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Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could 
differentiate into multiple tissues. MSC-based therapy has become an attractive 
and promising strategy for treating human diseases through immune regulation 
and tissue repair. However, accumulating data have indicated that MSC-based 
therapeutic effects are mainly attributed to the properties of the MSC-sourced 
secretome, especially small extracellular vesicles (sEVs). sEVs are signaling 
vehicles in intercellular communication in normal or pathological conditions. 
sEVs contain natural contents, such as proteins, mRNA, and microRNAs, and 
transfer these functional contents to adjacent cells or distant cells through the 
circulatory system. MSC-sEVs have drawn much attention as attractive agents for 
treating multiple diseases. The properties of MSC-sEVs include stability in 
circulation, good biocompatibility, and low toxicity and immunogenicity. 
Moreover, emerging evidence has shown that MSC-sEVs have equal or even 
better treatment efficacies than MSCs in many kinds of disease. This review 
summarizes the current research efforts on the use of MSC-sEVs in the treatment 
of human diseases and the existing challenges in their application from lab to 
clinical practice that need to be considered.

Key Words: Mesenchymal stem cells; Small extracellular vesicles; Exosomes; Human 
diseases; Therapeutics; Prospects
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Core Tip: Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) 
have drawn much attention as attractive agents for treating multiple diseases. The 
properties of MSC-sEVs include low immunogenicity and increased stability in 
circulation. Moreover, emerging evidence has shown that MSC-sEVs have equal or 
even better treatment efficacies than MSCs in many kinds of disease.

Citation: Shi J, Zhao YC, Niu ZF, Fan HJ, Hou SK, Guo XQ, Sang L, Lv Q. Mesenchymal stem 
cell-derived small extracellular vesicles in the treatment of human diseases: Progress and 
prospect. World J Stem Cells 2021; 13(1): 49-63
URL: https://www.wjgnet.com/1948-0210/full/v13/i1/49.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i1.49

INTRODUCTION
Mesenchymal stem cells (MSCs) are self-renewing cells that can differentiate into 
multiple tissues, including muscle and fat cells, and connective tissues[1]. MSC-based 
therapy could regulate immune reaction and promote tissue regeneration, and has 
become a promising and important strategy for treating diseases. However, MSC-
based cell therapy is limited because of its safety. Some studies showed that MSCs 
may cause tumorigenesis[2] or abnormal differentiation after ectopic engraftment[3]. In 
addition, MSCs might aggregate to form pulmonary emboli or infarctions, and thus 
result in infusional toxicity in patients[4]. Accumulating data have indicated that MSC 
derived secretome, which consists of soluble components and encapsulated 
extracellular vesicles (EVs), could contribute to most MSC- base effects[5-7].

EVs are small membrane vesicles composed of a phospholipid bilayer that are 
released by all kind of cell types. EVs influence recipient cell functions by exchanging 
components between cells. There are proteins, nucleic acids, and lipids in EVs. EVs are 
recognized as signaling vehicles in intercellular communication under normal or 
pathological states. At present, according to their biogenesis, EVs can be classified into 
three main categories, exosomes, microvesicles, and apoptotic bodies, each with 
specific characteristics (Table 1).

Researchers have invented dozens of different names for secreted vesicles. The 
International Society for EVs (ISEV) updated Minimal Information for Studies of EVs 
(MISEV) guidelines in 2018[8] and suggested that authors should pay attention to use of 
accurate terms for EV subtypes. Based on the physical characteristics of EVs, small EVs 
(sEVs) have a diameter < 100 nm or < 200 nm. In most of the studies cited in this 
review, exosomes were defined by the size of particles. Hence, we will here use the 
term sEVs instead of exosomes as ISEV suggested. MSC derived sEVs (MSC-sEVs) 
may transfer into special cells, induce appropriate cellular responses, and contribute to 
the therapeutic potency by regulating angiogenesis, tissue repair, and inflammation 
reaction[9-12]. Recent studies have indicated that MSC-sEVs can be used to treat multiple 
diseases, including cardiovascular diseases[13], bone damage[14], cutaneous wounds[15], 
and acute lung injury (ALI)[16]. Furthermore, MSC-sEVs are convenient to preserve in 
that they are smaller and simpler than MSCs. MSC-sEVs can be stored in mechanical -
70 ℃ freezers without affecting therapeutic efficacy, whereas MSCs are best stored in 
liquid nitrogen at -196 ℃ and can be subject to irreversible damage during the freezing 
or thawing process, which may result in impaired therapeutic properties[17-19].

This review mainly focuses on summarizing the current progress on the use of 
MSC-sEVs in the treatment of diseases and discusses the existing challenges in the 
application of MSC-sEVs from lab to clinical practice.

THERAPEUTIC POTENTIAL IN DIFFERENT DISEASES
MSC-sEVs in treatment of cardiovascular disease
Cardiovascular disease (CVD) seriously threatens the health and living quality of 
human beings worldwide. Accumulating evidence indicates that MSC-sEVs protect 
ischemic cardiomyocytes from death, enhance the cardiac repair process, preserve 
cardiac function, and play an important role in CVD therapy[20,21].

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-0210/full/v13/i1/49.htm
https://dx.doi.org/10.4252/wjsc.v13.i1.49
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Table 1 Classification of different types of extracellular vesicles

Characteristic Exosomes Microvesicles Apoptotic bodies

Size (nm) 20-100 50-1000 500-2000

Morphology Cup/round shaped Various shapes Heterogeneous

Sucrose 
gradient

1.13–1.19 g/mL 1.04–1.07 g/mL 1.16–1.28 g/mL

Biogenesis Endosomes Plasma membrane Plasma membrane, 
endoplasmic reticulum

Contents Nucleic acids, cytoplasmic and membrane protein, 
major histocompatibility complex, lipid

Nucleic acids, cytoplasmic and membrane 
protein, receptor proteins, lipid

Nuclear fractions, DNA, cell 
organelles

Biomarkers Tetraspanins family, actin, flotillin, Hsc70, Hsp 90, 
Hsp60 and Hsp20, clathrin, integrins

Integrins, selectins, flotillin-2, CD40, ligand, 
metalloproteinase

Annexin V positivity, 
phosphatidyl serine

Hsc: Heat shock cognate; Hsp: Heat shock protein; CD: Cluster of differentiation.

MSC-sEVs in myocardial infarction: Acute myocardial infarction can lead to most of 
cardiovascular deaths. One study found that sEVs derived from hypoxic murine MSCs 
facilitated ischemic heart repair via antiapoptotic miR-125b-5p[22]. Furthermore, it has 
been shown that MSC-sEVs have the ability to regulate immune reactions and 
improve the myocardial microenvironment by reducing tissue inflammation and 
promoting tissue regeneration. Zhao et al[23] indicated that MSC-sEVs alleviated 
myocardial ischemia-reperfusion injury in mice by intramyocardial injection. It was 
mainly because that miR-182 packaged in MSC-sEVs could promote the polarization of 
M1 macrophages to M2 macrophages[23]. Wang et al[24] found that endometrium-
derived MSC-sEVs could significantly promote the recovery of cardiac function after 
myocardial infarction. They suggested that miR-21-containing MSC-sEVs improved 
the cardiac function by increasing the levels of vascular endothelial growth factor 
(VEGF) and enhancing neovascularization in rat ischemic hearts, and improved the 
cardiac function after acute myocardial infarction[24]. Luo et al[25] designed a synthetic 
MSC (synMSC) in which human MSC secreted factors (containing both soluble factors 
and sEVs) were packaged into poly(lactic-co-glycolic acid) microparticles with MSC 
membrane coatings. This exciting synMSC exhibited superior cryostability, and 
transplantation of synMSCs inhibited cardiac dysfunction after myocardial infarction 
in mice[25].

MSC-sEV therapy plays a multifaceted role in promoting heart regeneration and 
repair after pathological damage. However, there are some limitations in the 
application of sEVs for the treatment of myocardial infarction. Direct intramyocardial 
injection is the commonly used route for sEV delivery, increasing cardiac localization. 
In contrast, systemic administration via intravenous infusion may result in off-target 
effects in organs other than the heart[26].

MSC-sEVs in vascular regeneration:  Several types of signaling molecules in MSC-
sEVs could mediate angiogenesis, such as VEGF and miR-126. Wei et al[27] fabricated 
MSC-sEV-functionalized vascular grafts and evaluated the vascular regeneration in a 
rat model of hyperlipidemia. The results indicated that MSC-sEVs could effectively 
promote the vascular smooth muscle and endothelium regeneration. It was 
demonstrated that the bioactive molecules within the sEVs, including VEGF, miR-126, 
and miR-145, may participate in the process of regeneration. Furthermore, MSC-sEVs 
could induce macrophage polarization from a proinflammatory (M1) phenotype to an 
anti-inflammatory (M2) phenotype[27]. At the same time, the microenvironment of 
original cells also could influence the contents of MSC-sEVs. Du et al[28] indicated that 
human placenta-derived MSC-sEVs (hp-MSC-sEVs) stimulated by nitrogen oxide 
could promote human umbilical vein endothelial cell (HUVEC) tube formation. hp-
MSC-sEVs could rescue limb function in a mouse model of hind limb ischemia[28].

MSC-sEVs in treatment of neurological diseases
MSC-sEVs in spinal cord injury: Spinal cord injury (SCI) is the most serious 
complication of spinal injury, and it often causes serious dysfunction of the limb below 
the injured segment. SCI will not only cause serious physical and psychological harm 
to the patient, but also cause a huge economic burden on the entire society. To date, 
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the treatment of SCI remains a huge challenge for clinicians[29]. MSCs have been widely 
used in the treatment of nerve injury, but their effects are not obvious, mainly because 
MSCs are often trapped in the pulmonary vascular bed, and the mechanism of how 
MSCs work is still unclear[30].

MSC-sEVs reduce pathological changes after SCI and improve motor function, 
blood flow, and hypoxia. In addition, MSC-sEVs improve the ability of the 
endothelium to modulate blood flow, maintain the blood spinal cord barrier, eliminate 
edema, downregulate the expression of matrix metallopeptidase 2, Bax, hypoxia 
inducible factor-1 (HIF-1α), and Aquaporin-4, and upregulate the level of bcl-2, and 
decrease cell apoptosis[29]. Riazifar et al[31] showed that MSC-sEVs protect nerves, 
reduce inflammation, and promote angiogenesis in a mouse model of autoimmune 
encephalomyelitis (EAE)-induced SCI. MSC-sEVs stimulated by interferon γ (IFN-γ) 
reduce the clinical score of EAE mice, alleviate demyelination, inhibit 
neuroinflammation, and increase the number of Treg cells in the spinal cord[31]. Zhou 
et al[32] have found that miR-21-5p is one of the most abundant microRNAs (miRNAs) 
in MSC-sEVs, and miR-21-5p/FasL axis is recognized as a potential mechanism to 
improve motor function and inhibit apoptosis in MSC-sEVs for SCI[32]. Totally, these 
results demonstrate that MSC-sEVs inhibit neuroinflammation and promote nerve 
regeneration in SCI.

MSC-sEVs in brain injury: Hypoxic ischemia (HI) is closely related to mortality in 
preterm infants. MSC-sEVs have neuroprotective potential in treating hypoxic-
ischemic injury. Systemic administration of MSC-sEVs rather than intact MSCs 
promotes the recovery of brain function in preterm infants after hypoxic ischemia and 
prevents structural damage[33]. MiR-133b was reported to be the foremost mechanism 
involved in the enhancement of brain recovery in brain injury. MSCs rebalance miR-
133b expression in ischemic brain tissue. It was observed that the ischemic 
environment leads to abundant expression of miR-133b in MSC-sEVs, and therefore, 
neuronal growth was enhanced by inhibiting the expression of Ras homolog family 
member A[34].

Traumatic brain injury (TBI) is a common injury in neurosurgery worldwide. There 
are no effective medications to reduce TBI mortality and improve functional recovery. 
Cell therapy, including MSCs, has shown promise for TBI. However, relatively few 
MSCs can be injected intracranially. Intra-arterial injection of MSCs may cause cerebral 
ischemia. Intravenous injection can cause the distribution of MSCs throughout the 
body. Recent studies have indicated that MSC-sEVs reduce cognitive impairment in 
TBI mouse models. sEVs may be safer, and do not induce microvascular embolism. 
This may open up new clinical applications for TBI intervention[30].

MSC-sEVs in neurodegenerative diseases: Alzheimer’s disease (AD) is a kind of 
neurodegenerative disease resulting from progressive neuronal death in the 
hippocampus and cerebral cortex. The accumulation of β-amyloid peptide (Aβ) can 
cause neuroinflammation, which in turn leads to memory impairment and AD[35]. In 
recent years, cell therapy has become a potential treatment for AD. Injection of MSCs 
can reduce the accumulation of Aβ and alleviate the inflammation in a mouse 
model[36]. MSC-sEVs reduce neuroinflammation and promote nerve regeneration by 
clearing Aβ. Neprilysin (NEP) is the most important metalloendopeptidase related to 
Aβ proteolysis. MSC-sEVs contained enzymatically active NEP that prompts the 
possibility of reducing Aβ accumulation[37].

Parkinson's disease (PD) is a motor dysfunction caused by the decrease of 
dopaminergic neurons in the midbrain. Researchers found that injection of the human 
bone marrow-derived MSC (hBMSC) secretome have neuroprotective effects in a rat 
model of PD. Granulocyte colony-stimulating factor and hBMSC combination therapy 
has beneficial effects on a PD model. Proteomic analysis showed that hBMSC-sEVs but 
not hBMSC transplantation have positive effects[38,39]. Sadan et al[40] utilized engineered 
MSCs producing and secreting high levels of factors such as brain-derived 
neurotrophic factor and glial-derived neurotrophic factor. The transplantation 
inhibited dopamine depletion to 72% in the contralateral striatum, which provided a 
treatment strategy for PD using-modified MSC-sEVs[40].

MSC-sEVs in treatment of orthopedic diseases
MSC-sEVs in fractures: Accidents, sports injuries, and other reasons lead to many 
fractures each day in the world. Bone tissue engineering has emerged as an attractive 
strategy for fracture repair. This method involves the combination of cells and 
bioactive factors with bone substitutes to enhance their capacity of osteogenesis and 
angiogenesis[41]. Liu et al[42] found that hypoxia-treated MSC-sEVs have a therapeutic 
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role in fracture healing. MSC-sEVs under hypoxia exert their proangiogenic effect by 
transporting exosomal miR-126 to endothelial cells in an extracellular regulated 
protein kinases (ERK) pathway-dependent manner[42]. Liang et al[43] found that MSC-
sEV transplantation improved bone regeneration in rats. Phosphatase and tensin 
homolog deleted on chromosome ten (PTEN) is known as a tumor suppressing gene. 
Lack of PTEN will lead to the formation of new blood vessels. MSC-sEVs could 
downregulate PTEN and promote angiogenesis. In addition, dimethyloxaloylglycine-
stimulated human bone marrow MSC-sEVs promote bone regeneration through 
angiogenesis[43].

MSC-sEVs in cartilage regeneration: MSCs have the potential to regenerate cartilage 
in animal and preclinical studies[44]. Direct action of MSC-sEVs on chondrocytes 
triggers a series of positive responses from chondrocytes. CD73 carried by MSC-sEVs 
regulates the adenosine-activated AKT and ERK signaling pathways, promotes the 
proliferation and migration of chondrocytes, and inhibits apoptosis. MSC-sEVs 
promote the expression of chondrocyte genes (collagen and proteoglycan) and inhibit 
the expression of cartilage matrix metabolism and inflammation markers such as 
inducible nitric oxide synthase[45].

Cartilage usually needs a long time to regenerate. Local MSC-sEV injection that was 
conducted weekly increased the pain of patients. Liu et al[46] developed a light-induced 
imine-crosslinked hydrogel that was easy to use, biocompatible, integrated with 
cartilage, and functionalized with human induced pluripotent stem derived MSC-sEVs 
to make cell-free tissue patches for cartilage regeneration. It was found that cell-free 
tissue patches retain MSC-sEVs in vitro and actively regulate chondrocytes and bone 
marrow stem cells. In addition, cell-free tissue patches could be combined with natural 
cartilage matrix and promote the deposition of cells at the site of cartilage defects, 
ultimately promoting the repair of cartilage defects[46].

MSC-sEVs in osteoarthritis: Osteoarthritis (OA) is a common degenerative disease 
caused by obesity, labor injury, and old age. The mechanism of osteoarthritis is 
complex and involves multiple processes and tissues. Autologous chondrocytes 
represent an important cell type in cartilage, which can provide a safe and effective 
solution. However, the inherent disadvantages are limited availability during in vitro 
expansion, dedifferentiation, and loss of function. MSC-based therapy represents a 
new and promising treatment strategy for OA in recent years. It is reported that 
cartilage in joints could be protected from degeneration by intra-articular injection of 
bone marrow MSCs, which could delay the development of OA. In addition, several 
clinical trials have shown that MSC-based treatment is a well-tolerated cell-based 
therapy by reducing inflammation of OA[47].

Human embryonic stem cell-induced MSC (ESC-MSC) derived exosomes increase 
the expression of collagen type II (the main component of the cartilage matrix) in the 
cartilage matrix and decrease the expression of ADAMTS5 (a disintegrin and 
metalloprotease with thrombospondin-like repeat family of enzymes)[48]. MSC-sEVs 
have some particular effects, such as promoting angiogenesis and inhibiting cell 
apoptosis and oxidative stress, which can help rescue of OA. MSC-sEVs promote the 
proliferation and migration of chondrocytes[49]. Some miRNAs in MSC-sEVs can exert a 
therapeutic effect against OA through their regulatory role in proliferation and 
cartilage formation. For example, miR-92a in MSC-sEVs can alleviate OA by 
upregulating chondrocyte proliferation and matrix synthesis through the 
PI3K/AKT/mTOR pathway. In vivo, enhanced cartilage regeneration and prevention 
of OA were demonstrated in rats that were treated with miR-140-5p-transported MSC-
sEVs[47].

MSC-sEVs in treatment of lung diseases
MSC-sEVs in acute respiratory distress syndrome: The clinical manifestations of 
acute respiratory distress syndrome (ARDS) are progressive hypoxemia and 
respiratory distress. The clinical features include injury of alveolar epithelial and 
capillary endothelial cells, leading to diffuse pulmonary interstitial and alveolar 
edema. However, there is still no specific therapy for ARDS[50]. MSC therapy has the 
ability to regulate immunity and inflammation, and prevent lung injury caused by 
infection and regeneration through differentiation or paracrine mechanisms[51]. There is 
increasing evidence that stem cell-derived conditioned medium and/or extracellular 
vesicles may be convincing alternatives[52]. Zhu et al[53] found that MSC-sEVs have a 
therapeutic effect on endotoxin-induced ALI, partly attributed to the expression of 
keratinocyte growth factor mRNA in the injured alveoli[53]. Khatri et al[54] showed that 
transfer of RNA from EVs to epithelial cells is the primary cause of the anti-influenza 
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property of MSC-sEVs. In a swine influenza virus model, intratracheal injection of 
MSC-sEVS significantly reduced the release of virus in nasal swabs from infected pigs 
at 12 h after infection, inhibited replication of influenza virus, and downregulated 
virus associated pro-inflammatory cytokines. Histopathological results showed that 
MSC-sEVs could reduce the lung injury of pigs caused by influenza virus[54]. Stone 
et al[55] found that sEVs derived from MSCs reduce lung inflammation and injury after 
ischemia-reperfusion and promote ex vivo lung perfusion-mediated donor lung repair. 
The therapeutic effect of MSC-sEVs is partly mediated by reducing the anti-
inflammatory mechanism of immune cell activation and protecting the integrity of the 
endothelial barrier to prevent pulmonary edema[55].

MSC-sEVs in pulmonary fibrosis: Pulmonary fibrosis is a serious consequence of 
changes in normal lung tissue structure and loss of function. Mansouri et al[56] 
examined the therapeutic effect of human bone marrow MSC-sEVs in a bleomycin 
induced pulmonary fibrosis model and explored the mechanism. They found that 
MSC-sEVs effectively prevent or reverse bleomycin-induced pulmonary fibrosis 
through systematic regulation of the monocyte phenotype[56]. MSC-sEVs are profitable 
in ALI and lung fibrosis. Shentu et al[57] demonstrated that MSC-sEVs but not fibroblast 
sEVs (fsEVs) inhibit transforming growth factor (TGF-β1) induced myofibroblast 
differentiation or idiopathic pulmonary fibrosis lung fibroblasts. Compared with 
fsEVs, MSC-sEVs showed a time and dose-dependent increase in cell uptake. 
Downregulating Thy-1 (CD90) or blocking Thy-1-integrin interactions reduced MSC-
sEVs uptake and prevented the inhibition of myofibroblast differentiation[57].

MSC-sEVs in pulmonary hypertension: Pulmonary hypertension (PAH) is defined as 
an average resting pulmonary arterial pressure of ≥ 25 mmHg[58]. PAH is often a 
progressive and ultimately fatal disease. Adipose-derived mesenchymal stem cells 
(ADMSCs) and ADMSC-derived sEVs (ADMSC-sEVs) have protective effects in PAH. 
ADMSCs increased the proliferation of monocrotaline pyrrole (MCTP)-treated human 
pulmonary artery endothelial cells (HPAECs) through coculture of ADMSCs and 
MCTP-treated HPAECs. The expression of bone morphogenetic protein receptor 2 
(BMPR2) in HPAECs and PAH mice was inhibited by miR-191 in ADMSCs and 
ADMSC-sEVs[58]. Hogan et al[59] found that MSC-sEVs recovered the mitochondrial 
dysfunction that is associated with PAH. MSC-sEVs improve energy balance and 
ameliorate O2 consumption, which plays a role in enhancing mitochondrial function in 
pulmonary arterial hypertension[59]. Lung morphology, pulmonary fibrosis, right 
ventricular (RV) hypertrophy, right ventricular systolic pressure, RV/body weight 
ratio (RV:BW), and pulmonary vascular remodeling can be significantly improved by 
MSC-sEVs derived from either human bone marrow or the umbilical cord Wharton’s 
jelly[60].

MSC-sEVs in bronchial dysplasia: Bronchopulmonary dysplasia (BPD) is a chronic 
lung disease that appears during infancy with high morbidity in premature infants. 
Premature babies with conditions such as respiratory distress syndrome are at an 
increased risk of developing BPD. Despite improvements in clinical treatment, the 
incidence of BPD has not decreased. MSC-sEVs significantly increase the tubular 
network of HUVECs, partly through a VEGF-mediated mechanism. Daily 
intraperitoneal injection of MSC-sEVs increases the number and size of pulmonary 
vessels by promoting angiogenesis[61]. The therapeutic effect of MSC-sEVs was blocked 
by tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) gene knockout in MSCs or 
injection of TSG-neutralizing antibody in BPD mice. The levels of the proinflammatory 
cytokines such as interleukin-6 (IL-6), TNF-α, and IL-1 in peripheral blood and TSG-6-
treated BPD mice were decreased, suggesting their regulatory role in lung injury[62]. 
The effect of MSC-sEVs on the pulmonary macrophage phenotype is the basis of their 
therapeutic effect by regulating hyperoxia (HYRX, 75% O2)-induced bron-
chopulmonary dysplasia. Early intervention and slowing the early inflammatory 
phase induced by HYRX are critical in maintaining normal lung development[63].

MSC-sEVs in treatment of liver diseases
MSC-sEVs has produced profitable effects in various animal models of hepatic disease, 
such as acute liver injury and liver fibrosis[64]. Tan et al[65] demonstrated that MSC-sEVs 
can protect the liver from toxic injury by activating proliferation and regeneration[65]. 
Yan et al[66] demonstrated that glutathione peroxidase 1 (GPX1) derived from human 
umbilical MSC-sEVs can detoxicate carbon tetrachloride (CCl4) and H2O2, and alleviate 
oxidative stress and apoptosis. Silencing GPX1 in hucMSCs reduced the antioxidant 
and anti-apoptotic abilities of hucMSCs-sEVs, and decreased the hepatoprotective 
effect of hucMSCs-sEVs in vitro and in vivo[66]. Li et al[67] showed that human umbilical 
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cord MSC-sEVs suppressed liver fibrosis through inhibition of epithelial mesenchymal 
transition and collagen deposition in a CCl4-induced liver injury mouse model. The 
potential mechanism is related to decreasing TGF-β1, the phosphorylation of Smad2, 
and the expression of collagen types I and III[67]. MiR-122 target genes were found to 
participate in hepatic stellate cell (HSC) proliferation and collagen maturation. MiR-
122 modification increased the therapeutic efficacy of AMSCs on CCl4 induced liver 
fibrosis by inhibiting HSC activation and alleviating collagen sedimentation. 
Therefore, delivery of miR-122 through exosome mediated communication is a 
promising strategy for the treatment of liver fibrosis[68].

MSC-sEVs in treatment of skin diseases
Extensive burns and trauma could lead to skin damage and result in acute or chronic 
wounds[69]. In recent years, MSCs have been used in wound healing and regeneration, 
increasing angiogenesis, resolving wound inflammation, favorably improving 
extracellular matrix (ECM) remodeling, and promoting skin tissue regeneration[70]. 
Recently, MSC-sEVs have gained much attention in the field of skin repairing.

There are three overlapping stages during wound healing, including the 
inflammation, proliferation, and remodeling[71]. MSC-sEVs possess effective anti-
inflammatory properties and promote the macrophages toward M2 phenotype which 
is beneficial for wound healing[72]. MSC-sEVs are enriched in angiogenesis associated 
miRNAs and proteins[73,74]. Liang et al[75] indicated that miR-125a, which was enriched 
in ADMSC-sEVs, could improve endothelial cell angiogenesis by upregulating the 
levels of the angiogenic inhibitor[75]. One study revealed that sEVs from hypoxia-
treated human ADMSCs could significantly promote angiogenesis by upregulating 
VEGF-R/VEGF[76]. The migration of fibroblasts could be regulated by MSC-sEVs[15,77]. 
ECM reconstruction plays an important role in the process of wound healing. Zhang 
et al[78] found that human induced pluripotent stem cell-derived MSC-derived sEVs 
(hiPSC-MSC-sEVs) were beneficial for cutaneous wound healing in a rat model by 
improving collagen synthesis and angiogenesis[78]. In a word, MSC-sEVs play a vital 
role in wound healing.

THERAPEUTIC CONSIDERATIONS AND PROSPECTS
As described above, the future of MSC-derived sEV therapy has great potential. 
However, there are some challenges from lab to clinical practice that need to be 
considered.

Standard methods for separation and purification of MSC-sEVs
The guidelines of MISEV 2018 provide recommendations in six major areas: (1) 
Nomenclature; (2) Collection and preprocessing of fluids for EV extraction; (3) EV 
preparation and concentration; (4) EV characterization; (5) Functional studies; and (6) 
Reporting[8].

In the clinical setting, it is very important that MSC-sEV preparations are 
manufactured reproducibly[79]. To date, there is no perfect technology to separate EVs 
for either clinical or basic research. The conventional and most widely used method to 
isolate EVs is differential centrifugation[8,80]. Although ultrafiltration concentrates 
conditioned medium into a sucrose cushion after ultracentrifugation[81-83], this method 
cannot produce highly pure EVs. Moreover, ultracentrifugation may result in sEV 
aggregation and poor resuspension[84]. Precipitation with polyethylene glycol or other 
polymers is a reproducible and scalable way to enrich EVs, which has been used in 
EV-based clinical trials[85,86]. However, because of abundant coprecipitates, this kind of 
method cannot produce pure EVs. Recently, tangential flow filtration and size 
exclusion chromatography have gained increasing attention. These size-based 
fractionation methods are adopted as highly scalable and GMP-compatible 
technologies. Compared with legacy methods, these methods could produce more 
comparable, superior purity, and functional EVs at the same time[85,87]. Finally, these 
methods should also be standardized to ensure the purity, reproducibility, and 
maintenance of EV functional properties.

Characterization and quality control of MSC-sEVs 
There are no gold standards for EV identification and analysis currently. MISEV 2018 
defined some minimal requirements for identifying EVs[8]. MSC-sEV preparations 
must first correspond to the International Society for Cellular Therapy (ISCT) minimal 
criteria: (1) At least one protein of each category 1 to 3 must be evaluated in any EV 
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preparation; (2) At least one negative protein marker; (3) Electron or atomic force 
microscopy; and (4) Single particle analyzers. Moreover, MSC-sEV-specific antigens 
need to be identified. According to the ISCT minimal criteria, MSC surface antigens, 
such as CD73, CD90, and CD105, have been found in many published MSC-EV 
proteomics datasets. In contrast, three non-MSC surface antigens (CD14, CD34, and 
CD11b) from the ISCT minimal criteria were not found in these datasets[88].

As a prerequisite for the clinical use of EV agents, quality control criteria must be 
established that include not only the physicochemical and molecular parameters 
described above but also functional parameters. Because of the diversity of active 
constituents, EVs are thought to act in a complex manner, so therapeutic activity 
cannot be proposed solely through molecular analysis for pharmaceutical 
characterization. Biological assays should be developed that allow for the prediction of 
EV functional properties. Moreover, MSC-sEVs have therapeutic potential in many 
kinds of diseases. We think that the biotherapy activity of MSC-sEVs for specific 
diseases should be separately tested in qualified biological assays.

Enhancement of therapeutic potential of MSC-sEVs 
MSC-derived sEVs are enriched with growth factors, cytokines, lipids, mRNAs, and 
therapeutic miRNAs. Multiple kinds of stimulation of MSCs, such as biophysical or 
biochemical methods, as well as cellular reprogramming, have been shown to 
influence the contents and enhance the therapeutic efficacy of subsequent MSC-
sEVs[89,90].

Multiple different biophysical stimuli have been tested in MSCs, including electric 
pulsing, low-power laser irradiation, 2D and 3D culture, and magnetic forces[90]. MSCs 
are normally cultured on 2D plastic surfaces, which lack the conditions of 
physiological niche of MSCs. 3D bioreactor culture increases the production of sEVs 
from MSCs; furthermore, EVs from hMSCs cultured in 3D scaffolds showed better 
outcomes in a model of traumatic brain injury than those from hMSCs cultured in 2D 
conditions[91,92]. Hypoxic conditions (5% O2) increased the proliferation and viability of 
MSCs. MSC-sEVs under hypoxic conditions showed increased vascular tube formation 
compared to that of normoxic MSC-EVs[93].

Pretreatment of MSCs with cytokines and other biochemical agents has been widely 
studied. Recent studies revealed that proinflammatory cytokines such as IL-1β, IL-6, 
TNF-α, TGF-β, and IFN-γ could enhance the therapeutic efficacy of MSCs 
effectively[94,95]. Pre-conditioning of ADMSCs with platelet-derived growth factor 
stimulated the secretion of EVs with enhanced angiogenic potential[96].

Immortalized MSCs by genetic modification could continuously produce sEVs, 
which will improve the batch-to-batch reproducibility of sEVs[84]. Chen et al[97] showed 
that the functionality of MSC-sEVs is preserved after immortalization[97]. sEVs secreted 
by GATA-4-overexpressing MSCs improved cardiac function in a myocardial 
infarction mouse model[98]. Likewise, sEVs from chemokine (C-X-C motif) receptor 4 
(CXCR4)-overexpressing MSCs promoted tube formation of HUVECs and exhibited a 
cardioprotective effect in a myocardial infarction rat model[99]. sEVs from HIF-1α-
overexpressing MSCs increased angiogenic activity, which promoted cardiac tissue 
repair in a mouse model[100].

EVs can avoid immune responses, penetrate the blood-brain barrier, and avoid the 
degradation by RNase during migration[101,102]. These characteristics make them an 
attractive and promising drug delivery tool[103]. Chemicals, RNAs, and peptides can be 
delivered as therapeutic agents to patients. MSCs pretreated with paclitaxel showed 
strong antitumor activity by uptaking and then releasing the drug[104]. MiRNAs show 
therapeutic potential for many diseases by targeting transcriptional and 
posttranscriptional regulation. EVs prove to be an effective vehicle for miRNA 
delivery. MiR-93-5p-overexpressing MSC-sEVs showed a myocardial protective effect 
by inhibiting inflammatory response and autophagy[105]. MiR-122 inhibits liver fibrosis 
by inhibiting the proliferation of hepatic cells. EVs from ADMSCs overexpressing miR-
122 alleviate collagen deposition and enhance the therapeutic efficacy of ADMSCs for 
the treatment of liver fibrosis[68]. EVs from miR-133b-overexpressing MSCs have 
increased neuroprotective and regenerative activity[106].

CONCLUSION
As a cell-free therapy, EVs minimize safety concerns with the administration of live 
cells. MSC-derived sEVs have therapeutic potential in brain, heart, liver, lung, skin, 
and bone diseases. Next, guidelines and standards for purity and quality control of 
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isolated MSC-derived sEVs will be the main challenge in establishing platforms for 
clinical grade sEV production. Standardized and improved protocols for EV isolation 
and storage, as well as quantifiable, robust, and reproducible assays that predict the 
therapeutic capacity of MSC-sEVs, will promote the application of MSC-sEVs from the 
laboratory to the clinic.
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