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Abstract
Patients with familial adenomatous polyposis (FAP), an autosomal dominant 
hereditary colorectal cancer syndrome, have a lifetime risk of developing cancer 
of nearly 100%. Recent studies have pointed out that the gut microbiota could 
play a crucial role in the development of colorectal adenomas and the consequent 
progression to colorectal cancer. Some gut bacteria, such as Fusobacterium 
nucleatum, Escherichia coli, Clostridium difficile, Peptostreptococcus, and enterotox-
igenic Bacteroides fragilis, could be implicated in colorectal carcinogenesis through 
different mechanisms, including the maintenance of a chronic inflammatory state, 
production of bioactive tumorigenic metabolites, and DNA damage. Studies using 
the adenomatous polyposis coliMin/+ mouse model, which resembles FAP in most 
respects, have shown that specific changes in the intestinal microbial community 
could influence a multistep progression, the intestinal “adenoma-carcinoma 
sequence”, which involves mucosal barrier injury, low-grade inflammation, 
activation of the Wnt pathway. Therefore, modulation of gut microbiota might 
represent a novel therapeutic target for patients with FAP. Administration of 
probiotics, prebiotics, antibiotics, and nonsteroidal anti-inflammatory drugs could 
potentially prevent the progression of the adenoma-carcinoma sequence in FAP. 
The aim of this review was to summarize the best available knowledge on the role 
of gut microbiota in colorectal carcinogenesis in patients with FAP.

Key Words: Familial adenomatous polyposis; Microbiota; Colorectal cancer; Polyps; 
Carcinogenesis; Bacteria
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Core Tip: A number of studies have demonstrated that gut microbiota dysbiosis could 
be a key factor in colorectal carcinogenesis. The adenomatous polyposis coli (APC)Min/+ 
mouse model has been extensively used to study the underlying mechanisms of 
colorectal carcinogenesis in familial adenomatous polyposis. Interventions aimed at 
improving dysbiosis by administration of probiotics, prebiotics, or antibiotics could 
decrease colorectal cancer development in APC mutation carriers.
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INTRODUCTION
Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary colorectal 
cancer (CRC) syndrome characterized by the development of numerous (i.e. tens to 
thousands) colorectal adenomas[1,2]. A mutation in the adenomatous polyposis coli (
APC) gene, found on chromosome 5q21, is responsible for FAP[3]. The incidence of 
FAP is around 1/8300, and the onset is commonly in the second or third decade of life. 
The risk of CRC is nearly 100% by the time patients with FAP reach the age of 40-50 
years[4,5]. Such patients have an increased risk of desmoid tumors and gastric, 
duodenal, biliary duct, and thyroid cancers[6]. Extraintestinal manifestations of FAP 
may include osteomas, dental abnormalities such as unerupted or supernumerary 
teeth, congenital absence of one or more teeth, odontomas, and dentigerous cysts; and 
congenital hypertrophy of the retinal pigment epithelium[7,8]. Prophylactic colectomy 
is generally performed by age 40 in patients with FAP, and is the gold standard 
treatment to reduce the risk of developing CRC[9]. Nonetheless, colectomy is 
associated with postoperative morbidity and does not reduce the risk of developing 
extraintestinal manifestations of FAP[10]. Endoscopic surveillance of patients with 
FAP and their family members has decreased the occurrence of CRC at the time of 
FAP diagnosis by 55% and has also increased overall survival[4,11].

Recent studies have shown that the gut microbiota could play an important role in 
the development of colorectal adenomas and the consequent progression to CRC[12]. 
Indeed, gut bacteria such as Fusobacterium nucleatum, Escherichia coli, Clostridium 
difficile, Peptostreptococcus, and enterotoxigenic Bacteroides fragilis, could be responsible 
for colorectal carcinogenesis through a number of mechanisms, including the 
maintenance of a chronic inflammatory state, production of bioactive tumorigenic 
metabolites, and DNA damage[13-15]. A number of studies investigated the interac-
tion between gut microbiota and host genetics in patients with intestinal adenomatous 
polyps. A study by Liang et al[16] showed a close relationship between the presence of 
APC mutation and modification of the gut microbiota and serum metabolites. Low 
levels of Faecalibacterium prausnitzii and an abundance of Fusobacterium mortiferum had 
the potential to predict the development of CRC from adenomatous polyps. It has 
been also observed that mutation of the APC gene could modify colonic-microbial 
interactions before the development of polyposis in mouse models[17]. After F. 
nucleatum infection, APCMin/+ mice, carrying an inactivated allele of the APC gene, had 
an increase of small intestinal and colonic adenoma formation and an acceleration of 
small intestinal adenocarcinoma development[18]. Thus, it has been hypothesized that 
interventions aimed at improving dysbiosis in APC mutation carriers, including 
administration of probiotics, prebiotics, or antibiotics, could decrease CRC 
development. The aim of this review was to summarize the best available knowledge 
on the role of gut microbiota on colorectal carcinogenesis in patients with FAP.

GENETIC FEATURES
The classic colorectal carcinogenesis model described by Fearon and Vogelstein[19] 
includes development of most CRCs from a minimum of five or more genetic 

https://www.wjgnet.com/1948-5204/full/v13/i6/495.htm
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alterations, while adenomas require fewer alterations. It has been hypothesized that 
inactivating mutations of the APC gene could represent the initial step of the 
“adenoma-carcinoma sequence” (Figure 1). The APC gene is a fundamental compo-
nent of the β-catenin and Wnt signaling pathways, modulating cell differentiation, 
adhesion, migration, and apoptosis[20]. Somatic mutations of the APC gene occur in 
around 80% of sporadic CRCs, whereas germline APC mutations are responsible for 
FAP, making this a key target to study the environmental and genetic modifiers of 
CRC[16,17]. Loss of APC gene function has been shown to produce a survival 
advantage by mimicking hypoxic conditions and stimulate the accumulation of β-
catenin and abnormal cell proliferation, associated with development of adenomatous 
polyposis[21-24].

Mouse models of FAP
Laboratory mouse models have proven to be valuable in the study of CRC[25]. The 
Min (multiple intestinal neoplasia) is the first key CRC mouse model and is induced 
by treatment with ethylnitrosourea[26]. Adult APCMin/+ mice develop multiple 
intestinal polyps and anemia and usually die at a young age because of intestinal 
blockage and bleeding from the larger polyps[27]. Other mouse models have also been 
reported, such as conditional APC mutant alleles[28]. The APCMin/+ mouse model 
shares numerous phenotypic and genetic similarities with FAP. However, patients 
with FAP develop adenomas mainly in the colon, while adenomas in APCMin/+ mice are 
mainly located in the small intestine and have benign characteristics. Also, desmoid 
tumors and epidermoid cysts are rarely seen in mouse models compared with patients 
with FAP[29]. Nonetheless, the APCMin/+ mouse represents an outstanding experi-
mental model for investigating genetic features and therapeutic responses of CRC in 
humans.

Bacterial genotoxicity
Interplay between the gut microbiota and genetic characteristics could be responsible 
for the genetic pattern of the adenoma-carcinoma sequence. It has been hypothesized 
that bacterial drivers could initiate the development of precancerous lesions and the 
subsequent accumulation of gene mutations[30,31]. Different gut bacteria, such as E. 
coli, Enterococcus faecalis, Streptococcus gallolyticus and B. fragilis have been shown to 
promote carcinogenesis through genotoxic effects[32]. Some E. coli strains, mainly B2 
and D, strongly express virulence genes, such as those encoding toxins and effectors 
that could promote carcinogenesis (e.g., colibactin, cytotoxic necrotizing factors, 
cytolethal distending toxins, and cycle-inhibiting factor)[33,34]. Colibactin could be 
responsible for DNA alkylation on adenine residues, thus favoring double-strand 
breaks[35]. A recent study showed that expression of colibactin-producing polyketide 
synthase (pks+) in E. coli could was associated with the occurrence of a specific 
mutational signature in human gut organoids. The same mutational signature was 
detected in 5876 human cancer genomes in two independent study cohorts, especially 
in CRC[36]. Also, pks+ E. coli could be responsible for aneuploidy and abnormal 
cellular division, an effect promoted by the mutagen colibactin[37]. Such effects of pks+ 
E. coli were mainly observed in APCMin/+ mice that lacked the autophagy gene Atg16 
L1, and consequently were not able to recruit the DNA repair protein RAD51, thus 
accumulating DNA double-strand breaks and developing tumors[38]. Enterococcus 
faecalis was shown to promote DNA damage by induction of inflammation and 
oxidative stress resulting from the release of reactive oxygen species and reactive 
nitrogen species[39]. Fragilysin (also known as BST), is a toxic virulence factor released 
by enterotoxigenic B. fragilis (ETBF) that can induce DNA damage in vivo[40]. 
Colonization by sulfidogenic bacteria, such as F. nucleatum, has been associated with 
genomic or chromosomal instability and CRC development associated with the 
genotoxic effects of hydrogen sulfide (H2S)[41,42]. A prior state of dysbiosis could 
enhance these specific bacterial genotoxic effects[31].

GUT MICROBIOTA AND CARCINOGENESIS
There is extensive evidence of an association between infectious agents and develop-
ment of tumors[43]. It has also been demonstrated that specific mucosa-associated 
bacterial species could play a pivotal role in the pathogenesis of CRC[44-46]. Indeed, 
bacterial toxins and effector proteins have been shown to damage host cell DNA, and 
therefore affect crucial host cell signaling pathways that regulate cell differentiation, 
apoptosis, proliferation, and immune signaling[47-57] (Table 1).
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Table 1 Studies of colorectal cancer-associated bacteria in the APCMin/+ mouse model

Ref. Bacterial strain Mechanism of carcinogenesis

Kostic et al[18], 2013 F. nucleatum Infiltration of CD11+ myeloid-derived immune cells

Tomkovich et al[49], 
2017

F. nucleatum and pks+ E. coli Mediated by inflammation, with colibactin-producing E. coli but not with F. 
nucleatum (FadA+ or Fap2+)

Yang et al[50], 2017 F. nucleatum Regulation of miR-21 via TLR4/MYD88/NF-κB pathway

Wu et al[51], 2018 F. nucleatum TLR4/p-PAK1/p-β-catenin S675 pathway

Chen et al[52], 2018 F. nucleatum Induction of M2 macrophage polarization via TLR4. Activation of the IL-
6/p-STAT3/c-MYC signaling pathway

Rubinstein et al[53], 
2019

F. nucleatum FadA adhesin upregulates Annexin A1 expression through E-cadherin

Dejea et al[54], 2018 Mono- or co-colonization of ETBF and pks+ E. coli Upregulation of IL-17 and DNA damage

Chung et al[55], 2018 ETBF Pathway involving activation of IL-17R, NF-κB, Stat3, and CXCL1

Goodwin et al[56], 
2011

ETBF Production of spermine oxidase, reactive oxygen species and DNA damage

He et al[57], 2019 Campylobacter jejuni DNA damage due to cytolethal distending toxin

Li et al[15], 2019 Mixed strains from fecal samples of CRC patients 
after antibiotic cocktails

Wnt/β-catenin and cyclin D1 pathway

CRC: Colorectal cancer; E. coli: Escherichia coli; ETBF: Enterotoxigenic Bacteroides fragilis; F. nucleatum: Fusobacterium nucleatum; IL: Interleukin; NF-κB: 
Nuclear factor-kappa B; pks: Producing polyketide synthase; TLR: Toll-like receptor.

Figure 1 Pathway of the development of colorectal adenomas and the consequent progression to colorectal cancer.

Dysbiosis and bacterial toxins
Changes in the gut microbiota, can stimulate the c-Jun/JNK and STAT3 signaling 
pathways, thus promoting, in combination with anemia, tumor growth in APCMin/+ 

mice[58]. A study carried out in APCMin/+ mice by Son et al[17] reported that mutation 
of the APC gene modified colonic-microbial interactions prior to polyposis. Indeed, 
changes in the gut microbiota, characterized by an increased relative growth of 
Bacteroidetes spp. identified in association with intestinal tumors, has been shown to 
precede the development of microscopically evident intestinal tumors in 6-wk-old 
APCMin/+ mice. A recent study by Dejea et al[54] detected colonic biofilms mainly 
composed of E. coli and B. fragilis in patients with FAP. Genes for colibactin (clbB) and 
B. fragilis toxin (bft) were highly expressed in the colonic mucosa of patients with FAP 
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compared with healthy subjects. Co-colonization with E. coli and ETBF led to an 
increase in interleukin-17 (IL-17) and DNA damage in colonic epithelium of tumor-
prone mice, compared with mice with either bacterial strain alone. As ETBF and pks+ 
E. coli frequently colonize young children, it has been suggested that constant co-
colonization in the colon mucosa from a young age could play a role in the patho-
genesis of FAP[54]. The B. fragilis toxin (BFT) can bind to intestinal epithelial-cell 
receptors, promoting cell proliferation through cleavage of the tumor suppressor 
protein E-cadherin[55]. It has been shown that BFT can provoke acute and chronic 
colitis in C57BL/6 mice, and colon tumors in an APCMin/+ mouse model[59-61]. 
Infections with enterotoxigenic strains of B. fragilis, compared with non-toxigenic 
strains, were more frequently observed in patients with CRCs. Enterotoxigenic strains 
were detected in only 10%-20% of healthy controls, but enterotoxigenic B. fragilis was 
found in stool samples from 40% of CRC patients[62]. A study by Tomkovich et al[49] 
carried out in germ-free, specific-pathogen-free, and gnotobiotic APCMin/+;IL10-/- mice 
reported that colon carcinogenesis was associated with an inflammatory state. CRC 
did not develop in germ-free APCMin/+;IL-10-/-, and pks+ mice. E. coli promoted carcino-
genesis in the APCMin/+;IL-10-/- model in a colibactin-dependent way. An interesting 
study by Li et al[15] investigated the role of gut microbiota on adenoma progression in 
APCMin/+ mice. Transplants of gut microbiota from CRC patients into APCMin/+ mice 
enhanced the progression of adenoma, damaged the intestinal barrier, promoted 
chronic low-grade inflammation, and stimulated the Wnt signaling pathway. These 
results suggest that microbial targeted therapy could represent a novel FAP therapy.

Inflammation
Commensal and pathogenic bacteria were found to promote CRC development after 
colonizing normal colonic mucosa and promoting sustained local inflammation, and 
by releasing genotoxic compounds against colonic epithelial cells to induce their 
tumorigenic transformation[63]. Conversely, a balanced population of microbiota 
prevented development of CRC by producing bacterial metabolites that reduced 
inflammation[64]. Chronic inflammation is associated with the development of various 
tumors, including CRC. Inflammation of the colonic mucosa may enhance carcino-
genic mutagenesis, thus favoring CRC initiation[65]. Also, a chronic inflammatory 
state is characterized by loss of IL-10-secreting regulatory T cells (Tregs) and 
stimulation of Th17cells producing IL-17A, which supports IL-17A-dependent tumor 
growth, and promotes colonic carcinogenesis in the APCMin/+ mouse model, which 
resembles FAP in most respects[66]. An association between F. nucleatum infection and 
increased expression of the nuclear factor-kappa beta (NF-κB) pro-inflammatory 
profile in mouse intestinal cancers has been observed, consistent with the development 
of human CRC[18]. FadA, a Fusobacterium-specific adhesion molecule, can facilitate F. 
nucleatum adherence to host cells[67], and F. nucleatum colonization was found to 
recruit tumor-infiltrating myeloid cells and stimulate the Wnt/β-catenin pathway, 
leading to NF-κB activation and cancer cell proliferation[68]. Chronic inflammation in 
APCMin/+;IL-10-/- mice was shown to modify the gut microbiota composition and 
selectively favor the growth of Enterobacteriaceae. Chronic inflammation also supported 
the selection of pathogenic strains of E. coli and was essential for the cancer-promoting 
effects of those bacteria[69]. Colonization of APCMin/+ mice with ETBF led to the 
activation of a pro-tumorigenic multistep inflammatory cascade involving IL-17R, NF-
κB, and Stat3 signaling in colonic epithelial cells. Indeed, BFT could stimulate a 
protumorigenic signal in colon mucosal epithelial cells that led to a Th17 response that 
in turn activated NFκB and myeloid cell-dependent carcinogenesis in the distal colon
[55]. Grivennikov et al[70] reported that the loss of intestinal barrier function in APC
Min/+ mice induced by CRC-initiating genetic alterations led to adenoma invasion by 
microbial metabolites that stimulated inflammation and, in turn, cancer growth. It is 
noteworthy that even colonization of commensal bacteria can promote CRC. Indeed, 
infection of germ-free APCMin/+;IL-10-/- mice with commensals of specific-pathogen free 
mice enhanced the tumor load[49]. Commensal bacteria and their constituents have 
been shown to stimulate Toll-like receptors on tumor-infiltrating myeloid cells and 
MyD88-mediated production of inflammatory cytokines, such as IL-23. Therefore, IL-
23 supported CRC development by activating the release of other cytokines, such as 
IL-6, IL-17A, and IL-22[71].

Short-chain fatty acids and bacterial metabolites
A number of studies demonstrated that the gut microbiota was responsible for the 
production of various bioactive food elements and micronutrients, such as essential 
vitamins, and the fermentation of dietary fibers and complex carbohydrates, 
producing short-chain fatty acids (SCFAs), such as butyrate, acetate, and propionate
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[72-74]. The role of butyrate in colorectal carcinogenesis is controversial[75]. In fact, in 
APCMin/+; Msh2-/- mice that were also deficient for the DNA mismatch repair gene 
MutS homolog 2, Belcheva et al[76] found that microbial metabolism of carbohydrates 
into SCFAs, such as butyrate, enhanced the proliferation of tumor-initiated epithelial 
cells, thus promoting carcinogenesis. In their study, the growth of SCFA-producing 
bacteria, such as Clostridiaceae, Ruminococcaceae, and Lachnospiraceae, was inhibited by 
antibiotic therapy or a low-carbohydrate diet, and in turn the number of polyps 
detected in APCMin/+; Msh2-/- mice was also reduced. On the other hand, many studies 
have described antineoplastic effects SCFAs, such as the suppression of inflammation, 
stimulation of apoptosis, and inhibition of cancer cell progression[77]. Nonetheless, 
further investigation is needed for clarifying the role of butyrate in CRC protection or 
promotion. Other bacterial metabolites, such as H2S, secondary bile acids, and nitric 
oxide, have been shown to contribute to progression of adenomatous colon polyps to 
CRC by affecting host metabolism and immunity[78].

CURRENT CLINICAL TRIALS
A growing number of clinical trials have reported an association between gut bacteria 
and their metabolites and progression of CRC through various mechanisms[79,80]. 
However, the role of the gut microbiota in the progression and development of CRC is 
intricate and still not entirely understood, especially in patients with FAP. Currently, 
only a few clinical trials are recruiting subjects with FAP to determine whether 
modifying the gut microbiota might influence CRC development[81]. The Memorial 
Sloan Kettering Cancer Center in New York (United States), is conducting a clinical 
trial (Clinicaltrials.gov ID: NCT02371135) enrolling patients with Lynch syndrome or 
other hereditary colonic polyposis syndromes, in order to assess the role of the gut 
bacteria in CRC development. Investigators collect fecal samples, colon biopsies, and 
questionnaire responses on diet and lifestyle[82]. A phase 2, randomized, double-
blind, placebo-controlled study sponsored by the Tel Aviv Sourasky Medical Center 
(Israel) is evaluating the efficacy of curcumin supplementation on polyp number and 
size in patients with FAP (Clinicaltrials.gov ID: NCT03061591)[83].

POTENTIAL THERAPEUTIC APPROACHES AND FUTURE DIRECTIONS
It has been suggested that interventions directed at improving gut dysbiosis in APC
Min/+ mice, for instance through probiotics, prebiotics, some antibiotics, and 
nonsteroidal anti-inflammatory drugs (NSAIDs), can inhibit the progression of the 
adenoma-carcinoma sequence, thus reducing the development of CRC[84-86].

Fap-related pouch
The ileoanal pouch is the surgical procedure of choice for patients with the classical 
phenotype of FAP[87]. Many studies have shown that the gut microbiota play a key 
role in the development of pouchitis, as supported by clinical evidence of the benefits 
of antibiotic therapy[88,89]. Metronidazole, ciprofloxacin, or a combination of both, is 
usually the initial approach, and it is often effective in chronic pouchitis[90]. A meta-
analysis of 21 studies showed that antibiotics induced a significant remission rate 
(74%) in patients with chronic pouchitis (95% confidence interval: 56-93; P < 0.001), 
whereas the remission rate after administration of biologics was 53% (95% confidence 
interval: 30-76; P < 0.001). Conversely, steroids, bismuth, tacrolimus, and an elemental 
diet did not result in a significant remission, which was achieved by fecal microbiota 
transplantation[88]. Probiotics have been shown to be effective in the prevention of 
pouchitis[91]. Indeed, Shen et al[92] showed that administration of a probiotic 
treatment (Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, and 
Bifidobacterium bifidus) prevented pouchitis, decreased the Modified Pouch Disease 
Activity Index score, and reduced fecal pyruvate kinase and calprotectin in FAP 
patients after restorative proctocolectomy[93].

Probiotics and prebiotics
Gut microbiota composition and function are considerably modulated by diet[14]. An 
association between the intake of nondigestible fibers, such as prebiotics, and an 
abundance of beneficial bacteria in the gut, including Bifidobacterium, Lactobacillus, 
Faecalibacterium, Ruminococcaceae, and Roseburia has been widely reported. Indeed 



Biondi A et al. Familial adenomatous polyposis and microbiota

WJGO https://www.wjgnet.com 501 June 15, 2021 Volume 13 Issue 6

administration of both probiotics and prebiotics has shown beneficial effects in 
prevention and reduction of the prevalence of adenomatous colon polyps[94,95]. A 
metagenomic study by Ni et al[96] reported a preventive effect of Lactobacillus 
rhamnosus GG (LGG) on polyp formation in APCMin/+ mice. The results showed that 
LGG had beneficial effects and reduced polyp development in mice by preserving gut 
microbial functionality. A study by Urbanska et al[97] reported similar results using an 
orally delivered probiotic formulation that reduced overall intestinal inflammation 
and the number of polyps in the small intestine of APCMin/+ mice after administration 
of microencapsulated live Lactobacillus acidophilus cells.

Antibiotics
There is evidence that antibiotic treatment can modify the gut microbiota physiological 
processes and functions[98]. Some studies showed that shifts in the composition of the 
intestinal community caused by antibiotics were associated with development of 
polyps and progression to CRC. Other studies reported a possible protective effect on 
carcinogenesis[99-101]. A nested case-control study by Dik et al[102] reported a 
significant dose-dependent association between administration of penicillin and 
quinolone antibiotics and increased risk of CRC development. Another nested case-
control study by Boursi et al[103] carried out in a large population-based database in 
the United Kingdom, showed similar results, and concluded that past exposure to 
several courses of penicillin was associated with a slight increase in CRC risk. A recent 
study found that long-term treatment of APCMin/+ mice with an antibiotic cocktail 
composed of vancomycin, neomycin, and streptomycin resulted in gut inflammation 
with polyposis and cancer progression, perhaps caused by specific changes of the gut 
microbiota and thinning of the protective mucus layer[104]. On the contrary, Belcheva 
et al[76] observed a decreased number of polyps in both the small and large intestine of 
C57BL/6 APCMin/+; Msh2-/- mice treated with ampicillin, metronidazole, neomycin, and 
vancomycin. The gut microbiota in APCMin/+; Msh2-/- mice might affect the develop-
ment of CRC at an early stage, thus acting as a tumor initiator. These contrasting 
results suggest that the changes of gut bacteria caused by antibiotic treatment can be 
either detrimental or beneficial in a context-dependent way[105]. Further studies are 
needed to investigate the role of specific antibiotics in modulating the microbiota 
response and the relationship with colorectal carcinogenesis.

Diet and anti-inflammatory drugs
A number of epidemiological studies have shown an association between diet, inflam-
mation, and cancer, including CRC[106-109]. So far, there is a lack of preventive 
dietary recommendations for FAP patients. A nonrandomized prospective pilot study 
carried out on FAP patients showed that a low-inflammatory diet based on the 
Mediterranean diet pattern decreased gastrointestinal markers of inflammation, such 
as C-reactive protein and pro-inflammatory cytokines, through a modulation of the 
gut microbiota composition[110]. Combination treatment with curcumin and quercetin 
has been reported to reduce the development of adenomas in FAP. This beneficial 
effect might be a result of their antioxidative, anti-inflammatory, and antiproliferative 
properties and the maintenance of a diverse gut microbial community[111-113]. Black 
raspberry powder supplementation in FAP patients significantly decreased the burden 
of rectal polyps and reduced staining of the mucosal proliferation marker Ki-67, 
compared with placebo[114]. The results could have a response to beneficial effects of 
the anthocyanin and fiber content of the raspberries on the diversity and composition 
of the gut microbiota[115,116]. Administration of berberine, an alkaloid that can be 
isolated from many plants including barberry (Berberis vulgaris), significantly reduced 
the development of CRC and restored the gut microbiota community in APCMin/+ mice 
fed a high fat diet[117].

There is evidence that the combination of anti-inflammatory drugs and regular 
endoscopic surveillance can decrease the risk of new adenomas in the rectal stump of 
FAP patients[118-120]. Administration of NSAIDs and omega-3 essential fatty acids 
reduced recurrence[121]. Even though long-term therapy with NSAIDs has been 
shown to increase gastrointestinal and cardiological risk, the use of omega-3 supple-
ments can be expensive for patients[122,123]. NSAIDs may modify the composition 
and diversity of gut microbiota by inhibiting or facilitating bacterial growth, inducing 
bacterial cell death, or affecting bacterial metabolism[123]. The bacterial composition 
of the gut has been shown to change with the type of NSAID administered[124]. 
Specific shifts in the microbiota such as an increase in Coriobacteriaceae or reduction in 
Bifidobacteriaceae and Lactobacillaceae after chronic oral treatment with celecoxib, have 
been associated with a decrease of polyp burden in APCMin/+ mice[125]. APCMin/+ mice 
treated with aspirin showed a decrease in CRC number and load that depended on the 
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presence of gut microbes. Of interest, Lysinibacillus sphaericus in the gut degraded 
aspirin, thereby reducing its chemopreventive effects in mice. Stool samples from mice 
treated with aspirin had increased populations of beneficial bacteria such as Lactoba-
cillus and Bifidobacterium, and decreased populations of pathogenic bacteria such as 
Alistipes finegoldii and B. fragilis[126].

CONCLUSION
The APCMin/+ mouse model has been widely used to study the underlying mechanisms 
of colorectal carcinogenesis in FAP. Several studies demonstrated that gut microbiota 
dysbiosis as a key factor in colorectal carcinogenesis. Indeed, the intestinal microbial 
community played an important role in the multistep process of the intestinal 
adenoma-carcinoma sequence, and changes in the gut microbiota were found to be 
responsible for mucosal barrier injury, low-grade inflammation, activation of the Wnt 
pathway, and subsequent progression of adenomas. Recent evidence suggests that the 
modulation of gut microbiota could be a novel therapeutic target in FAP patients. 
Administration of probiotics, prebiotics, antibiotics, and NSAIDs can prevent the 
progression of the adenoma-carcinoma sequence in FAP. However, further study of 
the role of the gut microbiota in the malignant transformation of colorectal adenoma 
and how microbe-targeted therapies might be useful in preventing CRC development 
in FAP is needed.
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