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Abstract
Melatonin, the hormone of darkness and messenger of 
the photoperiod, is also well known to exhibit strong 
direct and indirect antioxidant properties. Melatonin 
has previously been demonstrated to be a powerful 
organ protective substance in numerous models of in-
jury; these beneficial effects have been attributed to 
the hormone’s intense radical scavenging capacity. The 
present report reviews the hepatoprotective potential 
of the pineal hormone in various models of oxidative 
stress in vivo , and summarizes the extensive literature 
showing that melatonin may be a suitable experimental 
substance to reduce liver damage after sepsis, hemor-
rhagic shock, ischemia/reperfusion, and in numerous 
models of toxic liver injury. Melatonin’s influence on he-
patic antioxidant enzymes and other potentially relevant 
pathways, such as nitric oxide signaling, hepatic cyto-
kine and heat shock protein expression, are evaluated. 
Based on recent literature demonstrating the functional 
relevance of melatonin receptor activation for hepatic 
organ protection, this article finally suggests that mela-
tonin receptors could mediate the hepatoprotective ac-
tions of melatonin therapy.
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INTRODUCTION
It has been suggested that the substance melatonin (5-me-
thoxy-N-acetyltryptamine), discovered by Aaron Lerner in 
1958, exists in almost every animal species, and possibly 
even in all plants[1,2]. Its physiological functions are said to 
be diverse; while melatonin may be involved in modifica-
tions of  vasomotor tone[3,4] and thermoregulation[5], it is 
primarily known as the signal of  darkness[6].

In vertebrates, melatonin is synthesized in the pineal 
gland and secreted during darkness as a hormonal message 
of  the photoperiod[7]. The rhythm of  melatonin synthesis 
is mainly driven by an oscillator which is situated in the 
hypothalamic suprachiasmatic nucleus (SCN)[8]. This oscil-
lator is usually entrained to a 24-h rhythm by environmen-
tal lighting conditions, which are perceived in the retina by 
rods, cones and intrinsically photosensitive retinal ganglion 
cells[9]. 

Based on the photoperiodic information transduced 
from the retina via the SCN to the pineal gland, melatonin 
is secreted during darkness after de-novo synthesis from 
tryptophan[10]. This nocturnal melatonin signal is propor-
tional to the length of  the night, thus encoding not only 
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circadian, but also seasonal variations in the photoperi-
od[11]. In so-called photoperiodic animals, like the Siberian 
hamster, these seasonal variations in melatonin output may 
have a profound influence on the regulation of  reproduc-
tion[12,13], prolactin secretion[14], as well as coat color[15]. The 
nocturnal secretion of  melatonin is generally independent 
of  an animal’s active period: in both nocturnal and diurnal 
species, melatonin levels rise during darkness[6].

Melatonin synthesis is not exclusively located in the 
pineal gland, but has also been described in numerous 
peripheral organs, such as the retina[16], bone marrow[17], 
skin[18], Harderian gland[19], platelets[20], lymphocytes[21], 
testes[22], and in the gastrointestinal tract[23]. Data on mes-
senger RNA expression of  two key enzymes responsible 
for melatonin synthesis, arylalkyamine-N-acetyltransferase 
and hydoxyindole-O-methyltransferase, suggest that even 
more peripheral organs may be able to produce this hor-
mone[24]. 

So far, the physiological significance of  extrapineal sites 
of  melatonin synthesis remains unclear. However, besides 
its relevance in the time-keeping system, melatonin has 
been demonstrated to be a powerful radical scavenger[25]; it 
is tempting to assume that extrapineal melatonin may serve 
as a tissue protective agent.

MELATONIN AS AN ANTIOXIDANT
Processes of  acute inflammation, e.g. sepsis, hemorrhagic 
shock or ischemia/reperfusion, typically result in an im-
balance of  oxidative homeostasis with excess generation 
of  reactive oxygen species (ROS) and a relative deficiency 
of  endogenous antioxidants; this state is called oxidative 
stress. ROS include oxidants, such as peroxynitrite, and free 
radicals, such as hydroxyl radicals and superoxide; these 
substances are toxic and may induce lipid peroxidation 
(LPO), as well as protein, sugar and DNA degradation[26].

The powerful antioxidant capacity of  melatonin is 
usually attributed to its potential to eliminate free radicals 
by the donation of  electrons[27,28]. For example, melatonin 
may neutralize hydroxyl radicals by forming 3-hydrox-
ymelatonin, which is excreted in the urine[29]. Furthermore, 
melatonin was demonstrated to interact with toxic reac-
tants like peroxyl radicals[30], singlet oxygen species[31], and 
hydrogen peroxide[32]. Metabolites of  melatonin, including 
the major hepatic metabolite 6-hydroxymelatonin, as well 
as N-acetyl-N-formyl-5-methoxykynuramine and N-ace-
tyl-5-methoxykynuramine have been shown to detoxify 
radicals themselves[32-34]. This powerful pyramid scheme 
of  radical scavenging has been named “the antioxidant 
cascade of  melatonin”[1,34].

In addition to these direct interactions with ROS, 
melatonin may induce upregulation of  the activity of  anti-
oxidants and antioxidant enzymes, such as superoxide dis-
mutase (SOD), glutathione (GSH), glutathione peroxidase 
(GPx) and glutathione reductase (GSR), in the environ-
ment of  oxidative stress[35,36]. In addition, the pineal hor-
mone may induce downregulation of  pro-oxidant enzymes 
like nitric oxide synthase (NOS)[37,38] and lipoxygenases[39], 

thus reducing the formation of  nitric oxide (NO), super-
oxide anions, and subsequently peroxynitrite anions.

Both the direct detoxification of  radicals, as well as the 
modification of  pro- and antioxidative enzyme activities 
are thought to be relevant for the pineal hormone to act 
as a protective substance, for example when administered 
in models of  oxidative stress. This valuable effect appears 
to be independent of  the type of  injury and the species 
investigated. Exogenous melatonin may exhibit beneficial 
actions in a myriad of  models of  organ damage; this is 
especially true for the liver.

HEPATOPROTECTION BY MELATONIN 
ADMINISTRATION
With respect to its hepatoprotective effects, countless 
publications have demonstrated that exogenous melatonin 
may be used successfully to treat a great variety of  differ-
ent pathophysiological conditions[40-146]: Table 1 gives an 
overview of  the hepatoprotective effects of  exogenous 
melatonin administration, without the pretension of  be-
ing complete. Included in this summary are investigations 
mainly presenting a model of  liver damage in vivo, evaluat-
ing parameters of  hepatic integrity as a major endpoint, 
and the administration of  melatonin as the primary thera-
peutic agent. Studies on chronic disease development, 
aging, investigations on nutritional or dietary changes, 
exercise-induced stress, remote organ injuries with the 
liver as a secondary target, as well as investigations on tu-
mor development, cancer progression and liver metastases 
were excluded. 

Based on this extraordinary pool of  data, treatment with 
melatonin appears to be a versatile hepatoprotective strat-
egy in models of  experimental liver injury as demonstrated 
in vivo for rats, mice and chicks. There are remarkable varia-
tions concerning both the route of  melatonin administra-
tion, as well as the dose given, the latter ranging a thousand-
fold from 100 µg/kg[93,124] to 100 mg/kg[77] melatonin. Only 
limited data are available on dose-response relationships, 
and most studies did not include measurements of  plasma 
melatonin levels. Furthermore, it should be mentioned 
that in some investigations, melatonin was given either as a 
single dose or repetitively - in some publications for weeks -  
as a pretreatment, before or while the damage was induced. 
Unfortunately, not all researchers used melatonin as a 
therapeutic substance following the infliction of  damage, 
although this would be of  high relevance for the evaluation 
of  its clinical use.

Nevertheless, all these studies show similar or even 
identical results concerning the hepatoprotective effects 
of  treatment with melatonin. Improvements are consis-
tently demonstrated for - but not limited to - parameters 
of  antioxidant enzymes, hepatocellular integrity, interleu-
kin response, NO signaling, and survival.

Antioxidant effects
A strong antioxidant effect of  melatonin seems evident as 
almost all investigators describe that in liver homogenates, 
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melatonin strongly attenuated hepatic LPO[40-49,53-99,102,103,

106-114,116-123,125-146], usually measured by means of  malondi-
aldehyde quantification. Furthermore, melatonin appears 

to increase the activity and/or expression of  hepatic anti-
oxidant enzymes, such as GSH, GPx and SOD, after most 
types of  injury[40-49,53-63,66-93,97-99,103,106-123,125-127,130-146]. Many in-
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Table 1  Hepatoprotective effects of melatonin in different models of stress

Model Induction/type Melatonin treatment Hepatoprotective effects of melatonin Species Ref.

Septic shock CLP/LPS/LPS + BCG 0.25-60 mg/kg ip/iv/po 1-10 
×

hLPO↓, AST/ALT/GGT/ALP/BIL↓, hGSH/hGPx/hSOD/
hCAT↑, hNEC↓, hPMN infiltration↓, hTNF-α/hIL-1/hNO↓, 
72-h survival rate↑

Rats, mice [40-49]

Hemorrhagic 
shock

90 min (MAP 35)/40% 10 mg/kg iv 1 dose AST/ALT/LDH↓, liver function PDR-ICG↑, hepatic 
perfusion↑, hNEC↓

Rats [50-52]

Ischemia/
reperfusion

40-60 min ischemia/
ischemia + resection

10-20 mg/kg ip/im 1-5 × hLPO↓, AST/ALT/LDH↓, hGSH↑, hNEC↓, hMPO↓, hPMN 
infiltration↓, hTNF-α/hCAS/hAPO/hiNOS↓, 7-d survival 
rate↑

Rats [53-62]

Surgical trauma 70% hepatectomy 10 mg/kg per day ip for 7 d hLPO↓, hGSH↑, histological alterations↓ Rats [63]

Toxic liver 
injury

δ-Aminolevulinic acid 10 mg/kg per day ip 7-14 d hLPO↓, hepatic DNA damage↓ Rats [64,65]

Acetaminophen 10-100 mg/kg ip/po/sc 1 × hLPO↓, AST/ALT↓, hGSH↑, hMPO↓, hNEC↓, 72-h survival 
rate↑

Mice [66-68]

Adriamycin 2-6 mg/kg ip/sc 1-7 × hLPO↓, hGSH/hGPx/hCAT↑, hHSP 40/60/70↓ Rats, mice [69-71]

Aflatoxins 5-40 mg/kg per day ig/ip for 
3-8 wk

hLPO↓, hGSH/hGPx↑, hCAS/hNO↓, hHSP-70↓, hNEC↓ Rats, chicks [72-76]

Allyl alcohol 100 mg/kg ip 1 × hLPO↓, AST/ALT/LDH↓, hGSH↑, hNEC↓ Rats [77]

Arsenic 10 mg/kg ip for 5 d hLPO↓, hGSH/hSOD/hCAT↑ Rats [78]

Cadmium 10-12 mg/kg per day ip/po 
for 3-15 d

hLPO↓, hGSH/hGPx↑, hNEC↓ Rats, mice [79-82]

Carbon tetrachloride 10-100 mg/kg ip/sc 1-30 × hLPO↓, AST/ALT/ALP/LDH/BIL↓, hGSH/hSOD/hCAT
↑, hXO↓, hNO↓, hTNF-α/hIL-1b/hNF-kB↓, hNEC↓

Rats, mice [77,83-92]

Cyclophosphamide 100 μg/kg per day po for 15 d hLPO↓, hGSH↑ Mice [93]

Cyclosporin A 715 μg/kg per day ip for 14 d hLPO↓, AST/ALT/GGT↓, hNEC↓ Rats [94-96]

Diazepam 5 mg/kg per day sc for 30 d hLPO↓, hSOD/hGSH↑ Rats [97]

Dimethylnitrosamine 50-100 mg/kg per day ip for 
14 d

hLPO↓, AST/ALT/ALP/BIL↓, hSOD/hGSH/hGPx/
hHO-1↑, hTNF-α/hIL-1b/hIL-6/hNF-kB↓

Rats [98,99]

Diquat 20 mg/kg ip 1 × ALT↓, hepatic content of F2-isoprostane↓, 24-h survival 
rate↑

Rats, mice [100,101]

Doxorubicin 10 mg/kg sc for 7 d hLPO↓, GGT/LDH↓ Rats [102]

Endosulfan 10 mg/kg ip for 5 d hLPO↓, AST/ALT/LDH↓, hGSH↑, hMPO↓, hTNF-α/IL-1b↓ Rats [103]

Iodine 1 mg/kg per day ip for 14 d Hepatic content of Schiff‘s bases↓ Rats [104]

Kainic acid 4-10 mg/kg ip 1 × Hepatic DNA damage↓ Rats [105]

Lead 10-30 mg/kg per day ig for 
7-30 d

hLPO↓, hGSH/hGPx/hSOD↑, hNEC↓ Rats [106,107]

Methanol 10 mg/kg ip 2 × hLPO↓, hGSH/hGPx/hSOD/hCAT↑, hMPO/hNO↓ Rats [108]

Methotrexate 10 mg/kg per day ip for 5 d hLPO↓, hGSH↑, hNEC↓ Rats [109]

Mercury-(Ⅱ) 10 mg/kg ip 2 × hLPO↓, hGSH↑, hMPO↓ Rats [110]

α-Naphthyliso
thiocyanate

10-100 mg/kg ip/po 1-4 × hLPO↓, AST/ALT/LDH/GGT/ALP/BIL↓, hSOD/hCAT↑, 
hMPO↓

Rats [111-114]

Nodularin 5-15 mg/kg per day ip for 7 d hGPx/hSOD/hCAT↑ Mice [115]

Ochratoxin A 5-20 mg/kg ig/po 1-28 × hLPO↓, GGT/ALP↓, hGSH/hGPx/hSOD/hCAT↑, hNEC↓ Rats [116-120]

Paraquat 1-10 mg/kg ip 5-6 × hLPO↓, hGSH↑, LD50 of paraquat↑ Rats [121,122]

Phosphine 10 mg/kg ip 1 × hLPO↓, hGSH↑ Rats [123]

Safrole 0.1-0.2 mg/kg sc 2 × Hepatic DNA damage↓ Rats [124]

Thioacetamide 3 mg/kg ip 3-5 × hLPO↓, AST/ALT/LDH/ammonia↓, hGSH/hCAT↑, 
hiNOS/hNEC↓

Rats [125-127]

Zymosan 5-50 mg/kg ip 1-7 × hLPO/hMPO↓ Rats [128,129]

Cholestasis Bile-duct ligation 0.5-100 mg/kg per day ip/po 
for 7-13 d

hLPO↓, AST/ALT/GGT/ALP/BIL↓, hGSH/hGPx/hSOD/
hCAT↑, hMPO↓, hNO↓, hNEC↓, iron disturbances↓

Rats [130-140]

Ionizing 
radiation

Full-body; 0.8-6.0 Gray 5-50 mg/kg ip 1-5 × hLPO↓, AST/ALT/GGT↓, hGSH/hSOD/hGPx↑, hMPO/
hNO↓, hepatic DNA damage↓

Rats [141-145]

Malaria Schistosoma mansoni 10 mg/kg per day ip for 30 d hLPO↓, AST/ALT↓, hGSH/hSOD↑, 56-d survival rate↑ Mice [146]

↑: Upregulation/increase/improvement; ↓: Downregulation/decrease/deterioration; ALT: Alanine transaminase; ALP: Alkaline phosphatase; AST: 
Aspartate transaminase; BCG: Bacillus Calmette-Guérin; BIL: Bilirubin; CLP: Cecal-ligation and puncture; GGT: γ glutamyl transferase; hAPO: Hepatic 
apoptosis; hCAT: Hepatic catalase; hCAS: Hepatic caspase; hGPx: Hepatic glutathione peroxidase; hGSH: Hepatic glutathione; hHSP: Hepatic heat shock 
protein; hHO-1: Hepatic heme oxygenase 1; hIL: Hepatic interleukin; hiNOS: Hepatic inducible nitric oxide synthase; hLPO: Hepatic lipid peroxidation; 
hMPO: Hepatic myeloperoxidase; hNEC: Hepatocellular necrosis; hNF-κB: Nuclear factor κ-light-chain-enhancer of activated B cells; hNO: Hepatic nitric 
oxide; hPMN: Hepatic polymorphonuclear granulocytes; hSOD: Hepatic superoxide dismutase; hTNF-α: Hepatic tumor necrosis factor α; hXO: Hepatic 
xanthine oxidase; ig: Intragastrically; im: Intramuscularly; ip: Intraperitoneally; iv: Intravenously; LD: Lethal dose; LDH: Lactate dehydrogenase; LPS: 
Lipopolysaccharide; MAP: Mean arterial pressure; PDR-ICG: Plasma disappearance rate of indocyanine green; po: Per os; sc: Subcutaneously.
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vestigators also report an increase in hepatic catalase after 
melatonin treatment[44,71,78,83-85,89,108,111,115,116,118,125,132,135,139].

Hepatocellular integrity
Administration of  the pineal hormone appears to reduce 
the rise in serum enzyme levels of  aspartate transaminase, 
alanine transaminase, lactate dehydrogenase, alkaline phos-
phatase, γ glutamyl transferase and bilirubin after almost 
all types of  injury, indicating that the extent of  cell dam-
age was reduced[40-62,66-68,77,83-92,94-96,98-103,111-114,116-120,125-127,130-146]. 
This is supported by histopathology results when per-
formed, showing that animals treated with melatonin typi-
cally presented with reduced hepatocellular necrosis or at-
tenuated infiltration of  polymorphonuclear granulocytes. 
Reduced hepatic levels of  myeloperoxidase further indi-
cate that neutrophil granulocyte infiltration was strongly 
reduced by the pineal hormone[41,55,67,108,109,111,134,143].

Interleukin response
With respect to interleukin signaling, melatonin was re-
ported to suppress the formation of  pro-inflammatory cy-
tokines such as tumor necrosis factor α, interleukin (IL)-1, 
IL-1β, IL-6, as well as the cellular interleukin response 
protein, nuclear factor κ-light-chain-enhancer of  activated 
B cells[42,43,53,62,88,99]. This was demonstrated in sepsis and af-
ter ischemia/reperfusion, as well as after carbon tetrachlo-
ride and dimethylnitrosamine toxicity. Thus, parts of  the 
hepatoprotective actions of  the pineal hormone could be 
based on its suppressive effects on the pro-inflammatory 
pathway of  the immune response.

NO signaling
A large number of  studies have investigated the relevance 
of  the NO pathway in the protective effects of  melatonin 
treatment[40,42,43,45,47,49,53,56,57,60,72,73,75,108,125,128,129,142,146]. Mela-
tonin seems to reduce NO release in the vasculature and 
attenuate the expression of  inducible NOS in the liver, 
as was demonstrated in models of  sepsis, ischemia/re-
perfusion, cholestasis, ionizing radiation, and toxic liver 
injury with aflatoxins, carbon tetrachloride, methanol, and 
thioacetamide. As NO reacts with superoxide to form the 
potentially toxic oxidant peroxynitrite, the reduction in the 
expression of  iNOS may well be another key element in 
the antioxidant potential of  melatonin.

Survival
When investigated, the observed hepatoprotective effects 
of  melatonin were associated with an improvement in 
survival rate or mean survival time, which was observed in 
models of  sepsis, ischemia/reperfusion, acetaminophen 
and diquat toxicity, and malaria[41-43,49,53,60,68,101,146].

Taken together, the results from more than 100 ex-
perimental studies included here, show convincingly that 
various regimens of  melatonin treatment may be used to 
reduce hepatic damage in acute liver injury in vivo[40-146]. 
However, this overview is likely to be incomplete: many 
other studies indicate similar results for chronic disease 
development and tumor therapy. 

So far, only one investigation has been published re-
garding hepatoprotection by melatonin in humans: in a 
prospective study, increased survival, attenuated liver dam-
age and reduced immunological activity after transcatheter 
arterial chemoembolization (TACE) and melatonin treat-
ment were reported in patients with inoperable advanced 
hepatocellular carcinoma, compared with control patients 
who underwent TACE but were not given melatonin[147].

Limitations of melatonin
Despite the enormous amount of  data supporting the 
idea of  melatonin as a liver protective agent, it should be 
noted that there are reports which show no hepatoprotec-
tive effect of  melatonin in a few models of  stress. Daniels 
et al[148] were unable to demonstrate any benefit of  mela-
tonin administration with respect to carbon tetrachloride-
induced liver injury in vivo, although ten other studies 
unanimously showed the value of  such a treatment[83-92]. 
Furthermore, melatonin had no effect on 2-nitropropane-
induced LPO in rat liver[149].

Equally interesting and disappointing, melatonin does 
not appear to be a protective agent with respect to hepatic 
ethanol toxicity. In a model of  acute or chronic ethanol ex-
posure, melatonin administration did not influence hepatic 
LPO, or GSH and GPx activities in rat[150]. El-Sokkary  
et al[151] demonstrated that administration of  ethanol for  
30 d did not increase hepatic LPO in the same species. 
Yet, a recent study showed that melatonin may reduce 
ethanol-induced liver injury in terms of  reduced hepa-
tocellular injury and inflammatory response in a rodent 
model[152]. As a consequence, further data are required to 
resolve the issue on whether melatonin may be helpful in 
reducing ethanol-associated liver damage.

Both positive and negative findings raise the question 
of  how melatonin’s intense hepatoprotective potential 
may be mediated. With respect to this matter, it has been 
suggested that the activation of  membrane-bound mela-
tonin receptors may be an important step in the induction 
of  the antioxidant properties of  the pineal hormone[35,36].

HEPATIC MELATONIN RECEPTORS
Melatonin receptors in mammals are classified as mem-
brane-bound, high-affinity G-protein coupled receptors, 
officially named MT1 and MT2 (previous terminology: 
Mel1a and Mel1b, respectively)[153]. Both receptors are cou-
pled to heterotrimeric G-proteins, and involve signaling 
through inhibition of  cyclic adenosine-monophosphate 
(cAMP) formation, protein kinase A activity and phos-
phorylation of  cAMP responsive element binding, as well 
as effects on adenyl cyclases, phospholipase A2 and C, and 
calcium and potassium channels[154-158]. A third receptor, 
named MT3, was demonstrated to be equivalent to intra-
cellular quinone-reductase-2[159]. Non-mammalian species 
express yet another receptor subtype named Mel1c, which 
is the first type of  melatonin receptor to be discovered[160].

In the liver, the presence of  MT1, MT2 and MT3 has 
been reported in various species[161-171]; Table 2 gives an 
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overview on the current literature demonstrating hepatic 
melatonin receptor expression or specific iodine ligand 
binding. So far, there are no original research publica-
tions showing proof  of  hepatic MT1 or MT2 receptors 
in humans. Some evidence points to the possibility that 
melatonin receptor expression may exhibit circadian varia-
tions; this has also been demonstrated for hepatic MT1 
and MT2

[163,166-168].
The physiological significance of  hepatic melatonin 

receptors is mostly unknown. Two studies indicated that 
hepatic melatonin receptors may be involved in regulating 
blood glucose[164,172]. Melatonin receptor double knock-
out mice do exist, and they appear to have a generally 
unaltered phenotype. So far, there are no reports showing 
disadvantages regarding the lack of  hepatic melatonin re-
ceptors under physiological conditions.

Unfortunately, there are currently no reliable antibod-
ies available for MT1 and MT2 receptors[154]. Only a few 
publications have demonstrated data on the MT1 or MT2 
protein[162,173]; the results are either non-specific or cannot 
easily be reproduced. Thus, additional techniques will be 
required to convincingly demonstrate melatonin receptor 
protein in the liver.

Nonetheless, our own laboratory was able to generate 
preliminary results concerning the immunohistochemical 
distribution of  MT1 in the liver[173]. It appeared that MT1 
was primarily localized in the pericentral area of  liver lob-
ules. Due to their metabolic state, pericentral fields of  the 
liver are particularly sensitive to ischemic stress, compared 
to slightly better oxygenated periportal areas. Thus, this 
differential distribution of  melatonin receptors could pro-
vide a way of  focusing melatonin receptor-dependent liver 
protection to areas in need. It is tempting to speculate that 
this pattern of  MT1 expression might allow the preferen-
tial protection of  centrolobular hepatocytes.

Further studies, using different techniques or im-
proved antibodies, will be required to support this idea 
of  differentially distributed hepatic melatonin receptors. 
Thus, the presence and distribution of  both melatonin 
receptor protein subtypes in the liver remain to be deter-
mined.

RECEPTOR-MEDIATED ACTIONS OF 
MELATONIN IN THE LIVER
Only a few studies have analyzed the significance of  
melatonin receptors in the hepatoprotective effects of  
melatonin administration in vivo[50,51,174]. In a model of  
hemorrhage and resuscitation, the melatonin receptor an-
tagonist luzindole was able to attenuate the protective ef-
fects of  melatonin pretreatment and therapy with respect 
to liver function as measured by plasma disappearance 
rate of  indocyanine green[50,51]. However, not all of  the 
beneficial effects of  melatonin were abolished. The use 
of  this antagonist may not clarify all aspects of  the effects 
of  melatonin administration, as luzindole itself  has been 
demonstrated to have a strong direct antioxidant poten-
tial[175], and to reduce LPO in vitro[176]. 

In the same model of  hemorrhagic shock, therapy 
with the selective melatonin receptor agonist ramelteon 
improved liver function and hepatic perfusion in rats[174]; 
this melatonin receptor agonist does not possess any rel-
evant radical scavenging properties[174]. These results point 
to the possibility that although beneficial, the radical scav-
enging capacity of  melatonin may not be necessary for its 
protective actions. 

This hypothesis is supported by the observation that 
in other organ systems, the protective potential of  melato-
nin may also be antagonized by luzindole: this antagonist 
has been reported to abolish the protective capacity of  
melatonin after myocardial ischemia/reperfusion in-
jury[177], after cyclosporine-A cardiotoxicity[178], in a model 
of  neonatal brain injury[179], and with respect to stress-
induced gastric lesions[180].

The following preliminary data from our own research 
laboratory may have even more impact: in a murine model 
of  sepsis, we were able to demonstrate that the improve-
ments in survival seen after melatonin therapy were not 
present in melatonin receptor double knock-out mice. 
This finding indicates once more that membrane-bound 
melatonin receptors may be responsible for the beneficial 
effects of  melatonin administration. 

As a consequence, if  (1) no radical scavenging proper-
ties are necessary to provide organ protection via mela-
tonin receptor activation[174]; (2) the melatonin receptor 
antagonist luzindole may abolish almost all protective 
effects of  melatonin[177-180]; and (3) the absence of  melato-
nin receptors impedes the protective action of  melatonin 
administration, then it appears reasonable to conclude 
that melatonin receptors are necessary to mediate at least 
some of  the beneficial effects of  the pineal hormone in 
peripheral organs.

POTENTIAL INFLUENCE ON HEPATIC 
GENE EXPRESSION
The specific intracellular signal transduction cascade lead-
ing to hepatoprotective effects after melatonin receptor 
activation is presently unknown. However, a number of  
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Table 2  Melatonin receptors in the liver of various species

Species MT1 MT2 MT3/QR2 Technique Ref.

Wistar rat + + NT RT-PCR [161,162]

CH3/He mouse + + NT RT-PCR [163]

Swiss mouse + - NT RT-PCR [164]

Sprague-Dawley rat - + NT RT-PCR [165]

Golden rabbitfish + + NT RT-PCR [166,167]

European sea bass - + NT RT-PCR [168]

Senegalese sole + - NT RT-PCR [169]

Syrian hamster NT NT + Iodine ligand [170,171]

CD-1 mouse NT NT + Iodine ligand [170]

Dog NT NT + Iodine ligand [170]

Cynomolgus monkey NT NT + Iodine ligand [170]

+: Detected; -: Not detected; MT1: Melatonin receptor type 1; MT2: Melatonin 
receptor type 2; MT3/QR2: Melatonin receptor type 3/quinone reductase-2; 
NT: Not tested; RT-PCR: Reverse transcription-polymerase chain reaction.
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hypotheses have been published, suggesting that cAMP 
responsive element- or estrogen responsive element-
containing genes may be regulated by melatonin receptor 
activation[35,181]. Most certainly, melatonin has a profound 
influence on hepatocellular gene expression; this has been 
demonstrated in heat shock protein expression by various 
investigators[69,73,95]. Our research group was able to pres-
ent preliminary data showing that melatonin influences 
different pathways of  hepatocellular transcription, includ-
ing modifications of  a variety of  heat shock proteins, as 
well as intense regulation of  other membrane-bound re-
ceptors and signal transduction factors, in a rat model of  
hemorrhagic shock[182]. These findings allow the assump-
tion that melatonin therapy may induce beneficial changes 
with respect to gene transcription in hepatocytes, in the 
environment of  oxidative stress. However, it remains to 
be determined whether these modifications of  hepatic 
gene expression are indeed mediated by melatonin recep-
tor activation.

FROM BENCH TO BEDSIDE
While the current literature leaves little doubt that mela-
tonin administration may induce hepatoprotective ac-
tions[40-146], many questions remain on how this effect may 
be transduced. The putative signaling cascade, leading 
from melatonin receptor activation to specific hepatopro-
tective gene expression profiles, remains to be determined. 
Based on the evidence available, it appears possible that 
melatonin receptors mediate the intense protective effects 
of  the pineal hormone in the liver.

To bring this experimental knowledge into clinical 
use, a pilot study was initiated by Schemmer et al[183] in 
Germany to evaluate the use of  melatonin in patients un-
dergoing major liver resections. Should this investigation 
be successful, this would open the door for yet another 
important indication for the use of  melatonin in human 
liver surgery: as an adjunct to reduce ischemia/reperfu-
sion injury in liver transplantation. The research group 
of  Freitas and Vairetti has already demonstrated in two 
studies that melatonin may reduce cold ischemic injury in 
rat liver[184,185], and suggested that the pineal hormone may 
be useful in the event of  liver transplantation. This idea 
was supported by Casillas-Ramírez in a review on liver 
transplantation[186]. Thus, melatonin administration could 
be beneficial in patients not only to reduce damage to the 
transplant, but also to serve as a protective agent for the 
attenuation of  reperfusion injury.

Future studies will demonstrate whether melatonin 
will meet our high expectations not only in the laboratory, 
but also for our patients. However, the currently available 
literature allows us to believe that melatonin will success-
fully continue its way from bench to bedside as a powerful 
hepatoprotective agent.
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