
cirrhosis and hepatocellular carcinoma[1-4]. Worldwide, 
about 300 million individuals are HCV infected. The 
only antiviral treatment available to date with PEG-INF 
and ribavirin does not eliminate HCV infection in a large 
proportion of  patients, especially in HCV genotype 1 
infection, and, at the same time, has multiple severe side 
effects. With the availability of  an infectious tissue culture 
system, we now can address pathophysiologically relevant 
issues for new treatment options[1-3]. HCV belongs to the 
flaviviridae. It has an enveloped, positive strand RNA 
genome of  9.6 kb length containing one open reading 
frame translated into a single polyprotein. Posttranslational 
cleavage yields 4 structural (E1, E2, core, p7 (probably) 
and 6 nonstructual proteins (NS2, NS3, NS4A, NS4B, 
NS5A, NS5B). Six different genotypes (1 [a, b, c], 2 [a, b, c],  
3 [a, b], 4a, 5a, 6a) and 52 subtypes have been described. 
Due to the lack of  proofreading function of  the RNA-
dependent RNA-polymerase (NS5B), HCV has a high 
mutation rate and exists as genetically heterogeneous 
quasispecies in individual patients[5-7]. The different 
genotypes differ genetically from one another by at least 
30%, and the different subtypes within a genotype by 
more than 20%. This genetic heterogeneity makes it 
difficult to compare apoptotic pathways obtained with 
different HCV genotypes. In general, apoptosis is central 
to viral clearance. In HCV-infected liver, however, despite 
enhanced hepatocyte apoptosis, viral persistence is 
observed. 

APOPTOSIS IN HCV-INFECTED LIVER
Immune cell deficiency 
The immune response to viral infections includes 
different components of  the innate and the acquired 
immune system. They induce apoptosis as a host defense 
against viral infections. The innate immune system as 
the first line of  defense directly activates inflammatory 
cells, such as macrophages (e.g., granulocytes, Kupffer 
cells in the liver) and natural killer (NK) cells which may 
directly cause death of  the infected cells. On the other 
hand, viral RNA or proteins can bind to intracellular 
molecules that modulate or directly induce cell death[8]. In 
this immune cell-independent, virus-induced apoptosis 
of  the host cell protein kinase R (PKR)[9,10] and the 
cytoplasmic RNA helicase RIG-I[11] play central roles. 
RIG-I activates Cardif, a cytosolic protein that localizes 
to the mitochondrial membrane where it acts pro-
apoptotic[12,13]. PKR is also activated by interferons  
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Abstract
Apoptosis is central for the control and elimination of viral 
infections. In chronic hepatitis C virus (HCV) infection, 
enhanced hepatocyte apoptosis and upregulation of the 
death inducing ligands CD95/Fas, TRAIL and TNFα occur. 
Nevertheless, HCV infection persists in the majority 
of patients. The impact of apoptosis in chronic HCV 
infection is not well understood. It may be harmful by 
triggering liver fibrosis, or essential in interferon (IFN) 
induced HCV elimination. For virtually all HCV proteins, 
pro- and anti-apoptotic effects have been described, 
especially for the core and NS5A protein. To date, it 
is not known which HCV protein affects apoptosis in 
vivo  and whether the infectious virions act pro- or anti-
apoptotic. With the availability of an infectious tissue 
culture system, we now can address pathophysiologically 
relevant issues. This review focuses on the effect of HCV 
infection and different HCV proteins on apoptosis and of 
the corresponding signaling cascades.
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INTRODUCTION
Hepatitis C virus (HCV) infection persists in approximately. 
Eighty percent of  patients and is a leading cause of  liver 
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(Figure 1) and acts via the downstream transcription 
factor eIF-2α[14,15]. In HCV infection, the activated innate 
immune system alone is obviously insufficient to eliminate 
the virus[16]. The acquired immune system consists of  the 
humoral (antibody-secreting B-lymphocytes/plasma cells) 
and the cellular immune system (CD4+- and CD8+-T-
lymphocyctes). This system is essential for the clearance of  
most viral infections and depends on complex intercellular 
interactions and the recognition of  viral antigens presented 
by specific cells (e.g., dendritic cells). CD4+-T-lymphocytes 
activate CD8+-T-lymphocytes, cytotoxic T lymphocytes 
(CTLs), macrophages and B-lymphocytes[16]. The antigen-
primed CD8+-T-lymphocytes/CTLs directly kill infected 
cells via direct cell-cell-contact, and release of  cytotoxic 
and/or antiviral cytokines (e.g., IFNγ, TNFα), whereas 
IFNγ and INFα are also able to eliminate the virus 
without killing the host cell[17,18]. In chronic HCV infection, 
the acquired immune system is, among others, impaired by 
T cell failure, dysfunction and exhaustion[19]. This failure 
includes CD4+- as well as CD8+-T-lymphocytes. 

ENHANCED HEPATOCYTE APOPTOSIS IN 
HCV INFECTION IN VIVO
Most of  the cytotoxic effects mentioned above occur 
via programmed cell death, with activation of  the 
intracellular suicide program through specific signals. 
Because chronic viral infection may reflect a failure of  
the immune system, specific apoptosis induction may 
not occur. In chronic HCV infection, however, enhanced 
hepatocyte apoptosis has been described, independent 
from the HCV genotype[20]. Apoptosis varies between 
0.54%[20] and 20.00% of  hepatocytes[21], depending on 
the methods used. Typical pathomorphological features 

of  apoptosis (e.g., nuclear fragmentation, cell shrinkage) 
may be seen only in a minority of  hepatocytes. The 
close physical proximity of  apoptotic hepatocytes 
and infiltrating lymphocytes suggests an immune cell-
mediated apoptosis[20,22]. Apoptosis correlates with liver 
pathology[20,21] and may contribute to fibrogenesis[23]. Due 
to the difficulty to identify HCV infected hepatocytes, it is 
unknown whether apoptotic hepatocytes are indeed HCV 
infected. The number of  HCV infected hepatocytes is in 
the range between 1% and 10%[24]. Therefore, we actually 
do not know whether apoptosis is indeed related to HCV 
clearance. In an animal model of  cholestasis, inhibition of  
hepatocyte apoptosis reduced fibrogenesis[25] and excessive 
apoptosis lead to fulminant hepatitis[26,27]. Therefore, anti-
apoptotic therapy to prevent HCV-related liver damage 
has been suggested[28,29]. By contrast, in a chimeric 
mouse-human model, pro-apoptotic gene therapy with 
proapoptotic Bid, engineered to contain a specific cleavage 
site for NS3/NS4A protease, results in a considerable 
decline of  HCV RNA in serum[30]. The relation between 
PEG-IFN/ribavirin-induced viral clearance and apoptosis 
of  infected hepatocytes is largely unknown. INFs induce 
apoptosis in hepatoma cells, activate pro-apoptotic PKR[10] 
and upregulate death receptor ligands. However, anti-
apoptotic effects have also been described[7,31-33].

LIGAND-INDUCED HEPATOCYTE 
APOPTOSIS IN HCV INFECTION
Hepatocytes most likely represent so-called type-II cells, 
for which external activation of  the death signaling 
pathway often is insufficient to induce apoptosis. Here, 
apoptosis requires in addition amplification by the 
mitochondrial pathway (intrinsic apoptosis pathway). The 
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Figure 1   S ignal  t ransduct ion 
pathway of apoptosis in hepatocytes. 
Immune  cells induce apoptosis 
in hepatocytes by death receptor 
ligands (TRAIL, TNFα, CD95Ligand, 
TGF-b) and granzyme B/perforin. 
L i g a n d - i n d u c e d  a p o p t o s i s 
act ivates caspase-8,  whereas 
in t r ins ic  apoptos is  occurs  v ia 
the mitochondrial  permeabi l i ty 
transition (PT) pore and activation 
of caspase-9. Caspase-9 and -8 
activation converge in activation of 
the effector caspases-3, -6 and -7, 
resulting in irreversible apoptosis 
induction. HSC: Hepatic stellate cells; 
KC: Kupffer cells; CTL: Cytotoxic 
T-lymphocytes; NK: Natural killer 
cells.
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latter is affected by oxidative stress, DNA damage, and 
viral proteins (Figure 1).  

Targeted apoptosis induction via CTLs and macrophages 
largely occurs via the ligands and receptors of  the TNFα 
family: TNFα/TNF-receptor 1, CD95/CD95Ligand and 
TRAIL/Trail receptor-1 and -2, respectively (Figure 1). 
Ligand binding induces the formation of  a death-inducing 
signaling complex, resulting in the activation of  caspase-8 
(caspases are the proteases involved in the apoptosis 
signaling cascade[34]. Active caspase-8 can trigger two 
signaling pathways. The first pathway involves cleavage of  
bid, followed by mitochondria-dependent activation of  
caspase-9 via cytochrome C release and apaf-1[35] (Figure 1).  
Mitochondria-dependent apoptosis is amplified by pro-
apoptotic bax, bad, bak and others, while molecules 
like bcl-2 or bcl-XL act anti-apoptotic. These proteins 
converge at the mitochondrial permeability transition (PT) 
pore that regulates release of  apoptotic regulatory proteins, 
e.g., procaspase-9, cytochrome C, apoptosis inducing 
factor (AIF) or Smac/Diablo[36-38]. The second pathway 
involves caspase-8 activation that may bypass mitochondria 
resulting in the direct activation of  effector caspases 
(caspase-3, -6, -7). Cellular inhibitors of  apoptosis (IAPs, 
survivin, c-FLIP) are able to block caspase activation and 
apoptosis[39] (Figure 1). 

Growth-factor activated MAP-kinases Erk-1/2 
and PKB/Akt inhibit apoptosis directly (e.g., through 
inactivation of  pro-apoptotic bad) or via upregulation of  
anti-apoptotic proteins (e.g., bcl-2). By contrast, sustained 
stress activation of  c-jun kinase (JNK) enhances death 
ligand-induced apoptosis via bim activation and consecutive 
mitochondrial apoptosis or via enhanced death-receptor 
membrane trafficking[40-42]. Most death ligands, especially 
TNFα and TRAIL, activate NFκB, which has anti-
apoptotic effects in hepatocytes by upregulation of  anti-
apoptotic proteins, e.g., c-FLIP and bcl-XL[43]. 

Death receptor ligands may be secreted by immune 
cells (e.g., macrophages) or may be membrane-bound. 
The latter form induces apoptosis more efficiently[44]. 
In the normal liver, INFγ-activated Kupffer cells can 
kill neighbouring cells via TRAIL and CD95Ligand[37,44]. 
By contrast, in injured liver, activated hepatic stellate 
cells release TGF-β that may induce apoptosis of  
hepatocytes[45,46]. While TGF-β1 expression is increased 
in the HCV-infected liver[22], the impact of  TGF-β on 
hepatocyte apoptosis in HCV-infected patients remains 
elusive. Apart from apoptosis induction, TGF-β is a key 
molecule in the pathogenesis of  liver fibrosis[47]. 

Hepatocytes undergo apoptosis in response to 
CD95Ligand and TNFα, whereas TRAIL presumably only 
induces apoptosis in infected or malignantly transformed 
hepatocytes/hepatoma cells, but not in normal liver cells. 
For all three death ligands, in chronic HCV infection, 
upregulation has been described[20,48-51]. Further, HCV-
specific CTL clones induced CD95Ligand-, TNFα- and 
perforin-dependent hepatocyte apoptosis[52,53]. In HCV-
infected liver, CD8+ T cells express CD95Ligand[49] and 
TRAIL[54] (Fischer, Blum Schmitt-Gräff  et al, unpublished 
data). Interestingly, CD95Ligand-induced apoptosis did not 
depend on HCV infection/antigen presentation, because 
bystander killing of  non-HCV infected hepatocytes was 

observed. TRAIL-induced apoptosis seems especially 
important in viral defense. Adenoviral-infected murine 
and human hepatocytes are sensitized to TRAIL-induced 
apoptosis, while CD95Ligand-induced cell death is not 
affected[50,55]. In TRAIL knock-out mice resolution of  
pulmonary influenza infection is TRAIL-dependent[56], 
and CMV infected colon epithelial cells or skin fibroblasts 
become sensitive to TRAIL-induced apoptosis[57]. Further, 
in mice infected with encephalomyocarditis virus, blocking 
of  TRAIL resulted in higher viral titers and early death[58]. 
In concanamycin- and listeria-induced hepatitis, liver cell 
apoptosis is TRAIL-dependent[59]. PEG-INF/ribavirin 
therapy of  patients with chronic HCV infection results in a 
rapid and sustained TRAIL elevation, suggesting a role of  
TRAIL in viral clearance[60]. Similar observations have been 
made for soluble CD95Ligand[61,33]. Therefore, TRAIL-
induced apoptosis may play a major role in HCV defense 
and elimination. 

Another mechanism of  apoptosis involves the release 
of  granzyme B and perforin by CTLs[62,63]. Exocytosed 
perforins form transmembrane channels in the target 
cell that allow the entry of  granzyme B. Similar to death-
ligand induced apoptosis, granzyme B-mediated apoptosis 
largely depends on caspase activation and the sensitivity 
of  the target cell. Hepatocytes seem resistant to granzyme 
B mediated cell death, and CTL killing of  infected 
hepatocytes is perforin/granzyme B- independent[29,64]. 
Therefore, a contribution of  this apoptosis mechanism in 
patients with viral hepatitis is very unlikely. 

MODIFIED HEPATOCYTE APOPTOSIS IN 
VITRO
Viral proteins interfere with the cellular apoptotic signaling 
pathway and block key cellular elements of  the host cell. 
Until recently, the lack of  an infectious HCV tissue culture 
system did not allow to study the impact of  HCV infection 
on hepatocyte apoptosis. Overall, the data regarding the 
role of  different HCV proteins are controversial and 
ascribe to a given viral protein pro- and anti-apoptotic 
effects, depending on the experimental system used. 
Since in most models viral proteins are overexpressed 
by non-viral promoters, for virtually all HCV proteins a 
pro-apoptotic effect has been described. Apart from the 
unphysiological expression of  viral proteins, these models 
further lack the balance of  intracellular viral expression 
of  the different HCV proteins and their interactions. 
Especially in HCV infection, intracellular viral protein 
expression is very low.

Further, HCV is genetically highly variable and exists 
as quasispecies in a given patient. Different pro- and 
anti-apoptotic effects of  the HCV core protein from 
an individual patient have been described[65], suggesting 
special properties of  different quasispecies proteins. These 
protein differences may explain in part the different effects 
of  viral proteins on apoptosis. Studies of  the contribution 
of  genotypes or quasispecies to the effects on apoptosis 
are largely missing. Further, experiments designed to study 
the impact of  HCV infection on hepatocyte apoptosis 
must also consider the interactions between the different 
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HCV proteins. Therefore, only models based on the 
complete and infectious virus may reflect to some extent 
the in vivo situation.

HCV core protein
The structural HCV core protein makes up the virion 
nucleocapsid[1,5,66]. The core protein has been shown to 
affect various cellular signaling pathways[67] and to activate 
different promoters, e.g., c-myc, c-fos[68-70]. It has further 
been shown to have pro- and anti-apoptotic effects 
in death ligand-mediated hepatocyte apoptosis. Core-
dependent inhibition of  TNF-α-[71] and CD95Ligand- 
induced apoptosis[72] has been described in a hepatoma cell 
line. In other models, overexpressed HCV core protein did 
not prevent CD95Ligand-induced apoptosis in hepatoma 
cells[73] or transgenic mice expressing HCV core protein, 
E1, E2 and NS2, respectively. HCV core protein inhibits 
CD95Ligand-mediated apoptosis by prevention of  
cytochrome C release from mitochondria and consecutive 
activation of  caspase-9, -3 and -7[74]. Direct physical 
and pro-apoptotic interaction of  the core protein with 
the cytoplasmatic domains of  CD95, TNF-R1[75] and 
lymphotoxin-β[76] receptors have been reported. Further, 
direct binding to the downstream death domain of  FADD 
and c-FLIP[77] has been shown to result in anti-apoptotic 
effects. Recently, inhibition of  the TGF-β-pathway by 
direct interaction of  the core protein with the DNA-
binding domain of  Smad3, important apoptosis mediators 
of  TGF-β-receptor-I/II, has been demonstrated[65]. 

Several studies demonstrated binding of  the HCV core 
protein to p53, either inhibiting or activating p53[69,78-80] 
with consecutive anti- or pro-apoptotic effects. In some 
studies apoptosis was inhibited in hepatoma through core-
dependent phosphorylation and activation of  STAT3 
that induces the anti-apoptotic bcl-XL[81,82]. Other studies 

showed core-induced apoptosis through mitochondrial 
cytochrome C release and indirect activation of  bax[83,84]. 
TRAIL-induced apoptosis in hepatoma cells seems 
enhanced by core-dependent bid-cleavage[83]. Mitochondrial 
functions are altered by core-induced oxidative stress, 
making cells more susceptible to apoptosis[85]. Machida 
et al[86] showed HCV-dependent production of  reactive 
oxygen species (ROS), lowering of  the mitochondrial 
transmembrane potential and consecutive caspase-
independent cell death.

Taken together, it remains unclear whether HCV 
core protein inhibits or induces death receptor-mediated 
apoptosis of  hepatocytes (Figure 2).

HCV envelope proteins E1 and E2
HCV proteins E1 and E2 are envelope proteins, that 
mediate viral binding and entry[7,87]. In a transgenic mouse 
model expressing HCV proteins, CD95Ligand-mediated 
hepatocyte apoptosis is inhibited by E1, E2, NS2 and core, 
respectively. The activation of  mitochondrial apoptosis 
(intrinsic pathway) is involved, because release of  
cytochrome C and caspase-9, but not caspase-8 activation 
are inhibited. To date, the contribution of  the individual 
HCV proteins was not investigated[74]. In E1-expressing 
hepatoma cells, apoptosis depends on the presence of  the 
C-terminal transmembrane domain of  E1, presumably 
altering membrane permeability of  E1[88,89].

I n h i b i t i o n o f  T R A I L - i n d u c e d a p o p t o s i s i n 
hepatoma cells by E2, presumably through inhibition 
of  mitochondria l cytochrome C release has been 
demonstrated[90], while E1 had no effect and core did not 
counteract the anti-apoptotic effect of  E2. Comparable 
resul ts were obta ined in core-E1-E2 transfected 
hepatoma cells or transgenic mice. In both models, core-
E1-E2 induced less apoptosis than core-transfected 

Figure 2   Interference of HCV 
proteins with the apoptosis cascade. 
Pro- and anti-apoptotic effects 
of HCV proteins converge at the 
mitochondria (e.g., NS2, NS3/4A, 
NS5A, E2, core), partly indirectly via 
p53 (NS5A, core) and activation of 
PKB/Akt, c-Jun kinase JNK (core) 
or NFκB (NS5A). HCV interacts 
directly with death receptors (core), 
the corresponding death receptor 
domains (FADD) and caspase-8 
(NS5A). HCV double-strand RNA-
activated protein-kinase R (PKR) 
induced signaling via RIG-I (retinoic 
acid inducible gene-I) and Cardif is 
directly (E2, NS5A) and indirectly 
(NS3/4A) disturbed.
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cells/transgenic mice and controls, respectively[91]. By 
contrast, E2 induces mitochondria-related and caspase-
dependent apoptosis in the same hepatoma cell line[92]. 
These controversial data may reflect the use of  different 
promoters that overexpress E2, while at the same time, 
the HCV genotype or the individual sequence of  E2 have 
not been considered. Therefore, it still remains unclear 
whether HCV E1 has apoptosis-modulating activity in vivo, 
and whether HCV E2 acts anti- or pro-apoptotic (Figure 2).

HCV nonstructural proteins
The non-structural HCV proteins NS2 and NS3 are the 
two viral proteases required for posttranslational cleavage 
of  non-structural proteins. NS2 is a transmembrane 
protein localized in the endoplasmatic reticulum (ER) that 
directly binds and inhibits CIDE-B-induced apoptosis 
(cell death-inducing DFF45 (DNA-fragmentation-factor)-
like effector[93]). CIDE-B-induced apoptosis is assumed 
to occur via the mitochondrial pathway[94,95]. Its role in 
hepatocyte apoptosis and viral hepatitis remain to be 
determined, however.

NS3 has a helicase and NTPase activity that are 
involved in RNA replication[7]. Importantly, NS3 prevents 
viral RNA-induced pro-apoptotic RIG-I effects by specific 
cleavage of  downstream Cardif, a protein that translocates 
to the mitochondrial membrane when activated[13]. The 
precise role of  Cardif  in hepatocyte apoptosis and viral 
hepatitis is unknown, however. In contrast, NS3 induces 
caspase-8 dependent apoptosis in hepatocytes[96] and 
in dendritic cells[97]; the underlying mechanism remains 
unknown. 

HCV NS4A is a cofactor that binds to NS3. NS4A 
alone and complexed with NS3 is localized in mitochondria 
and induces the release of  cytochrome C and caspase-8 
independent apoptosis [98]. NS4B is an integral ER 
membrane protein that may play a role in anchoring the 
replication complex[6,7]. A role in the apoptotic signaling 
pathway has not yet been described. 

The function of  NS5A is not yet well defined. NS5A 
interferes with the response to IFN and seems to play an 
important role in viral replication[5,7]. NS5A has sequence 
homologies with bcl-2 and binds to FKBP38, thereby 
augmenting the anti-apoptotic effect of  bcl-2[99] and 
inhibiting the pro-apoptotic action of  bax in hepatoma 
cells[100]. Anti-apoptotic effects of  NS5A are further 
mediated by cytoplasmatic sequestering of  p53[101], 
activation of  PI3-kinase-Akt/PKB survival pathway[102], 
activation of  STAT3 with enhanced expression of  
bcl-XL and p21[103] and activation of  NFκB[104]. By 
contrast, the direct inhibition of  pro-apoptotic bin1, a 
tumor suppressor protein with a SH3 domain, has been 
described in hepatoma cells[105], and a direct NS5A-
induced apoptosis has also been shown[97,106]. NS5B is the 
viral RNA-dependent RNA polymerase[5-7]. There are no 
studies demonstrating a role of  NS5B in apoptotisis of  
hepatocytes/hepatoma cells, while a pro-apoptotic effect 
of  NS5B has been demonstrated in dendritic cells[97]. 

In conclusion, similar to HCV structural proteins, the 
effect of  non-structural proteins on hepatocyte apoptosis 
in vivo remains unclear.

CONCLUSION
The role of  apoptosis in HCV infection is not well 
defined. Kinetics and extent of  hepatocyte apoptosis as 
well as the pro- and anti-apoptotic mechanisms involved 
remain unclear. It remains further unclear whether 
enhanced hepatocyte apoptosis in HCV infection is related 
to viral clearance, and whether it has a therapeutic benefit. 

Most exper imenta l models have fundamenta l 
shortcomings and there are no data from primary 
hepatocytes, tissue cultures or animal models. The majority 
of  the data were obtained with different tumor cell lines 
that may in themselves be inhomogeneous. Different HCV 
genotypes and quasispecies may induce different effects, 
and most studies employ nonphysiologically overexpressed 
viral proteins. In HCV infected patients, by comparison, 
only very low quantities of  HCV proteins are detectable, 
and the balanced expression of  these proteins may be 
essential. Therefore, the results obtained to date have 
to be interpreted with great cautious. The now available 
infectious tissue culture systems[1-3] as well as future in vivo 
model systems may give answers to these questions, may 
better reflect the in vivo situation and may help to clarify 
the interference of  HCV with apoptotic pathways and its 
role in the pathogenesis of  HCV infection and clearance.
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