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Abstract
Artificial intelligence (AI) has experienced substantial progress over the last ten 
years in many fields of application, including healthcare. In hepatology and 
pancreatology, major attention to date has been paid to its application to the 
assisted or even automated interpretation of radiological images, where AI can 
generate accurate and reproducible imaging diagnosis, reducing the physicians’ 
workload. AI can provide automatic or semi-automatic segmentation and 
registration of the liver and pancreatic glands and lesions. Furthermore, using 
radiomics, AI can introduce new quantitative information which is not visible to 
the human eye to radiological reports. AI has been applied in the detection and 
characterization of focal lesions and diffuse diseases of the liver and pancreas, 
such as neoplasms, chronic hepatic disease, or acute or chronic pancreatitis, 
among others. These solutions have been applied to different imaging techniques 
commonly used to diagnose liver and pancreatic diseases, such as ultrasound, 
endoscopic ultrasonography, computerized tomography (CT), magnetic 
resonance imaging, and positron emission tomography/CT. However, AI is also 
applied in this context to many other relevant steps involved in a comprehensive 
clinical scenario to manage a gastroenterological patient. AI can also be applied to 
choose the most convenient test prescription, to improve image quality or 
accelerate its acquisition, and to predict patient prognosis and treatment response. 
In this review, we summarize the current evidence on the application of AI to 
hepatic and pancreatic radiology, not only in regard to the interpretation of 
images, but also to all the steps involved in the radiological workflow in a broader 
sense. Lastly, we discuss the challenges and future directions of the clinical 
application of AI methods.
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Core Tip: The gastroenterology field is changing with the application of artificial intelligence (AI) 
solutions capable of assisting and even automating the interpretation of radiological images (ultrasound, 
endoscopic ultrasound, computerized tomography, magnetic resonance imaging, and positron emission 
tomography), generating accurate and reproducible diagnoses. AI can further be applied to other steps of 
the radiological workflow beyond image interpretation, including test selection, image quality 
improvement, acceleration of image acquisition, and prediction of patient prognosis and outcome. We 
herein discuss the current evidence, challenges, and future directions on the application of AI to hepatic 
and pancreatic radiology.

Citation: Berbís MA, Paulano Godino F, Royuela del Val J, Alcalá Mata L, Luna A. Clinical impact of artificial 
intelligence-based solutions on imaging of the pancreas and liver. World J Gastroenterol 2023; 29(9): 1427-1445
URL: https://www.wjgnet.com/1007-9327/full/v29/i9/1427.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i9.1427

INTRODUCTION
Malignant tumors of the liver and pancreas are among the most common and lethal types of cancer. 
According to the recent GLOBOCAN 2020 data[1], liver and pancreas are the 6th and 12th most common 
sites for primary cancer, with 905677 and 495773 new cases in 2020, respectively. However, they also 
represent the 3rd and 7th neoplasia with the highest mortality, causing 830180 and 466003 deaths 
worldwide in 2020, respectively. If taken combined, cancer at the liver or pancreas thus represents the 
5th most incident and the second most lethal one.

Cancer at these locations account for almost as many deaths as cases. Five-year survival rates are 20% 
for liver cancer[2] and as low as 11% for pancreatic cancer[3], making them two of the cancer sites with 
the poorest prognosis. Other non-oncologic diseases affecting these organs are also highly prevalent, 
such as diffuse liver disease, including chronic liver disease, which affects tens of millions of people 
globally and represents a substantial socioeconomic burden[4].

Clinical outcomes of patients with these types of disease depend on a variety of factors, including 
stage and disease extension as assessed by imaging, and correct election of treatment. Thus, there is an 
unmet need for new tools capable of assisting specialists in early detection, characterization, and 
management of these diseases.

In recent years, artificial intelligence (AI) has shown promise in different areas of healthcare. The 
evaluation of medical images by machine learning (ML) approaches is a leading research field which, in 
gastroenterology, has applications in automatic analysis of different types of images, such as radiology, 
pathology, and endoscopy studies[5].

The first applications of AI to radiology have been dominated by anatomic locations such as the brain 
or the breast. Image analysis of abdominal organs, such as the liver and pancreas, are more challenging. 
Magnetic resonance imaging (MRI) in these locations, especially at 3 T, is prone to motion and field 
inhomogeneity artifacts, which are aggravated by larger fields of view[6]. As a result, advances in 
automatic analyses of abdominal images have gathered comparatively less attention. Nonetheless, the 
application of AI in liver and pancreas imaging is also gaining increasing interest (Figure 1). The goal of 
this review is to summarize the current experience on the use of AI to assist radiologists in their 
workflow, acquisition, and interpretation of medical images of the liver and pancreas.

AI IN RADIOLOGY: BASIC PRINCIPLES
Artificial intelligence is expected to revolutionize the medical field, deeply impacting the hospital and 
clinical settings by potentially improving diagnostic accuracy, treatment delivery, and allowing a more 
personalized medical care[7]. Radiology will arguably be one the most changed areas of medicine 
because of AI implementation in its workflows, as the information-rich images generated in this field 
are an excellent source of data for the development of AI algorithms. Broadly, the term AI refers to a 
wide range of technologies and computing processes capable of imitating human intelligence to extract 
information from input data to solve a problem. This rapidly evolving area has a vocabulary of its own 
(Figure 2) that can be daunting to those not familiar with the field, including terms that are oftentimes 

https://www.wjgnet.com/1007-9327/full/v29/i9/1427.htm
https://dx.doi.org/10.3748/wjg.v29.i9.1427
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Figure 1 PubMed results by year using the search terms. A and B: Artificial intelligence radiology (top) and artificial intelligence AND (liver OR pancreas) 
(bottom).

Figure 2 Relation between artificial intelligence and related subdisciplines, neural network architectures, and/or techniques. ANN: Artificial 
neural network; FCN: Fully convolutional network; CNN: Convolutional neural network; GAN: Generation adversarial network.

used as synonyms to AI, such as ML.
ML is actually a subset of AI consisting of those methods capable of training a computer system to 

perform a given task based on provided information or experience without explicit programming, thus 
conferring machines the ability to learn[8]. The aim of ML is to predict an output based on a given input 
(a training dataset). Common ML applications in radiology include classification, image segmentation, 
regression, and clustering[9]. ML can be sub-divided into supervised and unsupervised learning[10]. In 
supervised learning, the most common type used in medical research, the algorithm is trained with 
labeled examples (i.e., the correct output for these training data, known as ground truth, is already 
known). Among the methods employed in supervised learning, random forest (RF), and specially, 
support vector machine (SVM), are powerful algorithms frequently used for the classification of images
[7], including image segmentation. Conversely, in unsupervised learning, the ground truth is not 
known, as the algorithm is trained with unlabeled data that must be classified by the algorithm itself.

Artificial neural networks (ANNs), named after their brain-inspired structure and functioning 
process, can be trained via both supervised and unsupervised ML. In these ANNs, input information 
flows through a variable number of layers composed of artificial neurons, joined by weighted 
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connectors, that process the data to obtain an output that matches the ground truth as closely as 
possible. Generative adversarial networks (GANs) are an example of ANN trained via unsupervised 
learning. GANs include two networks: One which creates new data based on input examples (i.e., 
generator), and one which distinguishes between different types of data (i.e., discriminator)[11]. These 
networks can be used to produce realistic, synthetic images as a strategy for data augmentation[12]. 
Similarly, the structure of convolutional neural networks (CNNs), a type of ANN specially designed for 
computer vision tasks, is based on that of the animal visual cortex. Typically used in image recognition 
and classification, in CNNs the input information is filtered and analyzed through a convolutional layer, 
and the size of the resulting image is subsequently reduced by a pooling layer. This two-step process 
will be repeated as many times as layers integrate the CNN, with a final step in which an ANN will 
classify the image (Figure 3). Fully convolutional networks (FCNs, a type of ANN that only performs 
the convolution step) are the basis for U-net, a modified architecture that consists of a contracting path 
including several convolutional and pooling layers to capture context, followed by a symmetric 
expanding path including a number of up-sampling and convolutional layers to enable accurate 
localization. U-net is a popular network for the development of automatic segmentation algorithms, as it 
requires relatively small datasets for algorithm training[13].

Deep learning (DL) is a section of ML that utilizes multi-layered ANNs, referred to as deep neural 
networks (DNN), allowing the exploration of more complex data[14]. DL algorithms are gaining 
attention and raising considerable enthusiasm thanks to their scalability, easy accessibility, and ability to 
extract relevant information from the data without further indications other than input data. The 
recently developed nnU-Net, a publicly available DL-based segmentation tool capable of automatically 
configuring itself, has set a new state-of-the-art standard thanks to the systematization of the config-
uration process, which used to be a manual, complicated, and oftentimes limited task in previous 
approaches[15]. Improvement of the computational resources and the development of cloud techno-
logies are also contributing to the application of DL architectures in a wide variety of research fields 
beyond medicine[14].

Closely related to the development of AI, the term radiomics refers to the computational extraction (
via ML and DL algorithms) of quantitative data from radiological image features[16]. A particularly 
useful and valuable application of radiomics is the analysis of radiologic textures, defined as the 
differences in the grayscale intensities in the area of interest, which have been associated with 
intratumor heterogeneity[17] and that can potentially provide clinically relevant information that 
otherwise would remain unknown.

IMAGE ACQUISITION
The ultimate aim of computerized tomography (CT) and MRI is to unveil clinically relevant 
information; thus, the importance of this information relies heavily on the quality of the image. For CT, 
radiation dose is a parameter as important as image quality, and both are closely related to acquisition 
and reconstruction times. Iterative reconstruction (IR) algorithms[18] are the current technique of choice 
to transform the raw data into a 3D volume presented as an anatomical image. These algorithms 
generate an image estimate that is projected forward into a synthetic sinogram; subsequently, this image 
estimate is iteratively rectified by comparison with the real raw data sinogram until the algorithm’s 
predefined endpoint condition is met, resulting in enhanced image quality and thus allowing an 
important dose reduction[19]. DL reconstruction algorithms (DLR) are currently being developed with 
the aim to further improve image quality, therefore further reducing radiation doses. Compared to IR 
algorithms, DLR algorithms trained with low-dose data offer an improved signal-to-noise (SNR) ratio, 
as demonstrated by the U-net-based CNN developed by Jin et al[20], thus facilitating the detection of 
lesions of any kind and the increased use of low-dose imaging. Currently, there are two commercially 
available DLRs: TrueFidelity (GE Healthcare, Chicago, IL, United States) and AiCE (Canon Medical 
Systems, Otawara, Japan). Akagi et al[21] employed AiCE in their study and reported improved 
contrast-to-noise ratio and image quality in CT images, compared to images created with a hybrid IR 
algorithm. Although the preliminary results are exciting, further validation for these DLR algorithms is 
required, and real dose reduction in the clinical setting has yet to be demonstrated.

An important setback of MRI is the long acquisition time, forcing the patient to lay still for a relatively 
long period and with any movement affecting the quality of the image. One way to reduce acquisition 
time is compressed sensing, based on the idea that if signal information is only present in a small 
portion of pixels, that sparsity can be used to reconstruct a high-definition image from considerably less 
collected data (undersampling). Kaga et al[22] evaluated the usefulness of the Compressed SENSE 
algorithm (Philips, Amsterdam, The Netherlands) in MRI of the abdomen using diffusion weighted 
images (DWIs) and reported a significantly improved image noise and contour of the liver and pancreas 
and higher apparent diffusion coefficient values, thus offering superior image quality compared to 
parallel imaging (PI)-DWI[22].

AI applications have also been designed to automate MRI and CT protocol selection with the aim to 
standardize workflows and increase effectiveness in the radiology setting. The selection of an 
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Figure 3 Diagram of a convolutional neural network used for the classification of a focal liver lesion in a computerized tomography 
image. HCC: Hepatocellular carcinoma; CT: Computed tomography.

appropriate imaging protocol requires taking into account factors including the type of procedure, 
clinical indication, and the patient’s medical history. The increasing incorporation of electronic medical 
records and other digital content has opened opportunities for the application of natural language 
processing (NLP) methods to extract structured data from unstructured radiology reports. López-Úbeda 
et al[23] developed an NLP-based classification system for automated protocol assignment that offered 
an overall accuracy of 92.25% for the CT and 86.91% for the MRI datasets. This system has already been 
successfully implemented and is currently in use at the HT Médica centers.

Information about the respiration of the patient can be used for functional studies, overall 
monitoring, or motion compensation during the performance of an MRI. Typically, breathing is 
measured via belts or nasal sensors that can potentially alter the raw MRI data. Using adaptive 
intelligence, the laser-based VitalEye system (Philips) registers a contactless continuous respiratory 
signal, with up to 50 body locations analyzed simultaneously and in real time, thus producing a more 
robust respiratory trace compared to traditional respiratory belts[24]. Moreover, as soon as the patient is 
lying on the table, the BioMatrix Respiratory Sensors (Siemens AG, Munich, Germany) embedded in the 
spinal coil produce a local magnetic field that changes with the variation of lung volume during 
breathing. These changes are registered, and the breathing pattern is integrated to optimize image 
quality[25]. By standardizing and accelerating the workflow, these advances allow technicians and 
radiologists to concentrate on the patient.

IMAGE ANALYSIS
Segmentation of liver and pancreas
Image analysis has experimented a huge progression with the advent of AI, and especially with DL, 
reaching state-of-art performances in many biomedical image analysis tasks[26-28] (Table 1). Among 
them, segmentation is one of the most important in radiology. For instance, accurate pancreas 
segmentation has applications in surgical planning, assessment of diabetes, and detection and analysis 
of pancreatic tumors[29]. Another key application of organ and lesion contouring is treatment volume 
calculation for radiotherapy planning. However, boundary delimitation of anatomical structures in 
medical images remains a challenge due to their complexity, particularly in the upper abdominal cavity, 
where there are constant changes in the position of the different organs with the respiratory cycle, as 
well as the occurrence of anatomical variants and pathological changes of organs[30].

The intersubject variability and complexity of the pancreas make segmentation of this organ a 
demanding task. Segmentation of pancreatic cancer lesions is particularly challenging because of their 
limited contrast and blurred boundaries against the background pancreatic parenchyma in CT and MR 
images[31]. In addition, other factors such as body mass index, visceral abdominal fat, volume of the 
pancreas, standard deviation of CT attenuation within pancreas, and median and average CT 
attenuation in the immediate neighborhood of the pancreas may affect segmentation accuracy[29,32].

These problems lead to high segmentation uncertainty and inaccurate results. To tackle these 
problems, Zheng et al[33] proposed a 2D, DL-based method that describes the uncertain regions of 
pancreatic MR images based on shadowed sets theory. It demonstrated high accuracy, with a dice 
similarity coefficient (DSC) of 73.88% on a cancer MRI dataset and 84.37% on the National Institutes of 
Health (NIH) Pancreas dataset (which contains 82 CT scans of healthy pancreas), respectively. The same 
authors reported[34] a more sophisticated 2.5D network that benefits from multi-level slice interaction. 
They surpassed state-of-art performances in the NIH dataset, with a DSC of 86.21% ± 4.37%, sensitivity 
of 87.49% ± 6.38%, and a specificity of 85.11% ± 6.49%.
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Table 1 Works proposed for automated image analysis

Image analysis Anatomical area Modality AI model Ref.

CNN [33,34,110]

UDCGAN [111]

Pancreas MRI

3D-Unet [112]

SSC (no AI) [36]CT

PA (Atlas-no AI) [39]

CNN [37,38,42,113]

Segmentation

Liver

MRI

GAN [43]

CNN [47]

SG-DIR (no AI) [48]

CT, MRI

Cycle-GAN + UR-Net [46]

Registration Liver

4D-MRI Non-rigid [49]

MRI: Magnetic resonance imaging; CT: Computerized tomography; 4D-MRI: Four-dimensional magnetic resonance imaging; CNN: Convolutional neural 
network; UDCGAN: U-Type densely connected generation adversarial network; SCC: Sparse shape composition; AI: Artificial intelligence; PA: 
Probabilistic atlas; GAN: Generation adversarial network; SG-DIR: Structure-guided deformable image registration; UR-Net: Unsupervised registration 
network.

The liver is also a popular target for automated segmentation algorithms. Automatic segmentation of 
this organ is regarded as somewhat less challenging than that of the pancreas, with reported DSC scores 
typically in the > 0.90 range[35].

Li et al[36] presented a liver segmentation method from abdominal CT volumes for both healthy and 
pathological tissues, based on the level set and sparse shape composition (SSC) method. The 
experiments, performed using public databases SILVER07 and 3Dicardb, showed good results, with 
mean ASD, RMSD, MSD, VOE, and RVD of 0.9 mm, 1.8 mm, 19.4 mm, 5.1%, and 0.1%, respectively. 
Moreover, Winther et al[37] used a 3D DNN for automatic liver segmentation along with a Gd-EOB-
DTPA-enhanced liver MR images dataset. Results show an intraclass correlation coefficient (ICC) of 
0.987, DSC of 96.7% ± 1.9%, and a Hausdorff distance of 24.9 mm ± 14.7 mm compared with two expert 
readers who corresponded to an ICC of 0.973 and a DSC of 95.2% ± 2.8%. Finally, Mohagheghi et al[38] 
used a CNN but further incorporated prior knowledge. The model learnt the global shape information 
as prior knowledge by using a convolutional denoising auto-encoder; then, this knowledge was used to 
define a loss function and combine it with the Dice loss in the main segmentation model. This model 
with prior knowledge improved the performance of the 3D U-Net model and reached a DSC of 97.62% 
segmenting CT images of the Silver07-liver dataset.

Organ segmentation is even more challenging in pediatric patients studied with CT, as it is acquired 
at a low dose to minimize harmful radiation to children, thus having a lower SNR. Nakayama et al[39] 
proposed a liver segmentation algorithm for pediatric CT scans using a patient-specific level set distri-
bution model to generate a probabilistic atlas, obtaining a DSC index of 88.21% in the segmentation. 
This approach may be useful for low dose studies in general, i.e., also in the adult population.

Algorithms for automatic segmentation of the liver using MR images have proven equally efficient. 
For instance, Bobo et al[40] used a 2D FCN architecture to segment livers on T2-weighted MR images 
with a DSC score of 0.913. In a recent paper, Saunders et al[41] systematically analyzed the performance 
of different types of MR images in the training of CNN for liver segmentation, using a 3D U-net 
architecture. Water and fat images outperformed other modalities, such as T2* images, with a DSC of 
0.94.

Conversely, high-quality automatic segmentation of liver lesions is not an easy task, since the low 
contrast between tumors and healthy liver parenchyma in CT images, their inhomogeneity, and its 
complexity pose a challenge for liver tumor segmentation. In addition, motion-induced phase errors due 
to peristaltic and respiratory movements negatively affect image quality and assessment of liver lesions 
in MR images. A 3D CNN was used by Meng et al[42] where a special three-dimensional dual path 
multiscale convolutional neural network (TDP-CNN) was designed for liver tumor segmentation. 
Results achieved in the LiTS public dataset were a DSC of 68.9%, Hausdorff distance of 7.96 mm, and 
average distance of 1.07 mm for liver tumor segmentation and a DSC of 96.5%, Hausdorff distance of 
29.162 mm, and average distance of 0.197 mm for liver segmentation. A different approach for liver 
tumor segmentation was proposed by Chen et al[43]. In this work, an adversarial densely connected 
network algorithm was trained and evaluated using the Liver Tumor Segmentation challenge dataset. 
Results revealed an average Dice score of 68.4% and ASD, MSD, VOE, and RVD of 21 mm, 124 mm, 



Berbís MA et al. AI impact on hepatopancreatic imaging

WJG https://www.wjgnet.com 1433 March 7, 2023 Volume 29 Issue 9

0.46%, and 0.73%, respectively.
Automatic contouring of hepatic tumor volumes has also been reported using CT scans, a modified 

SegNet CNN[44], and dynamic contrast enhanced (DCE)-MRI images in a U-net-like architecture[45], 
for example.

Some medical imaging vendors incorporate solutions for liver segmentation and hepatic lesion 
characterization integrated in the proprietary radiologist’s workflow. For instance, the Liver Analysis 
research application from Siemens Healthcare (Erlangen, Germany) aims to provide AI support for liver 
MRI and CT reading. The tool includes DL-based algorithms for automatic segmentation of the whole 
liver, functional liver segments, and other abdominal organs like the spleen and kidneys (Figure 4A). It 
also features an AI method to automatically detect and segment focal liver lesions, providing lesion 
diameter, volume, and 3D contours (Figure 4B).

Registration
Medical image registration seeks to find an optimal spatial transformation that best aligns the 
underlying anatomical structures. Medical image registration is used in many clinical applications such 
as image guidance systems (IGS), motion tracking, segmentation, dose accumulation, image 
reconstruction, etc[28]. In clinical practice, image registration is a major problem in image-guided liver 
interventions, especially for the soft-tissues, where organ shape changes occurring between pre-
procedural and intra-procedural imaging pose significant challenges[46]. Schneider et al[47] showed 
how semi-automatic registration in IGS may improve patient safety by enabling 3D visualization of 
critical intra- and extra-hepatic structures. A novel IGS (SmartLiver) offering augmented reality visual-
ization was developed to provide intuitive visualization by using DL algorithms for semi-automatic 
image registration. Results showed a mean registration accuracy of 10.9 mm ± 4.2 mm (manual) vs 13.9 
mm ± 4.4 mm (semi-automatic), hence significantly improving the manual registration. Kuznetsova et al
[48] assessed the performance of structure-guided deformable image registration (SG-DIR) relative to 
rigid registration and DIR using TG-132 recommendations for 14 patients with liver tumors to whom 
stereotactic body radiation therapy (SBRT) was applied. The median DSC for rigid registration was 88% 
and 89% for DIR, and 90% for both SG-DIR using liver contours only and using liver structures along 
with anatomical landmarks. However, most of the existing volumetric registration algorithms are not 
suitable for the intra-procedural stage, as they involve time-consuming optimization. In the report by 
Wei et al[46], a fast MR-CT image registration method was proposed for overlaying pre-procedural MR 
(pMR) and pre-procedural CT (pCT) images onto an intra-procedural CT (iCT) image to guide thermal 
ablation of liver tumors. This method, consisting of four DL-based modules and one conventional ANTs 
registration module, showed higher Dice ratios (around 7% improvement) over tumors and compatible 
Dice ratios over livers. However, its main advantage was the computational time cost of around 7 s in 
the intra-procedural stage, which is only 0.1% runtime in the conventional way (i.e., ANTs).

Treatment planning concepts using the mid-ventilation and internal-target volume concept are based 
on the extent of tumor motion between expiration and inspiration. Therefore, four-dimensional (4D) 
imaging is required to provide the necessary information about the individual respiration-associated 
motion pattern. Weick et al[49] proposed a method to increase the image quality of the end-expiratory 
and end-inspiratory phases of retrospective respiratory self-gated 4D MRI data sets using two different 
non-rigid image registration schemes for improved target delineation of moving liver tumors. In the 
first scheme, all phases were registered directly (dir-Reg), while in the second next neighbors were 
successively registered until the target was reached (nn-Reg). Results showed that the Median dir-Reg 
coefficient of variation of all regions of interest (ROIs) was 5.6% lower for expiration and 7.0% lower for 
inspiration compared with nn-Reg. Statistically significant differences were found in all comparisons.

DIAGNOSIS
Two decades ago, the methods proposed for ML-based diagnosis required manually extracting the 
features from the images. This tedious step has been partially relieved with the irruption of CNNs. 
However, techniques such as radiomics are still in use to try to improve the performance of novel AI 
methods for medical diagnosis. Radiomics concerns the high throughput extracting of comprehensible 
features from radiological images that can be further analyzed by ML algorithms for classification or 
regression tasks. In this section, different methods proposed for liver and pancreas imaging diagnosis 
are reviewed (Table 2).

Liver-CT
Starting with chronic liver disease, Choi et al[50] presented a CNN model for staging liver fibrosis from 
contrast-enhanced CT images. Before using the CT image as input for the CNN, the liver is segmented. 
The testing dataset included 891 patients and the CNN achieved a staging accuracy of 79.4% and an 
AUC of 96%, 97%, and 95% for diagnosing significant fibrosis, advanced fibrosis, and cirrhosis, 
respectively. A different approach was proposed by Nayak et al[51], where SVM was used instead of 
CNN for aiding in the diagnosis of cirrhosis and hepatocellular carcinoma (HCC) from multi-phase 
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Table 2 Summary of works based on artificial intelligence for automated diagnosis of pancreas and hepatobiliary system diseases

Anatomical area Modality AI model What is diagnosed? Ref.

Liver Scintiscan ANN Chronic hepatitis and cirrhosis [114]

CT ANN HCC, intra-hepatic peripheral cholangiocar-
cinoma, hemangioma, metastases

[52]

CNN HCC, malignant liver tumors, indeterminate 
mases, hemangiomas, cysts

[53]

Liver fibrosis [50,115]

SVM Cirrhosis and HCC [51]

Malignant liver tumors [54]

KNN, SVM, RF HCC [116]

MRI CNN HCC [55]

Simple cyst, cavernous hemangioma, FNH, HCC, 
ICC

[56,57]

Extremely randomized trees Adenomas, cysts, hemangiomas, HCC, 
metastases

[58]

US PNN Benign and malignant focal liver lesions [65]

SVM Fatty liver [68]

HCC [66]

CNN Focal liver lesions: Angioma, metastasis, HCC, 
cyst, FNH

[67]

Liver fibrosis stages [69]

Biliary system MRI ANN Cholangiocarcinoma [59,60]

Lymph node status in ICC [117]

Pancreas CT Hybrid SVM-RF Pancreas cancer [76]

SVM Serous cystic neoplasms [72]

CNN IPMN, mucinous cystic neoplasm, serous cystic 
neoplasm, solid pseudopapillary tumor

[73]

MRI SVM IPMN [78]

US ANN Chronic pancreatitis, pancreatic adenocarcinoma [81]

CNN Malignancy in IPMN [82]

Autoimmune pancreatitis, pancreatic ductal 
adenocarcinoma, chronic pancreatitis

[83]

CT: Computerized tomography; MRI: Magnetic resonance imaging; US: Ultrasound; ANN: Artificial neural network; CNN: Convolutional neural network; 
SVM: Support vector machine; KNN: K-nearest neighbors; RF: Random forest; PNN: Probabilistic neural network; HCC: Hepatocellular carcinoma; FNH: 
Focal nodular hyperplasia; ICC: Intrahepatic cholangiocarcinoma; IPMN: Intra-ductal papillary mucinous neoplasm.

abdomen CT. Features were extracted from the segmented liver in all the phases, which were previously 
registered. Using 5-fold cross validation, they reported an accuracy of 86.9% and 81% for the detection 
of cirrhosis and HCC, respectively.

There are also several reports exploring the role of DL in the characterization of focal liver lesions 
(Figure 5). In this sense, Matake et al[52] applied an ANN to assist in the diagnosis of hepatic mases 
using clinical and radiological parameters extracted from CT images. The authors used 120 cases of liver 
diseases and implemented a leave-one-out cross-validation method for training and testing the ANN, 
reporting an AUC of 96.1%. Also using CT images, Yasaka et al[53] used a CNN for the differentiation of 
five different types of liver masses from contrast-enhanced CT. For testing, they used 100 liver mass 
images, reporting an accuracy of 84%. Similarly, Khan and Narejo[54] proposed Fuzzy Linguistic 
Constant (FLC) to enhance low contrast CT images of the liver before training a SVM to distinguish 
between cancerous or non-cancerous lesions. The reported classification accuracy was 98.3%. The 
proposed method also showed the ability to automatically segment the tumor with an improved 
detection rate of 78% and a precision value of 60%.
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Figure 4 In-house experience on liver assessment with artificial intelligence. Magnetic resonance studies of a patient with liver focal 
lesions (liver hemangiomas), processed with the Liver Analysis research application from Siemens Healthcare. A: Automatic segmentation of 
the whole liver, liver segments, and other abdominal organs; B: Automatic detection, segmentation, and measurement of the two liver hemangiomas.

Liver and biliary system MRI
Techniques concerning MR images have also been developed for the diagnosis and classification of focal 
liver lesions (Figure 6). Zhou et al[55] proposed a method using a novel CNN to grade HCC from DWIs. 
They applied a 2D CNN to log maps generated from different b-value images. In their work, they 
reported a validation AUC of 83% using 40 cases. A CNN was also trained by Hamm et al[56] and Wang 
et al[57] to classify six different focal hepatic lesions from T1-weighted MR images in the postcontrast 
phase. They used 60 cases for testing and reported a sensitivity and specificity of 90% and 98%, 
respectively. In the second part of their study, they transformed it into an “interpretable” DL system by 
analyzing the relative contributions of specific imaging features to its predictions in order to shed light 
on the factors involved in the network’s decision-making process. Finally, DCE-MRI and T2-weighted 
MRI, together with risk factor features, were applied to build an extremely randomized trees classifier 
for focal liver lesions[58], achieving an overall accuracy of 77%.

Some advancements have also been reached in the automatic diagnosis of lesions in the biliary system 
from MR cholangiopancreatography (MRCP) sequences. Logeswaran[59,60] trained an ANN classifier 
for assisting in the diagnosis of cholangiocarcinoma. He utilized 55 MRCP studies for testing and 
reported an accuracy of 94% when differentiating healthy and tumor images and of 88% in multi-
disease tests.

MRI is a superior technique in the evaluation of chronic liver disease in comparison with CT, but 
making the most of it requires considerable skills and optimization at the acquisition, post-processing, 
and interpretation phases[61]. AI has proved useful to assist radiologists in the MR-guided diagnosis 
and grading of these diseases, including liver fibrosis and non-alcoholic fatty liver disease[62].
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Figure 5 Computerized tomography scan of a 61-year-old male patient with colon carcinoma and liver metastases. The intensity histograms of 
regions with and without metastases are different; hence, the first order radiomics features[109], which are based on the intensity histogram will potentially be 
different.

Figure 6 Sixty-seven-year-old patient with pancreatic carcinoma and liver metastases treated with chemotherapy. The Digital Oncology 
Companion (Siemens Healthineers, Germany) artificial intelligence-based prototype automatically segments liver, portal and hepatic vessels, lesions, and 
surrounding anatomical structures. From left to right: screenshots of the segmented liver, vessels, and lesions; and generated 3D models.

Radiomics studies have been proposed to aid in the diagnosis of liver fibrosis. Kato et al[63] 
performed texture analysis of the liver parenchyma processed by an ANN to detect and grade hepatic 
fibrosis, with varying success depending on the type of MR sequence used (AUC of 0.801, 0.597, and 
0.525 for gadolinium-enhanced equilibrium phase, T1-weighted, and T2-weighted images, respectively).

Later, Hectors et al[64] developed a DL algorithm for liver fibrosis staging using gadolinium 
enhancement sequences acquired in the hepatobiliary phase, which showed good to excellent diagnostic 
performance, comparable to that of MR elastography.

Liver-US
Ultrasound (US) and endoscopic ultrasonography (EUS) are commonly used in the diagnostic work-up 
of several pancreatic and liver lesions. AI-based solutions have also been applied to US images in the 
assessment of focal and diffuse liver diseases in order to enhance their diagnostic capabilities. Acharya 
et al[65] suggested a method for aiding in the diagnosis of focal liver lesions from liver US images. The 
authors extracted features from US images and trained several classifiers, obtaining the highest AUC 
(94.1%) using a probabilistic neural network (PNN) classifier. Another approach is shown in Yao et al
[66], where a radiomics analysis was established for the diagnosis and clinical behavior prediction of 
HCC, showing an AUC of 94% for benign and malignant classification. Rightly, CNN architectures have 
also been developed for US images as in the report by Schmauch et al[67], where a CNN was employed 
to help in the diagnosis of focal liver lesions from US images. The authors used a dataset composed by 
367 2D US images for training and another dataset from 177 patients for testing, reporting a mean score 
of 89.1%.
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There is limited experience in the use of AI with US images with regards to diffuse liver disease. Li et 
al[68] used a SVM classifier to help in the diagnosis of fatty liver from US images. Input features were 
computed from ROIs selected by examiners. A total of 93 images were used for training and testing 
using leave-one-out cross-validation. The authors reported an 84% accuracy for normal livers and 97.1% 
for fatty livers. Moreover, a mix of radiomics features and DL techniques were used with two-
dimensional shear waver elastography (2D-SWE) for assessing liver fibrosis stages in Wang et al[69]. 
Results reached AUCs of 97% for cirrhosis, 98% for advanced fibrosis, and 85% for significant fibrosis.

Pancreas CT and PET/CT
The role of AI in the detection of pancreatic lesions from CT has been extensively investigated. 
Pancreatic cancer detection is a challenging task for radiologists and its improvement is a hot research 
topic. Chen et al[70] developed a DL-based tool including a segmentation CNN and a 5-CNN classifier 
for the detection of pancreatic cancer lesions, with a special focus on lesions smaller than 2 cm, in 
abdominal CT scans. Their model was able to distinguish between cancer and control scans with an 
AUC of 0.95, 89.7% sensitivity, and 92.8% specificity. Sensitivity for the detection of lesions smaller than 
2 cm was 74.7%[70]. Still focused on the identification of lesions smaller than 2 cm, Alves et al[71] 
proposed an automatic framework for pancreatic ductal adenocarcinoma (PDAC) detection based on 
state-of-the-art DL models. They trained an nnUnet (nnUnet_T) on a dataset including contrast-
enhanced CT scans from 119 PDAC patients and 123 healthy individuals for automatic lesion detection 
and segmentation. Additionally, two other nnUnets were trained to investigate the impact of anatomy 
integration, with nnUnet_TP segmenting both the pancreas and the tumor and nnUnet_MS segmenting 
the pancreas, tumor, and adjacent anatomical structures. All three networks were compared on an open 
access external dataset, with nnUnet_MS offering the best results with an AUC of 0.91 for the entire 
dataset and of 0.88 for lesions smaller than 2 cm[71]. Several studies have focused on the role of AI-
based solutions in the detection of pancreatic cystic lesions. Wei et al[72] presented a ML-based 
computer-aided diagnosis system to help in the diagnosis of pancreas serous cystic neoplasms from CT 
images. They extracted radiomic features from manual ROIs outlining the peripheral margin of each 
neoplasm. After selecting the most important features by using least absolute shrinkage selection 
operator regression, they trained a SVM classifier by a 5-fold cross validation with 200 patients. The 
authors used a validation cohort of 60 patients and reported and AUC of 83.7%, a sensitivity of 66.7%, 
and a specificity of 81.8%. Along the same lines, Li et al[73] also proposed a computer-aided framework 
for early differential diagnosis of pancreatic cysts without pre-segmenting the lesions by using densely 
connected convolutional networks (Dense-Net). In this approach, saliency maps were integrated in the 
framework to assist physicians to understand the decisions of the DL methods. Accuracy reported on a 
cohort of 206 patients with four pathologically confirmed subtypes of pancreatic cysts was 72.8%, 
significantly higher than the baseline of 48.1% according to the authors. Park et al[74] developed a 3D 
nnU-Net-based model for the automatic diagnosis of solid and cystic pancreatic neoplasms on 
abdominal CT scans. The model was trained on CT scans (852 patients) from both patients who 
underwent resection for pancreatic lesions and subjects without any pancreatic abnormalities, and 
performance was evaluated using receiver operating characteristic analysis in a temporally independent 
cohort (test set 1, including 603 patients) and a temporally and spatially independent cohort (test set 2, 
including 589 patients). This approach showed a remarkable capacity to identify solid and cystic 
pancreatic lesions on CT, with an AUC of 0.91 for the test set 1 and 0.87 for the test set 2. Furthermore, it 
offered a high sensitivity in the identification of solid lesions of any size (98%-100%) and cystic lesions 
of at least 1 cm (92%-93%)[74].

In the pursuit of more accurate models, some authors have combined CT images with other 
biomarkers, such as molecular markers or multimodal images. For example, Qiao et al[75] used CT scans 
and serum tumor markers (including serum carbohydrate antigens 50, 199, and 242) to train different 
types of networks (CNN, FCN, and U-Net) to diagnose pancreatic cancer with high sensitivity and 
specificity. Li et al[76] also used a hybrid SVM-RF model to classify normal and pancreas cancer from 
PET/CT images. First, they segmented the pancreas from CT images and registered the CT and PET 
series, then they extracted features from the segmented ROI in both types of studies. The authors tested 
the model using 10-fold cross validation with 80 cases and achieved 96.47% accuracy, 95.23% sensitivity, 
and 97.51% specificity.

Pancreas-MRI
MR is the technique of election for the assessment of complex pancreatic conditions. Thus, its 
association with AI is regarded as promising to help radiologists in diagnostic dilemmas regarding this 
organ. For instance, radiomics has been proposed as a way to predict the malignant potential of 
pancreatic cystic lesions, differentiating benign cysts from those likely to transform into pancreatic 
cancer[77].

There is limited experience with the use of AI in the detection of focal lesions with pancreatic MR 
studies. Corral et al[78] proposed the use of SVM to classify intraductal papillary mucinous neoplasms 
(IPMN). First, features were extracted using a CNN from T2-weighted and post-contrast T1-weighted 
MR images. For validation, authors used 10-fold cross-validation using 139 cases. They achieved an 
AUC of 78%. Kaissis et al[79] also developed a supervised ML algorithm which predicted the above-



Berbís MA et al. AI impact on hepatopancreatic imaging

WJG https://www.wjgnet.com 1438 March 7, 2023 Volume 29 Issue 9

versus-below median overall survival of patients with pancreatic ductal adenocarcinoma, with 87% 
sensitivity and 80% specificity, using preoperative DWIs.

Lastly, the generation of synthetic MR images of pancreatic neuroendocrine tumors (PNET) has been 
explored using GANs. This data augmentation technique can alleviate the relative low abundance of 
these type of pancreatic tumors in order to train AI models. Gao and Wang then used the synthetic 
images to evaluate the performance of a CNN in the prediction of PNET grading on contrast-enhanced 
images[80].

Pancreas-EUS
Application of AI to EUS has focused on the differentiation of focal pancreatic lesions. In this sense, 
Săftoiu et al[81] developed an ANN to help in the difficult differentiation between PDAC and focal 
chronic pancreatitis (CP) with EUS-elastography. They included 258 patients in the study and reported 
84.27% testing accuracy using 10-fold cross-validation. In addition, Kuwahara et al[82] used a CNN to 
assist in the distinction between benign and malignant IPMNs of the pancreas from EUS images. For 
testing, the authors used images from 50 patients, obtaining an AUC of 98% and sensitivity, specificity, 
and accuracy values of 95.7%, 92.6%, and 94%, respectively. Finally, in the report by Marya et al[83] an 
EUS-based CNN model was trained to differentiate autoimmune pancreatitis (AIP) from PDAC, CP, 
and normal pancreas (NP). Results obtained from 583 patients (146 AIP, 292 PDAC, 72 CP, and 73 NP) 
demonstrated a sensitivity of 99% and a specificity of 98% to distinguish between AIP and NP, 94% and 
71% for AIP and CP, and 90% and 93% for AIP and PDAC. Furthermore, the sensitivity and specificity 
to distinguish AIP from all study conditions (i.e., PDAC, CP, and NP) were 90% and 85%, respectively. 
In view of these results, the application of AI to EUS in the assessment of focal pancreatic lesions is 
promising, although limited due to the short number of available databases for algorithm training and 
validation[84].

TREATMENT PREDICTION
Prediction of treatment response and patient outcome based on AI is a very appealing idea which has 
been explored in a number of liver and pancreatic diseases, particularly in patients with HCC (Table 3).

The idea of using ML to predict the prognosis of patients with HCC emerged decades ago. Already in 
1995 the progression of hepatectomized patients with HCC was analyzed using ANN[85]. Liver volume, 
which was measured in CT studies, was used, among others, as an input parameter. Fifty-four example 
cases were used to train an ANN composed of three layers, and the model was successfully used to 
predict the prognosis of 11 patients. Nevertheless, the model was not tested with enough cases to 
determine its usefulness in actual clinical activity. However, the rise of AI has prompted many more 
works to be developed in the last few years. The response to intra-arterial treatment of HCC prior to 
intervention has been predicted using ML[86,87]. Specifically, logistic regression (LR) and RF models 
were trained with 35 patients using features extracted from clinical data and the segmentations of liver 
and liver lesions in a contrast-enhanced 3D fat-suppressed spoiled gradient-echo T1-weighted sequence 
in the arterial phase. Both trained models predicted treatment response with an overall accuracy of 78% 
(62.5% sensitivity, 82.1% specificity). Other authors tried to predict the early recurrence of HCC 
employing a CNN model based on the combination of CT images and clinical data[88]. They used 10-
fold cross-validation with data from 167 patients and reported an AUC of 0.825. A RestNet CNN model 
was also trained for preoperative response prediction of patients with intermediate-stage HCC 
undergoing transarterial chemoembolization[89]. The model used the segmented ROI of the tumor area 
in a CT study as input. The training cohort included 162 patients and the two validation cohorts 
included 89 and 138 patients, respectively. The authors reported an accuracy of 85.1% and 82.8% in the 
two evaluation datasets.

Radiomics has also been applied to predict treatment response of HCC to different therapies based on 
studies of several imaging modalities. The early recurrence of HCC after curative treatment was 
evaluated using an LR model based on radiomics features[90], which were extracted from manually 
delineated peritumoral areas in CT images. They used 109 patients for training and 47 patients for 
validation, reporting an AUC of 0.79 with the validation dataset. Guo et al[91] also predicted the 
recurrence of HCC after liver transplantation. For that purpose, authors extracted radiomic features 
from ROIs delineated around the lesion in arterial-phase CT images. Then, they combined clinical risk 
factors and radiomic features to build a multivariable Cox regression model. The authors used a training 
dataset of 93 patients and a validation dataset of 40 patients and they reported a C-index of 0.789 in the 
validation dataset.

ML models have also been used to predict hepatobiliary toxicity after liver SBRT[92]. The authors 
built a CNN model which was previously pretrained using CT images of human organs. Then, using 
transfer learning, the model was trained with liver SBRT cases. They used 125 patients for training and 
validation using a 20-fold cross-validation approach, reporting an AUC of 0.79.

Regarding the pancreas, postoperative pancreatic fistulas were predicted using ML-based texture 
analysis[93] performed to extract features from ROIs segmented in non-contrast CT images. Then, after 
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Table 3 Summary of the works proposed to predict patient prognosis using artificial intelligence

Anatomical area Pathology Modality AI model What is prognosed? Ref.

ANN Progression of hepatectomized patients with 
HCC

[85]

Early recurrence of HCC [88]CNN

Response to transarterial chemoembolization for 
patients with intermediate-stage HCC

[89]

Early recurrence of HCC [90]

Recurrence of HCC after liver transplantation [91]

CT

LASSO Cox 
regression

Recurrence of HCC after resection [118]

MRI LR, RF Response to intra-arterial treatment of HCC [86,87]

Liver HCC

US CNN, SVM Response to transarterial chemoembolization for 
patients with HCC

[119]

Biliary system Liver metastases, HCC, cholan-
giocarcinoma

CT CNN Prediction of hepatobiliary toxicity after liver 
SBRT

[92]

Pancreas Postoperative pancreatic fistula CT RepTree Prediction of postoperative pancreas fistulas 
after pancreatoduodenectomy

[93]

HCC: Hepatocellular carcinoma; CT: Computerized tomography; MRI: Magnetic resonance imaging; US: Ultrasound; ANN: Artificial neural network; 
CNN: Convolutional neural network; LR: Logistic regression; RF: Random forest; SVM: Support vector machine; SBRT: Stereotactic body radiotherapy.

dimension reduction, several ML classifiers were built using Auto-WEKA 2.0, obtaining the best results 
using a REPTree classifier. The authors used 10-fold cross-validation using data from 110 patients, and 
reported an AUC of 0.95, sensitivity of 96%, and specificity of 98%.

DISCUSSION
In recent years, a large number of AI-based solutions have been developed with the aim of easing and 
streamlining the radiologist’s workflow. Many of these tools are focused on imaging of the liver, biliary 
system, and pancreas. The developed tools range from improving image quality to the prediction of the 
patient’s prognosis after treatment. The literature shows that many AI-based solutions targeting liver 
and pancreas imaging allow for improved disease detection and characterization, lower inter-reader 
variability, and increased diagnostic efficiency. A key factor for their success in the clinical setting is to 
attain a seamless integration in the radiologist’s workflow, requiring minimal additional work by the 
radiologist and adding significant value to the radiologist’s work. In this sense, it is crucial that there is a 
fluid collaboration between the radiologists, technicians, and bioengineers in charge of the tools.

Image analysis and processing are transversal parts of most AI methods described in this review. 
Improving their performance is thus a key task. Unfortunately, some image processing techniques such 
as registration are still time-consuming, hence making the incorporation of some of these procedures in 
clinical practice unfeasible. Some new methods are arising to minimize this impact[94], especially in 
critical applications like image IGS. Semi-automatic or even automatic segmentation is another 
important step that some of the AI tools may incorporate for diagnosis or prognosis purposes[95]. 
Therefore, it is of paramount importance for these algorithms to achieve a high level of performance.

The literature reports many applications of AI to aid in the detection and characterization of 
pancreatic and liver focal lesions using a variety of imaging modalities as input, either single (e.g., T1-
weighted MRI) or in combination with other techniques and data (e.g., T2-weighted and DCE-MRI plus 
risk factors). In chronic liver disease, radiomics-based tools have been developed to assist in the 
diagnosis and grading of hepatic fibrosis, among others. These models have been built using different 
imaging modalities, such as MRI or US.

With regard to the prognosis of liver, biliary or pancreatic diseases, tools based on radiological 
information have hardly been developed. Many of these tools are focused on the prognosis of HCC 
based on information extracted from CT[96]. In this field of research, literature shows a clear trend 
toward integrating genetic information[97-101]. There are also studies that try to include variables 
extracted from clinical data and laboratory values[102,103]. In a scenario that advances towards 
integrated diagnosis, increasing volumes of data of different nature are available. This should allow for 
the generation of more accurate predictive models of clinical prognosis using information from many 
sources.
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For the AI-based tools developed to be used in daily clinical practice, they must obtain regulatory 
clearance, such as Food and Drug Administration (FDA) approval in the United States or CE marking in 
Europe. Despite the explosive production of such tools in the last years, to date only a small group of 
them have obtained this approval. One of the main problems is the lack of appropriately annotated 
data. Without large datasets of properly labeled studies, the performance of data-hungry algorithms like 
CNNs will not be sufficient to be massively deployed in clinical environments. Furthermore, algorithms 
demand diverse data, such as multi-centric and multi-vendor, to avoid selection biases that would 
challenge their implementation in a real-world environment[104]. Another limitation of most AI-based 
tools found today is that they are aimed at a very concrete application (narrow AI applications), within 
a specific imaging modality, rather than being valid for a wide range of tasks at the radiologist’s work 
practice.

Yet, the general attitude of radiology staff toward AI is positive. In a recent survey, European 
radiographers declared excitement about AI (83%), although only 8% had been taught on this matter in 
their qualification studies[105].

In another survey, European radiologists regarded the outcomes of AI algorithms for diagnostic 
purposes as generally reliable (75.7%), and algorithms for workload prioritization as very helpful 
(23.4%) or moderately helpful (62.2%) to reduce the workload of the medical staff[106].

The sentiment of gastroenterologists toward AI is also generally favorable, with a wide majority of 
United Kingdom[107] and European[108] specialists perceiving it as beneficial to key aspects of their 
clinical practice. Their main concerns according to these studies are related to algorithm bias, lack of 
guidelines, and potential increase in procedural times and operator dependence.

CONCLUSION
The rapid advance of AI is already transforming the gastrointestinal field with the development of 
applications aimed to assist and streamline image diagnosis. Traditional diagnostic imaging techniques 
such as US, EUS, CT, MRI, and PET/CT are already benefitting from a variety of AI algorithms that can 
perform automatic or semi-automatic segmentation and registration of the liver and pancreas and their 
lesions, aid the diagnosis and characterization of pancreatic and liver focal lesions and diffuse illnesses, 
improve image quality, accelerate image acquisition, and anticipate treatment response and patient 
prognosis. Moreover, with the use of radiomics, AI can add quantitative information previously 
undetected by radiologists to radiological reports. The massive adoption of AI in radiology of pancreatic 
and liver diseases is still incipient, but irreversible, and the sector is clearly moving in this direction. 
Advances in the field, such as the availability of regulatory cleared, robust algorithms trained and 
validated multicentrically, increased awareness on AI by the medical staff, and access to products that 
seamlessly integrate with their workflow should pave the way for a rapid adoption of AI in the clinical 
practice, impacting the outcomes of hepatic and pancreatic patients for the better.
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