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Abstract

Background: The shortage of deceased donor organs has prompted the development of
alternative liver grafts for transplantation. Living-donor liver transplantation (LDLT)
has emerged as a viable option for expanding the donor pool and enabling timely
transplantation with favorable graft function and improved long-term outcomes.
Accurate evaluation of donor liver volumetry (LV) and anatomical study is crucial to
ensure adequate future liver remnant (FLR), graft volume, and precise liver resection,
thus ensuring donor safety and an appropriate graft-to-recipient weight ratio. Manual
LV (MLV) measurement using computed tomography (CT) has traditionally been
considered the gold standard for assessing liver volume. However, this method is
limited by its cost, subjectivity, and variability. Automated LV techniques employing
advanced segmentation algorithms offer improved reproducibility, reduced variability,
and enhanced efficiency compared with manual measurements. However, the accuracy
of automated LV requires further investigation. This paper provides a comprehensive
review of traditional and emerging LV methods, including semi-automated image
processing, automated LV techniques, and machine learning-based approaches.
Additionally, this study discusses the strengths and weaknesses of each
technique. Future directions: Artificial intelligence (AI) technologies, including
machine and deep learning, are expected to become routine parts of surgical planning
in the near future. The implementation of Al is expected to enable faster and more
accurate image study interpretations, improve workflow efficiency, and enhance the
safety, speed, and cost-effectiveness of procedures. Conclusion: Accurate preoperative
liver assessment plays a crucial role in ensuring safe donor selection and improving
LDLT outcomes. MLV has inherent limitations that have led to the adoption of semi-
automated and automated software solutions. Moreover, Al has tremendous potential
for LV and segmentation; however, its widespread use is hindered by costs and
availability. Therefore, the integration of multiple specialties is necessary to embrace
technology and explore its possibilities, ranging from patient counseling to

intraoperative decision-making through automation and AL
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Core Tip: Accurate LV is imperative for successful LDLT to ensure adequate FLR and
graft volumes. Manual CT scan delineation conventionally serves as the standard
approach; however, it is constrained by factors such as cost, subjectivity, and variability.
In contrast, automated LV techniques using advanced segmentation algorithms present
superior reproducibility, reduced variability, and enhanced efficiency compared
with manual measurements. However, the accuracy of automated LV requires further
investigation. This study comprehensively reviewed both traditional and emerging LV
methods, including semi-automated image processing, automated LV techniques, and
machine learning-based approaches, while analyzing their respective strengths and

weaknesses.

INTR%)UCT ION

Liver transplantation is the first-line treatment for patients with terminal liver
disease. Deceased donor organ shortage and cultural barriers have led to the
development of alternative graft types. Living-donor liver transplantation (LDLT) has
emerged as an extension of the ex-situ graft transection concept, encompassing reduced-
size and split-liver techniques. By enabling the expansion of the donor pool, LDLT
offers the advantage of timely transplantation and holds the potential for excellent graft
function and improved long-term outcomes [1-6], Moreover, LDLT reduces waiting list

mortality.




Adequate preoperative evaluation of the donor is essential for successful LDLT.
Sufficient future liver remnants (FLR) and graft volume must be ensured through liver
volumetry (LV) studies [7, 8]. An FLR of 30-35% of the original liver volume is required
for donor safety, whereas at least 4% of the standard liver volume (SLV) or more than
0.8 and less than 3-3.5 of the graft recipient weight ratio (estimated before the surgery
through imaging and confirmed after the graft is weighed) is required to meet the
recipient’s needs [9, 10]. Small grafts are associated with cellular damage due to
excessive portal flow, leading to "small-for-size syndrome,” whereas large grafts may
receive inadequate portal flow, resulting in "large-for-size syndrome" [11-17].

Manual liver volumetry (MLV) conducted on portal venous phase multidetector
computed tomography (CT) scans with intravenous contrast is conventionally
considered the standard method for measuring the LV [7, 18, 19]. However, it can be
costly, time-consuming, subjective, and prone to inter- and intra-observer variability.
This process entails manual tracing of the liver borders using specialized software,
necessitating the expertise of an experienced radiologist, often without the surgeon’s
input. The percentage of error (PE) may vary significantly, ranging from 2 to 20%,
which can have a dramatic effect on the final graft volume and transplantation

outcomes [20-24].

Advancements in medical imaging, computational algorithms, and artificial
intelligence (AI) have set the stage for the development and application of automated
LV techniques. Automated LV holds significant promise in the evaluation of LDLT
because it utilizes sophisticated segmentation algorithms to delineate liver boundaries
from CT or magnetic resonance imaging (MRI) scans. Therefore, volumetric calculations
and comprehensive volumetric analyses can be used to assess lobe-specific volumes,
segmental volumes, and the overall liver volume. Such automated approaches offer
advantages over manual measurements, including enhanced reproducibility, reduced
intra- and inter-observer variability, and improved efficiency. However, the accuracy of

automated LV techniques is yet to be conclusively determined [25-28].




This study aimed to provide a comprehensive review of the literature, presenting
both traditional and emerging methods of LV and anatomical liver assessment, while
discussing their respective strengths and weaknesses. By examining the current state of
LV techniques, this review aimed to contribute to the advancement and optimization of

liver transplantation outcomes.

MANUAL LIVER VOLUMETRY

The introduction of multiphasic CT and MRI techniques has led to the
widespread adoption of MLV as a standard practice in liver transplant centers to
estimate liver volume before accepting a living donor as a suitable candidate. During
donor evaluation, a complete anatomical analysis of the hepatic veins, portal vein, and
hepatic arteries is performed using multiphasic CT and MRI Bile duct anatomy is
evaluated in cholangio-MRI studies, especially in left and right lobe donors.

If the donor’s anatomy is suitable for the planned procedure, the LV is
performed. The procedure involves manual delineation of the liver borders using
sequential image slices to determine the overall liver volume. Subsequently, a
transection plane is selected based on the specific type of liver graft and inclusion of the
middle hepatic vein (MHV) [25, 29-31] (Figure 1).

The limitations include reliance on operator expertise and medical specialty,
leading to discrepancies between the analyses performed by radiologists and surgeons,
potentially related to the transection line. Furthermore, the inclusion of blood vessels
and bile ducts in the final volume calculation can lead to
overestimations [32]. Additionally, the LV procedure itself is time-consuming, typically
requiring approximately 20-40 minutes to complete, which significantly affects the
daily workflow of both radiologists and surgeons [19, 33]. In terms of accuracy, the PE
ranges from 5% to 36% when comparing the estimated volume with the actual graft
weight (AGW) [34]. It is important to note that errors can occur in both directions,

resulting in over- and underestimations [8].




The density of the liver is routinely considered equivalent to the density of
water; therefore, AGW is representative of graft volume [35]. However, studies
measuring AGW have identified the nggessity of correction factors when estimating
graft volume, as highlighted in Table 1. Recently, Lehmke ef al [36] measured the mean
physical density of 16 transplanted liver lobes to be 1.1157 g/mL, asserting that t
conversion factor was, on average, 12% higher than expected. Tongyoo et
al [32] demonstrated that the AGW of a right lobe donor liver graft (RLDG) was
approximately 91% of the estimated right lobe liver volume. The 9% volume reduction
was attributed to intrahepatic blood flushed out of the liver by the preservation solution
during back-table preparation [9, 31, 37]. Other inaccuracies may have been due to the

inclusion of the MHV and/or caudate lobe [38].

SEMI-AUTOMATED IMAGE PROCESSING (SAIP)

Semi-automated methods have been developed to address observer-related
issues associated with manual measurements and enhance the efficiency of LV and
hepatic segmentation. An example of such a method is the MeVis Liver Analyzer
(MeVis Medical Solutions AG, Bremen, Germany), which is a computer-assisted
software that operates on CT images. Moreover, the sgftware employs a modified live-
wire algorithm to automatically determine the contours between user-defined
boundary points based on CT values and gradients. The algorithm parameters were
tailored for each CT phase, including the venous (V), arterial (HA), and native (N)
phases. To ensure accurate liver segmentation, the automatically delineated contours
are manually corrected and the contour parts are manually drawn. Live-wire contours
are interactively determined on 3 mm axial two-dimensional (2-D) CT slices. The
software automatically interpolates and optimizes the contours of the intermediate
slices, with final adjustments made by the operator through manual corrections, if
necessary.

Volumetric calculations, expressed in milliliters (mL), are performed by aﬁding

the areas of all the segmented regions. Surrounding structures, such as major




extrahepatic vessels (portal vein, hepatic artery, and inferior vena cava) and the
gallbladder fossa, are excluded from the volume calculations (Figure 2).

Goja et al [39] discovered that semiautomated software tools exhibited the
highest correlation (r = 0.82) for measuring right lobe grafts. However, left lobe grafts
tend to be overestimated, whereas left lateral segment (LLS) grafts are underestimated
in approximately 66% of cases. Cae possible explanation for the underestimation of LLS
grafts is that CT scans typically underestimate the volume, because the actual surgical
plane of transection is approximately 1 ecm to the right of the falciform ligament,
whereas the radiological plane of transection is exactly at the falciform ligament. Other
studies have addressed the accuracy of the SAIP, and the results are presented in Table

2.

AUTOMATED LIVER VOLUMETRY TECHNIQUES

Automated LV relies on advanced image processing techniques and algorithms to
accurately segment the liver from CT or MRI scans. The principles and algorithms used
vary depending on the approach employed. However, some common techniques and
concepts are involved.

Image Preprocessing

Before liver segmentation, image preprocessing techniques may be applied to
enhance the image quality, reduce noise, and improve the contrast between the liver
and surrounding structures. These techniques include filtering, intensity normalization,
and image enhancement methods (Figure 3).

Segmentation Algorithms:

Segmentation algorithms are used to delineate the liver region of interest from
the remaining images. Additionally, such algorithms aim to accurately identify liver
boundaries. Commonly used algorithms include threshold-based methods, region
growing, active contours (or snakes), level sets, graph cuts, and machine learning-based

techniques.

Threshold-based Methods:




Threshold-based methods involve setting intensity thresholds to separate the
liver from background or other organs. The liver is segmented based on predefined
intensity ranges or statistical measures such as mean intensity or intensity distribution.

Region Growing:

Region-growing algorithms start from a seed point within the liver and
iteratively develop the region by including pixels with similar characteristics (e.g.,
intensity, texture, or gradient) until a stopping criterion is met. This method is
particularly useful when the liver has a distinct intensity pattern compared with the
surrounding tissues.

Active Contours (Snakes):

Active contour models, also known as snakes, use an energy-optimization
approach to iteratively deform a contour to fit the liver boundary. The contours are
attracted to the image edges or intensity gradients to ensure accurate delineation of the
liver boundaries.

Level Sets:

Level-set methods are mathematical techniques used to evolve a curve or surface
over time to delineate liver boundaries. These methods use the concept of level sets,
which represent an evolving contour as a zero-level set of a higher-dimensional
function.

Graph Cuts:

Graph cut algorithms model the liver segmentation problem as an optimization
task in a graph framework. The graph is constructed using image features, and the
segmentation is achieved by identifying the minimum energy cut that separates the

liver from the background.

Machig Learning-based Techniques and Deep Learning
Machine learning algorithms, such as random forests, support vector machines,
and deep learning models, can be trained on annotated liver images to automatically

segment the liver. Such algorithms learn the patterns and features that distinguish the




liver from other structures and can provide accurate and robust segmentation
results [40].

Most software tools employ a combination of techniques or advanced algorithms
that are specific to their methodology. The choice of algorithm depends on factors such
as image quality, complexity of the liver structures, computational efficiency, and
specific requirements of the application. Each algorithm has its advantages, limitations,
and parameter settings, which must be carefully considered and optimized for an
accurate LV. A combination of techniques can be used to improve the accuracy and
robustness [41].

For example, initial segmentation can be obtained using thresholding or region
growth, followed by refinement using active contours or graph cuts. Hybrid approaches
that combine multiple algorithms can leverage the strengths of each technique to
achieve a more accurate LV. Additionally, the validation and evaluation of automated
LV results against ground truth or manual segmentations are critical for assessing the
performance and reliability of the algorithm [42].

Most computer-aided diagnostics used in clinical practice use conventional
machine learning approaches, the effectiveness of which depends on the domain
expertise of the developers. Therefore, the limitations of conventional learning are
linked to those of human developerh Manual and semiautomated volumetry depend
on conventional machine learning. Deep learning has emerged as a state-of-the-art
machine-learning method for many applications. Deep learning is a representation-
learning method in which a complex multilayer neural network architecture learns
representations of data automatically by transforming input information into multiple
levels of abstraction [43].

Deep convolutional neural networks (DCNN) are widely used for image-pattern
recognition. They automatically extract relevant features from training samples by
adjusting their weights through backpropagation (Figure 5). In contrast to manual
feature design, a DCNN learns feature representations during training. When trained

with a large and representative dataset, DCNN features outperformed the hand-




engineered features because they were highly selective and invariant. Automated deep
learning enables the analysis of numerous cases, surpassing human capabilities. Deep
learning is robust in handling variations across different classes as long as the training

set is diverse and extensive [40-43].

ACCURACY AND RELIABILITY

Automated LV and deep machine learning for LDLT have gained attention in recent
years. There has been an increase in the number and quality of artificial intelligence (AI)
and machine learning studies in the medical field, mainly those focused on automating
the interpretation of 2D image tests (MRI, CT, and radiographs), assembling three-
dimensional models of organs and tissues, and volumetric calculations, including
virtual segmentation of the liver. In liver resection and transplantation, most studies
had a small number of cases and focused on adult liver transplantation and RLDG, with
very few studies on LLDG and LLSDG [26, 27, 42-45]. The higher risk of small-for-size
syndrome in adult liver transplantation justifies intense volumetric and anatomical
studies on RLDG. Usually, for pediatric recipients (< 10 kg), an inaccurate volumetric
assessment rarely leads to insufficient liver volume; in contrast, the risk of large-for-size
syndrome is higher than that of small-for-size syndrome. In such cases, the surgeon
usually reduces the graft on the backtable or converts it into a monosegmental graft
before implantation [46].

Automated software allows the surgeon to choose the transection plane, and
some studies have compared the correlation of these measurements for RLDG
performed by the surgeon using automated software with manual measurements
performed by radiologists. Moreover, both measurements had a good correlation with
AGW (r > 0.80), and there was no significant difference between the measurements by
the surgeon and the radiologist [29].

As it is of paramount importance that the surgeon who is going to perform the
procedure also perform the anatomical assessment and choose the adequate liver

segmentation plane, new software focusing on the surgeon's interaction are being




developed. A more user-friendly automated platform was developed by a group from
the Republic of Korea [47], which they referred to as Dr. Liver (Figure 4). They
validated the method in 50 RLDG and compared it with the MLV. The correlation with
AGW was better for the automated Dr. L'&er (r =0.98) than for MLV (r = 0.92), although
both had good correlations. However, the percentage of absolute difference (%AD)
from AGW of Dr. Liver (3.1% + 2.8%) was significantly smaller than that of the MLV
(10.2% £ 7.5%). None of the Dr. Liver measurements of %AD were > 10%, whereas they
were 46% for MLV measurements. Evaluation of %AD is very important in clinical
practice, because an error percentage of more than 10% can result in a small-for-size
boundary graft volume. Additionally, the total time for task completion was shorter for

Dr. Liver than for MLV (7.3 + 1.4 min vs 37.9 £ 7.0 min).

CONCLUSION

Accurate preoperative liver assessment is critical in ensuring the selection of
suitable donors and improving recipient outcomes after LDLT. MLV initially emerged
as the gold standard for accurate assessment. However, the time-consuming nature of
manual analysis, reliance on operator expertise, and high variability in PE have
prompted the adoption of SAIP software tools and, more recently, automated software
solutions. Al represents the future of LV segmentation and offers immense potential in
the field, leading to fully automated liver segmentation and volumetry based on deep
learning. However, the widespread adoption and daily application of Al have been
hindered by cost and accessibility. We are responsible for embracing technology and
fostering interdisciplinary collaborations in radiology, engineering, informatics, and
surgery. The possibilities afforded by Al are limitless, ranging from patient counseling
and education to intraoperative decision-making facilitated by automation and Al

assistance.
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