats induces decreased cAMP levels and loss of  function 
of  large cholangiocytes at d 2 and transient elevation of  
cAMP levels in small cholangiocytes[50,51]. In these models, 
small cholangiocytes de novo express secretin receptors, a 
key component of  the biliary proliferative and secretory 
mechanisms, suggesting that intracellular cAMP plays a key 
role in the: (1) de novo expression of  large cholangiocyte 
phenotypes by small cholangiocytes (to compensate for 
loss of  large cholangiocyte function); and (2) perhaps 
the differentiation of  small cholangiocytes towards a 
cholangiocyte subpopulation that has the capacity to 
secrete and proliferate by cAMP-dependent pathway[50,51].

Following partial hepatectomy, both small and large 
cholangiocytes proliferate and participate in the regenera-
tion of  the intrahepatic biliary epithelium[52]. A single ga-
vage dose of  CCl4 to normal and BDL rats induces dam-
age of  large, cAMP-responsive cholangiocytes, whereas 
small cholangiocytes (resistant to CCl4) de novo proliferate 
and secrete (by the activation of  the secretin receptor and 
secretin-stimulated cAMP levels) to compensate for the 
damage and loss of  functional activity of  large cholan-
giocytes[50,51]. The differential resistance of  small and large 
cholangiocytes to CCl4 is presumably due to the presence 
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of  cytochrome P4502E1 (the enzyme that converts CCl4 

to its radicals)[104] in large but not small cholangiocytes[50,51].  
Chronic administration of  the toxin, ANIT, induces pro-
liferation of  both small and large cholangiocytes, prolifera-
tion that (in contrast to other models including BDL)[26] 
was associated with enhanced apoptosis[47]. We propose 
that following ANIT or CCl4 feeding, the proliferation 
of  small cholangiocytes may be due to the presence of  
cholangiocyte apoptosis in these models[47,50,51]. We also 
propose that the lack of  small cholangiocyte proliferation 
in BDL rats may be due to the absence of  cholangiocyte 
apoptosis in this model[26]. Similar to what is observed 
following acute CCl4 administration[50], the differential 
responses of  small and large cholangiocytes to liver in-
jury/toxins may be due to differential expression of  other 
enzymes/proteins in small and large cholangiocytes. In 
support of  this concept, phase I or mixed-function oxy-
genase enzymes (e.g., microsomal cytochrome P-450, 
aminopyrine-N-demethylases, G-6-PO4, and NADPH cy-
tochrome C reductase) and phase II or glutathione redox 
cycle enzymes (e.g., GSH-peroxidase, UDP-glucuronosyl-
transferase, and glutathione-S-transferase) drug-metaboliz-
ing enzymes are heterogeneously expressed by cholangio-
cytes[50,81,105]. Similarly, since small murine cholangiocytes 
express annexin-V[106] (that regulates cell apoptosis)[107], this 
finding may explain partly why small ducts are more resis-
tant than large ducts to some hepatic injury/toxins[50, 51]. In 
support of  this concept, recent studies have shown that 
bcl-2 (an anti-apoptotic protein)[108] is expressed by small 
bile ducts in normal human liver and human liver with cir-
rhosis and focal nodular hyperplasia[109], a finding that may 
also explain partly the greater resistance of  small cholan-
giocytes to damage[3,50,51].

In vitro treatment of  normal cholangiocytes with tauro-
cholate and taurolithocholate increases the proliferation of  
large but not small cholangiocytes[89]. Chronic feeding of  
taurocholate and taurolithocholate to normal rats induces 
the de novo expression of  ASBT and activation of  prolifera-
tion of  small cholangiocytes, which do not constitutively 
express ASBT and are mitotically quiescent, and increases 
the proliferation of  large cholangiocytes[49]. Prolonged 
feeding of  ursodeoxycholate and tauroursodeoxycholate 
to BDL rats reduces the growth of  large cholangiocytes[62] 
that selectively proliferate in this hyperplastic model[48].  
Furthermore, depletion of  endogenous bile acids reduced 
large cholangiocyte proliferation compared with BDL 
rats[91]. Re-infusion of  taurocholate to bile acid-depleted 
rats prevented the decrease in cholangiocyte prolifera-
tion that was maintained at levels similar to those of  BDL 
rats[91].

Histamine, an aminergic neurotransmitter, regulates 
many pathophysiological functions. Four G-protein 
coupled histamine receptors (H1, H2, H3 and H4) exist[110].  
While H1 histamine receptors act via Gαq mobilizing 
[Ca2+] i

[111], activation of  H2 histamine receptors is 
modulated by Gαs proteins, coupled to adenylyl cyclase[112]. 
H3 and H4 histamine receptors couple to Gαi/o proteins 
that inhibit adenylyl cyclase[113]. Based upon our preliminary 
data, we propose a model in which the overall outcome 
of  histamine on cholangiocyte growth is represented 
by a balance between its stimulatory (by activation of  

H1 and H2 histamine receptors)[90,114] and its inhibitory 
(by activation of  H3 and H4 histamine receptors)[115, 116] 
actions on small and large cholangiocyte proliferation.  
Specifically, we have shown that small but not large mouse 
cholangiocytes: (1) express the H1 histamine receptors 
and the calcium-dependent CaMK I (but not II or IV) 
protein kinase; and (2) proliferate in response to H1 

histamine receptor agonists, proliferation that was blocked 
by BAPTA/AM, Gö6976 and W-7, a CAMK inhibitor[117]. 
IP3 (but not cAMP) levels were increased in small 
cholangiocytes treated with HTMT dimaleate. Chronic 
administration of  the specific H3/H4R agonist (RAMH) 
to BDL rats decreased large cholangiocyte proliferation 
and cAMP levels compared to BDL rats treated with 
NaCl[115,116]. This inhibition is mediated through negative 
regulation of  the cAMP-dependent PKA/ERK1/2 
pathway[115,116].

The mechanisms by which different sized ducts 
proliferate or are damaged in response to various liver 
injury/toxins (e.g., BDL, partial hepatectomy, vagotomy, 
feeding of  ANIT, bile acids or CCl4)[3,26,47-52] are unclear.  
Furthermore, the pathophysiology of  small cholangiocytes 
is undefined in these models. Based upon preliminary 
data and unpublished observations from our laboratory, 
we propose that neural/hormonal-dependent (cholinergic 
and adrenergic) activation of  the Ca2+-dependent NFAT 
(Nuclear Factor of  Activated T-lymphocytes) stimulates 
the proliferative response of  small cholangiocytes, 
whereas neural/hormonal-dependent activation of  the 
cAMP-dependent CREB stimulates the proliferation of  
large cholangiocytes. NFAT is a ubiquitous transcription 
factor that was initially described in T-lymphocytes.  
Five isoforms of  NFAT have been identified. Four of  
these isoforms (NFATc1 to c4) are regulated by Ca2+ 
signaling[118]. Preliminary data shows that Ca2+-dependent 
activation of  NFATc1/c4 stimulates the proliferation 
of  small cholangiocytes after CCl4-induced damage of  
cAMP-responsive large bile ducts[119]. Specifically, we have 
shown that small but not large normal rat cholangiocytes 
express the NFAT isoforms, NFAT c1 and c4[119]. CCl4 

both in vivo and in vitro increased small cholangiocyte 
proliferation that was blocked by BAPTA/AM and 
11R-VIVIT (NFAT inhibitor peptide)[120]. Furthermore, 
unpublished data from our laboratory show that the de novo 
growth of  small cholangiocytes is regulated via adrenergic 
stimulation of  Ca2+-dependent activation of  NFATc1/c4 
(Ca2+/calcineurin) and Sp1 (Ca2+/PKC). NFAT and Sp1 
cooperatively interact to regulate proliferative phenotypes 
in other cell types[121].

Recent studies have shown that bile acids have cyto-
protective effects against apoptosis in large cholangiocytes. 
Feeding of  taurocholate to BDL rats (treated with a single 
dose of  CCl4) prevents CCl4-induced damage of  large 
cholangiocytes, whereas small cholangiocytes (which are 
de novo activated following CCl4-induced damage of  large 
ducts)[50,51] remained mitotically dormant and unresponsive 
to secretin (Figure 3)[122]. In vitro, taurocholate prevented the 
inhibitory effects of  CCl4 on apoptotic, proliferative and 
secretory capacity of  large BDL cholangiocytes[122]. The 
protective effects of  taurocholate against CCl4-induced 
damage of  large BDL cholangiocytes are due to the 
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activation of  PI3-K and AKT expression[122]. Furthermore, 
feeding of  taurocholate to BDL + vagotomy rats prevented 
vagotomy activation of  large cholangiocyte apoptosis 
and inhibition of  large cholangiocyte growth[123], effects 
that were abolished by wortmannin, a PI3-K inhibitor[124]. 
Functional ASBT expression as well as phosphorylation 
of  Akt were reduced by vagotomy but restored by 
taurocholate feeding[123]. Chronic feeding of  taurocholate 
prevented the increase in cholangiocyte apoptosis and the 
damage of  large cholangiocyte proliferation induced by 
adrenergic denervation by 6-OHDA administration[125]. 
Taurocholate effects are mediated by the PI3K pathway, 
since the simultaneous administration of  wortmannin 
reverses such effects[125]. In addition, the feeding of  
ursodeoxycholate and tauroursodeoxycholate to BDL + 
vagotomy rats prevented the activation of  apoptosis and 
the loss of  proliferation of  large cholangiocytes observed 
in this model[126]. In this study[126], the protective effects of  
these two bile acids were neutralized by the simultaneous 
administration of  BAPTA/AM (an intracellular Ca2+ 
chelator) [72] or Gö6976 (a PKC inhibitor) [65]. Both 
ursodeoxycholate and tauroursodeoxycholate increased IP3 
and Ca2+ levels, together with enhanced phosphorylation 
of  PKC-α [126]. The data suggests that bile acids are 
important in modulating large cholangiocyte proliferation 
in denervated livers.

Heterogeneity in Cholangiopathies
Chronic cholestatic liver diseases (cholangiopathies), which 
target intrahepatic and extrahepatic bile ducts, are charac-
terized by the coexistence of  cholangiocyte growth/apop-
tosis, inflammation and fibrosis[3,127]. Cholangiopathies dif-
ferentially target the biliary epithelium with heterogeneous 
proliferative and apoptotic responses of  different sized 
ducts[3,47,50,128-130]. Primary biliary cirrhosis is characterized 
by the selective proliferation/loss of  small interlobular 
bile ducts[3,131]. Some studies demonstrated that damage 
of  interlobular bile ducts is immune mediated[3,132]. The 
origin of  primary sclerosing cholangitis (PSC), which is 
associated with inflammation and fibrosis of  bile ducts, 
originates from multiple factors including autoimmune, 
bacterial, congenital, drug, or viral agents[3,73]. PSC affects 
mainly extrahepatic and interlobular or septal bile ducts al-
though smaller bile ducts can be affected[3,73]. Patients with 
small duct PSC seem to have a good prognosis in terms 
of  survival and development of  cholangiocarcinoma[133]. 
Cholangiocarcinoma occurs frequently in patients with 
PSC and targets mainly the major bile duct bifurcation[3,134]. 
Peripheral cholangiocarcinoma occur within the liver rath-
er than within large bile ducts may arise from small bile 
ducts[3,134].  Mutations in the CFTR gene are responsible 
for causing the human biliary disease, cystic fibrosis, due 
to defective transport of  water and chloride presumably 
by large cholangiocytes expressing CFTR[135]. Our previous 
studies in rodent liver has shown that CFTR is expressed 
principally in large cholangiocytes and in bile ducts greater 
than 15 µM diameter[12,13] but in studies of  human liver of  
cystic fibrosis patients, CFTR was expressed in both large 
and small ducts[136].

Defective chloride transport and chloridemediated 

bile secretion by large cholangiocytes may be respon-
sible for the reduced fluidity and alkalinity of  bile, 
leading to bile duct damage. Ca2+-dependent Cl- cha-
nnels[137,138] (presumably expressed by both small and 
large cholangiocytes) may be able to secrete bile, thus 
compensating for loss of  CFTR functional activity of  
CFTR in large cholangiocytes[54]. In polycystic kidney 
liver disease (PKLD), the genetic defect results in the 
growth of  multiple epithelial cysts within the renal, liver 
parenchyma and intrahepatic bile ducts[139]. The disease 
targets presumably large bile ducts since the cystic ductal 
cells also secrete Cl- and HCO3

- (as normal large cholangi
ocytes)[2,3,54,71,73] but the secretion is diminished, likely due 
to reduced Cl-/HCO3

- exchanger activity in cystic ductal 
cells as compared with normal cholangiocytes[139]. Biliary 
atresia, which is the most common reason of  cholestasis in 
infants and children, is a destructive, inflammatory process 
of  the extrahepatic bile ducts but as the disease progresses 
smaller intrahepatic bile ducts are also involved[140]. The 
pathogenesis of  biliary atresia is unknown but infections 
or toxic agents combined with genetic/immunologic 
susceptibility have been proposed[3, 141, 142].

Summary
In this review, we have summarized the findings demon-
strating that the intrahepatic bil iary epithelium is 
heterogeneous regarding: (1) morphological characteristics, 
vascularization and innervation; (2) secretory activity 
in response to gastrointestinal hormones/peptides, 
nerve receptor agonists and bile salts; and (3) apoptotic 
and proliferative responses to liver injury/toxins and 
gastrointestinal hormones/peptides. Specifically, the 
intrahepatic biliary epithelium is formed by bile ducts 
of  different sizes with small ducts l ined by small 
cholangiocytes, whereas larger ducts are lined by larger 
cholangiocytes[12-14]. Following a general background on 
cholangiocyte functions, we discussed the in vivo and in 
vitro experimental models that allowed us to demonstrate 
that the bil iary epithelium is morphologically and 
functionally heterogeneous. Following a brief  review on 
the heterogeneous distribution of  non-transport related 
proteins, we discussed the secretory functions of  small and 
large cholangiocytes. While large cholangiocytes secrete 
water and electrolytes[12,13,48] by changes in cAMP/PKA/
CFTR/Cl-/HCO3

-, small cholangiocytes may secrete bile 
by a transduction pathway (different from that observed 
in large cholangiocytes)[12,13,48] involving activation of  IP3/
Ca2+/PKC. We have presented data demonstrating that 
small and large cholangiocytes differentially proliferate 
or are damaged in response to liver injury/toxins. Small 
and large ducts also differ regarding the proliferative and 
apoptotic responses to liver injury/toxins[2,71,73]. We propose 
that activation of  the Ca2+-dependent NFAT stimulates 
the proliferation of  small cholangiocytes, whereas neural/
hormonal-dependent activation of  the cAMP-dependent 
CREB stimulates the proliferation of  large cholangiocytes.  
In the last part of  the review, we have briefly outlined the 
heterogeneity of  the biliary epithelium in relationship to 
chronic cholestatic liver diseases targeting different sized 
ducts.
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Future Perspectives
The concept that the biliary epithelium is functionally het-
erogeneous is clinically relevant since in chronic cholestatic 
liver diseases cholangiocyte proliferation/damage is an 
event restricted to a specific duct size. Further studies are 
needed for understanding the pathophysiology of  small 
cholangiocytes in the overall contribution of  the functions 
of  the biliary epithelium. However, some preliminary stud-
ies from our laboratory suggest that small cholangiocytes 
secrete bile (by a IP3/Ca2+/PKC-dependent mechanism) 
and proliferate by activation of  the Ca2+-dependent tran-
scription factor, NFAT. Further studies are necessary to 
evaluate the role of  the nervous system in the regulation 
of  the heterogeneous secretory, apoptotic and proliferative 
responses of  different sized bile ducts to gastrointestinal 
hormones, injury/toxins and viruses. Since PBP prolifera-
tion is observed only in large proliferating cholangiocytes 
from BDL rats, we propose that blood supply and circulat-
ing factors (e.g., vascular endothelial growth factor and pla-
cental growth factor) may be important in the regulation 
of  the heterogeneous response of  cholangiocytes to liver 
injury/toxins.
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