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Abstract
Human pluripotent stem cells (hPSCs) have the distinct advantage of being able 
to differentiate into cells of all three germ layers. Target cells or tissues derived 
from hPSCs have many uses such as drug screening, disease modeling, and 
transplantation therapy. There are currently a wide variety of differentiation 
methods available. However, most of the existing differentiation methods are 
unreliable, with uneven differentiation efficiency and poor reproducibility. At the 
same time, it is difficult to choose the optimal method when faced with so many 
differentiation schemes, and it is time-consuming and costly to explore a new 
differentiation approach. Thus, it is critical to design a robust and efficient method 
of differentiation. In this review article, we summarize a comprehensive approach 
in which hPSCs are differentiated into target cells or organoids including brain, 
liver, blood, melanocytes, and mesenchymal cells. This was accomplished by 
employing an embryoid body-based three-dimensional (3D) suspension culture 
system with multiple cells co-cultured. The method has high stable differentiation 
efficiency compared to the conventional 2D culture and can meet the 
requirements of clinical application. Additionally, ex vivo co-culture models might 
be able to constitute organoids that are highly similar or mimic human organs for 
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potential organ transplantation in the future.
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Differentiation; Efficient; Three germ layers
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Core tip: Identifying a practical way to efficiently differentiate pluripotent stem cells is 
essential in regenerative medicine. After considering the advantages and limitations of 
current approaches, we summarize the ideal conditions and systems. We also provide 
potential choices for efficiently and robustly differentiating human pluripotent stem cells 
into target cells and tissues in different germ layers.
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INTRODUCTION
The first five lines of human embryonic stem cells (hESCs) were obtained in 1998 from 
the inner cell mass of a 3- to 5-day-old fertilized embryo[1]. Subsequently, induced 
pluripotent stem cells (iPSCs) were created by reprogramming fibroblasts[2]. Human 
pluripotent stem cells (hPSCs), including hESCs and human (h)iPSCs, have the ability 
to self-renew and differentiate into any cell type from all germ layers[3], driving the 
development of regenerative medicine. The cells and organoids derived from hPSCs 
have various potential applications including complex diseases studies, cell-based 
drug screening, and limitless transplantation treatments[4,5]. With the rapid 
development of regenerative medicine technology, many differentiation approaches 
based on hPSCs have been explored. However, some challenges remain. To meet the 
needs of clinical application and basic research, high efficiency and stability are the 
key objectives during hPSC differentiation into high-quality target cells. Thus, it is 
important to identify an efficient and robust differentiation approach that can increase 
the differentiation ratio of target cells, produce stronger functions in cells, generate 
more complete structural organoids, or be reproduced in different cell lines or in other 
laboratories. Currently, there are great differences in these experimental schemes. 
Differentiation efficiency[6] and stability are impacted by whether the method is based 
on an embryoid body (EB) or a two-dimensional (2D) or 3D system, or if single or 
multiple cell co-cultures are used.

In this review article, we combine the experiences of our laboratory with a summary 
of existing mainstream approaches involving hPSC differentiation, with the goal of 
providing a reference and time-saving guide for future experimental design.

DIFFERENTIATION INDUCTION FROM HPSCS
EB-based differentiation system
EB has been a very common model of in vitro hPSC differentiation for more than 50 
years[7]. The EB-based method is widely used to differentiate majority of cell lineages 
from the three germ layers (Table 1) and has an obvious advantage in improving the 
differentiation efficiency of some cells[8-10], such as hematopoietic progenitors[11] and 
melanocytes[12]. Combined with suspension bioreactor technology, this advantage can 
be further amplified for large-scale production[13]. Additionally, EB formation provides 
an excellent way to assess and manipulate developmental potential[7]. Differentiation 
predictions can be made in the early stage of EB to predict which germ layer hPSC is 
likely to differentiate into, which can save on the cost for subsequent differentiation 
and indirectly improve differentiation efficiency. For example, Spalt like transcription 
factor 3 (SALL3) expression in EB indicates a high probability of differentiating into the 
ectoderm and a low chance of differentiating into the mesoderm/endoderm[14]. Our 
study also confirmed these findings, and we found that iPSC lines that expressed 
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Table 1 Summary of current approaches for human pluripotent stem cells differential direction into targeted cells or tissues

Cultural approaches Check points of differential status

Targeted cells 
or tissues EB 

formation

2D 
or 
3D

2D Surface 
or 3D 
system

Multiple 
cells co-
culture

Gene expression Protein level

Under 
in vitro 
or in 
vivo

Ref.

Neural 
progenitor

- 2D Matrigel - PAX6, TBR2 - In vitro [21]

Brain EB 3D Low 
attachment 
plate, 
Matrigel

- PAX6, SOX2, FOXG1, TBR2, 
ARHGAP11B

Nestin In vitro [21]

Midbrain EB 3D Matrigel - SOX1, VMAT2, TH, NURR1, 
DAT, GIRK2, PITX3, AADC, 
ANLN, FAH, MBP, GLA35ST1, 
ACSL1, CLDN11, CHAT, MAPT, 
GFAP, S100B, ALDH1L1

- In vitro [30]

Brain - 3D Microwell, 
bioreactor

Neuronal, 
astrocyte

- - In vitro [54]

Retinae - 3D Matrigel - SIX3, PAX6, RAX, OTX2, VSX2, 
PRKCZ, MITF

TJP1, LAMB1, RHO, 
OPN1LW/OPN1MW, 
OPN1SW

In vitro [31]

Retinae EB 3D Low 
attachment 
plate

- BRN3B, PAX6, RAX, SIX3, 
LHX2, CHX10, OTX2

RHO, PKCα, Arl13b, 
OPN1SW, OPN1MW

In vitro [37]

Retinae - 3D Matrigel RPE, retinal 
organoid

CRX, RCVRN, NRL, GNAT1, 
RHO, CHX10, OPN1LW/MW, 
OTX2, RLBP1, PROX1

- In vitro [32]

Melanocyte EB 3D Microwell, 
low 
attachment 
plate

- MITF, PAX3, SOX10, KIT, TYR, 
TYRP, DCT, PEML

Melanin In vivo [12]

Hepatic stellate 
cells

- 2D Matrigel - NCAM, KDR, PDGFRα, P75NTR, 
ALCAM, ACTA2, COL1α1, 
LRAT, RELN, PCDH7, PDGFRβ, 
SYP, GFAP, PPARγ, NGF, α-
SMA

Desmin, PDGFRβ, P75NTR, 
ALCAM, PDGFRα, CD73, 
KDR, NCAM

In vitro [23]

Liver EB 3D Microwell iPSC 
endoderm 
cell, HUVEC, 
BM-MSC

ALB, G6PC, CYP2C9, CYP2C19, 
CYP3A4, CYP3A7

CYP3A4, ALB, Urea, NTCP In vitro [52]

Liver - 3D Microwell iPSC-tHE, 
iPSC-EC, 
iPSC-STM

TBX3, ADRA1B AFP, ALB, Complement 
factor H, Coagulation factor 
VIII, Transferrin, AAT

In vivo [50]

Intestinal - 3D Matrigel - KLF5, ECAD, SOX9, KI67 Villin In vivo [33]

Entersphere - 3D Matrigel Pan-
epithelium 
cell, HLF, 
HUVEC

SOX9, CK20, CDX2, NNKX2.1, 
LGR5, OLFM4, TACSTD2, VIL1, 
APOA1, FABP2

E-cadherin, Cytokeratin18, α-
SMA

In vitro [34]

Cardiomyocyte - 2D Matrigel - - TNNT2, ACTN2 In vitro [67]

Cardiomyocyte EB 3D Low 
attachment 
plate

- TBX5, NKX2.5, GATA4 TNNT2, TNNI3, MYH6, 
MYL7

In vitro [47]

Cardiomyocyte EB 3D Suspension 
bioreactor

- - TNNT2, α-Actinin, MLC-2v, 
MLC-2a

In vitro [13]

Heart EB 3D Matrigel hESC-CPC, 
hESC-MSC, 
HUVEC

KDR, MESP1, NKX2.5, TBX5, 
GATA4, ISL1, PDGFR-α, MEF2C, 
CD90, CD73, CD105, CD44, 
CD31, cTNT, β-MHC, MLC2v, 
KCNA4, KCNJ2, KCNH2

- In vivo [35]

Hematopoietic 
cell

EB 3D - - RUNX1, SCL/TAL1 CD34, CD43, CD45 In vitro [68]
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T Cell - 2D - - TRA, TRB, RAG1, RAG2 CD8ab, LMP2, TCR, TCRab-
CD3

In vivo [69]

Macrophage EB 3D Low 
attachment 
plate

- MAF, CSFR1, FLT3, CCR2 CD14, CD45, CD11b, CD16, 
TNF-α

In vitro [11]

Liver sinusoidal 
endothelial cell

EB 3D Low-cluster 
plate

- CD31, CDH5, CD34, F8, STAB2, 
LYVE1, FLK1, FLT4, FCGR2B

- In vitro [55]

Platelet - 3D Ultra-low 
attachment 
plate

- CD41a, CD13, CD42b, CD31, 
CD34, CD43, CD41b

Thrombospondin4, Platelet 
factor 4

In vivo [49]

Mesenchymal 
cell

- 2D Matrigel - CD146, CD73, CD140a, CD90, 
CD105, CD44, PDGFRβ, CSPG4, 
NES, LEPR, ADRB2, KITLG, 
IGFBP2, TNC, CXCL12, ADRB3

- In vitro [26]

-: None; EB: Embryoid body; 2D: Two-dimensional; 3D: Three-dimensional; RPE: Retinal pigment epithelium; iPSCs: Induced pluripotent stem cells; 
HUVECs: Human umbilical cord vein endothelial cells; BM-MSC: Bone marrow mesenchymal stem cell.

higher levels of SALL3 on day 7 of EB formation showed greater potential for 
melanocyte differentiation[15]. Additionally, miR-371-3 plays both a predictive and 
functional role in neurogenic differentiation[16], and the low expression of fibroblast 
growth factor 1 (commonly known as FGF-1), ras homolog family member U 
(commonly known as RHOU), and thymidine phosphorylase (commonly known as 
TYMP) genes are associated with low hepatic differentiation[17], which can be used to 
predict the differentiation potential in early EB. Therefore, EB-based differentiation 
systems not only help to increase the percentage of target cells, but also contribute to 
the prediction of differentiation potentials in the early stage, which improves 
efficiency directly and indirectly, respectively.

Matrigel-mediated system
Matrigel, a natural extracellular matrix, is widely used in hPSC maintenance and can 
also be used in 2D and 3D hPSC differentiation (Table 1). During 2D differentiation, 
the culture vessels are first coated with Matrigel, followed by single cell or cell cluster 
inoculation. The role of Matrigel in 2D is adherence of cells or cell clumps to a culture 
vessel. Furthermore, the major component of Matrigel is laminin, which promotes the 
formation of a rigid neuroepithelial structure[18]. Laminin-positive basement 
membranes are crucial for continuous epithelial integrity[19]. A massive volume 
increase of the human neocortex results from expansion of the cortical area and the 
related emergence of extensive cortical folding[20], which is thought to be due to the 
increase of the proliferative potential of neural progenitors (NPs)[21]. As this study 
shows, two human ESC lines were differentiated into NPs in Matrigel-coated 2D 
adherent culture. Jaenisch and his colleagues constituted human cerebral organoids in 
an EB-based 3D system, which displayed markedly increased outgrowth of 
neuroepithelial tissue surrounding ventricle-like structures[21]. Other desired cells can 
also be differentiated in a Matrigel-coated 2D culture system such as hepatocytes[22], 
hepatic stellate cells[23], intestinal epithelium[24,25], mesenchymal cells[26], cardiomyocytes 
(CMs)[27], monocytes, and macrophages[28]. Thus, the Matrigel-based 2D culture 
approach is a basic method for the directed induced differentiation of hPSCs.

Matrigel can also be used for 3D differentiation of hPSCs. In addition to coating the 
substrate, the Matrigel-based 3D construct is formed by adding mixed Matrigel and 
special differentiation medium[29] in the hPSC differentiation process, resulting in 
differentiation in the solution of a suspended system. A 3D differentiation system 
provides enough space for establishing an organoid, and promotes cellular 
communication and interaction among cells compared to a 2D approach. Currently, 
many target cell lineages or tissues can be differentiated in this way including the 
brain[30], retinae[31,32], intestinal organoids[33,34], and heart[35]. Interestingly, after adding 
Matrigel, retinal induction cells increase by up to 30%-70% of the total cells in the low 
cell adhesion plate[18]. Because this gel promotes the epithelialization of hPSCs toward 
retinal differentiation, researchers have tried to use 3D Matrigel methods for 
differentiating hPSCs. Epithelialized cysts are obtained by floating culture clumps of 
Matrigel/hESCs and the subsequent floating culture results in self-formation of retinal 
organoids[31]. This includes patterned neuroretina, ciliary margin, and retinal pigment 
epithelium, which autonomously generates stratified retinal tissues, comprising 
photoreceptors with ultrastructure of outer segments in long-term culture. This system 
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has been validated in two lines of human hPSCs[31]. Clearly, the use of Matrigel is 
common in 2D or 3D differentiation of hPSCs into target cells. However, the Matrigel-
embedded 3D differentiation system has distinct advantages in self-organizing and 
generating organoids with a more complete structure when compared to a 2D culture.

3D suspension system
During hPSC differentiation, there are many decisions in creating a 3D floating state 
such as a non- or ultra-low attachment plate, microwell plate, and suspended 
bioreactors. At present, a variety of cell lineages have been generated by using 3D 
suspension system such as eye[36-38], skin[39], brain[40-43], liver[44,45], heart[46,47] and blood[11]. 
For example, during the 3D differentiation process, the authors generated iPSC-
derived fully functional hepatocyte-like organoids in gene expression, protein 
secretion, and biotransformation[48]. Likewise, iPSC-derived platelets can be harvested 
by using a 3D differentiation system, and it is very similar to human platelets in terms 
of both ultrastructural features and in vivo and in vitro functional characterizations[49]. 
Thus, the 3D differentiation system can produce cells with ideal functions. The yield of 
differentiated cells is also important. The omni-well-array culture platform can 
produce massive and miniaturized iPSC-derived liver buds on a clinically relevant 
large scale (> 108)[50]. Hama et al[13] designed a protocol that generated > 90% hiPSC-
derived CMs that yielded on average 72 million cells per 100 mL in a 3D bioreactor. 
These results show that the yield from the 3D suspension system is remarkable in 
contrast to the 2D system. To test the reproducibility of the CM 3D differentiation 
protocol, a previous study compared biologically independent experiments with 
various passage numbers of iPSCs, and found minor inter-experimental variations[13]. 
Overall, the 3D differentiation culture appears to have advantages in differentiation 
efficiency and stability over the 2D system. This indicates that the 3D differentiation 
method is optimal when hPSCs differentiation experiments are conducted.

Multiple cells co-culture system
Each organ has a variety of cell components with a certain structure and its own 
specific functions. Because of the communication and interaction among cells, co-
culturing with different supportive and tissue-constructive cells has been become 
attractive. The benefits of co-culturing multiple cells are that they can facilitate 
communication and interaction among different cells, enhance the hPSCs 
differentiation efficiency[51], and better simulate the environment in vivo. It can bring 
surprises when used in a co-culture system to self-organize and generate an organoid. 
For example, to recapitulate hepatitis B virus-host interactions in liver organoids, Nie 
et al[52] co-cultured iPSC endoderm cells, human umbilical cord vein endothelial cells 
(HUVECs), and human bone marrow mesenchymal stem cells to form liver organoids 
in a 3D microwell plate, which exhibits stronger hepatic functions than iPSC-derived 
hepatic like cells. Furthermore, the co-culture pattern also has a higher differentiation 
yield[48] and organoids with more complex functions[53]. There are co-culture 
combinations in other studies such as co-culturing hPSC-derived neurons and 
astrocytes[54]; co-culturing iPSC-derived hepatic parenchymal and non-parenchymal 
cells[55]; co-culturing hiPSC-derived retinal pigment epithelium and retinal 
organoids[32]; and co-culturing HUVECs, hESC-derived MSCs, and hESC-derived 
cardiac progenitor cells[35]. Human PSC-derived organoids with multiple cell 
components have a complete structure and sturdy function similar to a human organ, 
which may provide an alternative source for organ transplantation. Therefore, the 3D 
culture method is a better choice for organoid generation.

Transcription factor-directed differentiation
Transcription factors (TFs) play an important role in pluripotent stem cell induction 
and transdifferentiation[56]. Recently, they have been used to differentiate hPSCs into 
desired cells or tissues such as neural[57], liver[58,59], and cardiac muscle[60,61]. A growing 
body of TF-directed differentiation method of hPSCs has demonstrated that efficient 
cell fate is reprogrammed via forced expression of single or multiple TFs[62]. Sun et al[63] 
used the technique to design a single-step protocol for forebrain GABAergic neuron 
differentiation, which could generate cells similar to rodent cortical interneurons with 
> 80% efficiency, and the target cells showed mature functional properties within 6-8 
wk. By contrast, other process takes as long as 30 wk[64]. The TF-mediated method can 
differentiate hPSCs into terminal cells directly, and the experimental procedure is 
relatively brief.
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LIMITATION AND CHOICE
Current methods for hPSC differentiation described above have various limitations. 
2D differentiation culturing is performed on the surface of the culture vessel and the 
limited contact area limits the yield of the target cells. Furthermore, all structural 
components of organoids cannot be generated[37,65]. Without 3D contact with Matrigel, 
Lowe et al[31] reported that most cells died and the few surviving cells formed solid cell 
masses on 2D culturing. Most 3D culture methods involve various intermediate stages 
requiring varying combinations of recombinant factors and small molecules[63], thus 
rendering the method cumbersome to repeat. Although TF-mediated methods 
improve the differentiation efficiency of hPSCs, numerous tools for TF transfection, 
including plasmids and viruses, have led to the integration of exogenetic genes[66] into 
the target cells, thus presenting a remote prospects for their clinical application[56]. In 
this situation, EB-based 3D culture systems allow for large-scale directional 
differentiation of hPSCs, and the co-culture method seems to constitute highly 
functional organoids in vitro to compensate for organ transplantation insufficiency.

CONCLUSION
Although only a few articles have compared the differences between 2D and 3D 
differentiation, it can be concluded that 3D system with EB has obvious advantages for 
hPSC differentiation compared to 2D culture. The details of the differentiation 
approaches are shown in the “cultural approaches” of Table 1. Regarding future 
studies, there are some key recommendations. First, the ability of EB not only can scale 
up culture systems and differentiation, but also predict the fate of hPSCs 
differentiation for reducing unnecessary waste. Second, the 3D differentiation system 
also has significant improvement in differentiation efficiency, and 3D space is 
necessary for organoid formation. Finally, it is a promising and challenging task that 
co-cultures multiple kinds of cells, supportive, structured, vascularized and further 
neurovascularized for organoid organization in 3D suspension system. Simply put, an 
EB-based 3D differentiation culture system is an efficient and powerful choice for 
hPSCs to meet the demand in clinical applications and basic research.
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