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Abstract
Safe and effective gene therapy approaches require tar
geted tissue-specific transfer of a therapeutic transgene. 

Besides traditional approaches, such as transcriptional 
and transductional targeting, microRNA-dependent post-
transcriptional suppression of transgene expression has 
been emerging as powerful new technology to increase 
the specificity of vector-mediated transgene expression. 
MicroRNAs are small non-coding RNAs and often expressed 
in a tissue-, lineage-, activation- or differentiation-specific 
pattern. They typically regulate gene expression by 
binding to imperfectly complementary sequences in the 
3’ untranslated region (UTR) of the mRNA. To control 
exogenous transgene expression, tandem repeats of 
artificial microRNA target sites are usually incorporated 
into the 3’ UTR of the transgene expression cassette, 
leading to subsequent degradation of transgene mRNA in 
cells expressing the corresponding microRNA. This target
ing strategy, first shown for lentiviral vectors in antigen 
presenting cells, has now been used for tissue-specific 
expression of vector-encoded therapeutic transgenes, 
to reduce immune response against the transgene, to 
control virus tropism for oncolytic virotherapy, to increase 
safety of live attenuated virus vaccines and to identify 
and select cell subsets for pluripotent stem cell therapies, 
respectively. This review provides an introduction into the 
technical mechanism underlying microRNA-regulation, 
highlights new developments in this field and gives an 
overview of applications of microRNA-regulated viral 
vectors for cardiac, suicide gene cancer and hematopoietic 
stem cell therapy, as well as for treatment of neurological 
and eye diseases.
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Core tip: Post-transcriptional microRNA-induced suppres
sion of gene expression is a simple new, highly efficient 
technology to restrict transgene expression to a specific 
tissue. It is based on the insertion of a target sequence 
for a cell-specifically expressed microRNA, typically into 
the 3’ untranslated region of a transgene expression 
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cassette. MicroRNA-induced regulation can result in an up 
to 100-fold reduction of transgene expression in tissues 
where expression is not desired. This targeting strategy 
can be used in combination with other targeting strategies 
to further improve vector specificity for gene therapeutic 
approaches. 
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INTRODUCTION
Tissue-specific targeting of viral vectors is a key require
ment for safe and efficient gene therapy. However, 
many viral vectors transduce a broad range of cell types. 
Improvement of specificity can be achieved by direct 
vector application into a defined location within the 
organ. But in general, transgene delivery by this means 
remains near the injection site and the application can 
lead to tissue injury, making this procedure unsuitable 
for many applications[1,2]. Other targeting strategies 
focus on improvement of target specificity after systemic 
vector application. In this regard, several approaches 
of transductional targeting have been successfully 
employed, including switching the virus serotype and 
capsid engineering via directed evolution, creation of 
vectors with chimeric or mosaic structures and insertion 
of antibodies or bi-specific fusion proteins containing 
the targeting ligands[3-5]. However, being based on the 
various natural entry mechanisms of infection of many 
viruses, this strategy has limitations. Transcriptional 
target-specific expression of the transgene using tissue-
specific promoters represents another frequently 
used approach to improve vector specificity. Although 
this targeting strategy has been used successfully in 
many applications, it is limited by the small number 
of promoters whose activity is exclusively restricted to 
the target tissue and sufficiently strong to induce trans
gene expression at therapeutic levels[6,7]. Based on 
discovery of the RNA interference mechanism enabling 
post-transcriptional suppression of gene expression[8], 
microRNA-dependent suppression of transgene expression 
has been emerging as a promising new approach to 
improve vector targeting. Since its initial application for 
reduction of off-target transgene expression in antigen 
presenting cells (APC)[9], microRNA-dependent control 
of transgene expression has been used to restrict trans
gene expression in gene therapeutic approaches, to 
control oncolytic viruses, for live attenuated virus vaccine 
development and basic research. In this review we will 
provide an overview of this technology, its application 
in gene therapy and discuss perspectives for its further 
development.

MICRORNAS - IMPORTANT PLAYERS IN 
CELLULAR GENE REGULATION 
MicroRNAs are small endogenous non-coding RNA 
sequences of approximately 21 bp that post-trans
criptionally regulate gene expression of about more 
than 60% of human protein-coding genes[10,11]. They are 
involved in most of cellular processes, including develop
ment, differentiation, proliferation and apoptosis[12-16]. 
MicroRNAs are highly conserved between species and 
expressed specifically and at certain levels dependent on 
tissue, lineage or differentiation state[17]. More than 2500 
unique mature human microRNAs have been identified 
so far (http://www.mirbase.org/). Individual microRNA 
species can vary widely in copy number ranging from less 
than 10 to more than 30000 copies per cell[18-20]. Beside 
the tissue-specific expression profile, several microRNAs 
are dysregulated in cancer[21,22], infectious diseases[23] or 
diseases of the heart[24] and liver[25], which gives them 
potential as targets for new therapies. 

MicroRNAs are usually processed from a precursor 
molecule (pri-microRNA) that folds into hairpin structures 
with imperfectly base-paired stems. Pri-microRNAs are 
further processed by nuclear and cytoplasmatic cleavage 
proteins, resulting in a short RNA duplex (see references 
for greater detail[10,26]). One strand of the duplex, the 
guide strand (microRNA), is selected based on the 
relative free energies of the microRNA duplex ends[27,28] 
and is loaded into a multi enzyme complex, the RNA-
induced silencing complex (RISC). The less common 
product is defined as the passenger strand (microRNA*), 
and is assumed to be degraded[26]. Alternatively both 
strands of the RNA duplex, namely the 5’ strand (miR-5p) 
and the 3’ strand (miR-3p) become mature functional 
microRNAs[29-33]. The mature microRNA is associated 
with an Argonaute (AGO) family protein, that constitutes 
the core of the RISC, and functions by base-paired 
binding to the corresponding target site located in the 
mRNA, resulting in repression of protein synthesis[10]. 
However, some microRNAs are able to activate mRNA 
translation[34-38]. Complete complementarity of microRNA 
and its target site leads to endonucleolytical central 
cleavage of the microRNA/mRNA-duplex by AGO2[26,39-43], 
using a mechanism similar to RNA-interference mediated 
by siRNAs. In plants, this mechanism is the predomi
nant one[44], while the prevalent mechanism in animals 
involves binding with incomplete complementarity[12], 
resulting in inhibition of translation and/or initiation of 
mRNA degradation[10,39,45-50]. In contrast to plants, whose 
microRNA target sites are mostly located in protein-
coding regions, target sites in animals are often found as 
repeats in the 3’ UTR of the mRNA[51-54]. 

Some important rules relating to the interaction 
between microRNA and its target site were determined 
by experimental and bioinformatic analysis. The mRNA 
targeting specificity of a microRNA is determined by 
perfect match between the seed sequence, a conserved 
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sequence which is usually situated at positions 2-7 or 
2-8 of the 5’-end of the microRNA, with a corresponding 
sequence in the mRNA[12,51-54]. An adenine opposite 
microRNA position 1 and an adenine or uracil opposite 
microRNA position 9 are not essential, but increase 
the efficacy of binding[54]. MicroRNAs exhibiting the 
same seed sequence belong to the same microRNA 
family and can regulate the same mRNA targets[51]. A 
single microRNA species can regulate the production 
of hundreds of proteins, most likely by recognizing 
the same seed-matched sequence in the mRNA[55]. A 
second common characteristic of endogenous microRNA-
mRNA interaction comprises nucleotide mismatches in 
microRNA positions 9-12, thereby most likely preventing 
an AGO2-mediated cleavage of the target mRNA[10,56]. A 
third characteristic is that matches within the seed region 
alone are not always sufficient to induce gene repression; 
stabilization of microRNA binding may need additional 
complementarity in the 3’ part of the microRNA. In 
particular if seed matching is suboptimal, nucleotides 
at microRNA positions 13-16 become important[51,57]. 
Thus the 3’ portion can help to compensate for a single 
nucleotide mismatch in the seed region, as experi
mentally confirmed for let‑7 sites in Caenorhabditis 
elegans lin-4[58] and for miR-196 site in mammalian 
Hoxb8[43] mRNA. Additional factors can influence binding 
stability and thereby the efficacy of microRNA-mediated 
gene regulation[54,57,59,60]. Thus a more effective repression 
can result from an AU-rich nucleotide composition near 
the target site[57]. Additionally, more than 15 nucleotides 
between miR-TS and the stop codon may reduce com
petition between proteins involved in translation and 
microRNA-mediated silencing, respectively[57].

DISCUSSION
Engineering, optimization and limits of artificial target 
sites for microRNA-mediated post-transcriptional 
transgene silencing
Endogenously expressed microRNAs can also be used 
to specifically modulate the expression of an exo
genously applied nucleic acid as a therapeutic cDNA. 
Therefore artificial microRNA target sites, referred to 
as miR-TS in this review, serve as targets for a specific 
microRNA, resulting in post-transcriptional silencing of 
the transcript[9] (Figure 1). In contrast to transcriptional 
targeting using tissue-specific promoters that positively 
regulate transgene expression, expression is negatively 
controlled by tissue-specifically expressed microRNAs. It 
was shown that insertion of miR-TS completely comple
mentary to the microRNA in an arrangement of multiple 
tandem repeats of miR-TS results in strong repression 
of transgene expression in cells with corresponding 
microRNA expression[9,17,61]. In this case the transcript 
is endonucleolytically cleaved, similar to degradation by 
siRNAs, and the microRNA-RISC is rapidly recycled[39]. 
Usually the microRNA guide strand mediates transgene 
repression, thus a corresponding sequence representing 

the miR‑TS is inserted into the transgene expression 
cassette. However, recently Kim et al[62] discovered 
that expression of a therapeutic transgene can also 
be regulated by the passenger strand of a microRNA 
(miR-122) linked to the transgene, thereby eliminating 
the risk of affecting expression of endogenous microRNA 
guide strand-regulated genes. 

There are several factors influencing the efficacy of 
microRNA-regulated transgene expression systems. First 
the cell type- and tissue-specific expression of a chosen 
microRNA candidate is an important factor that must be 
taken into account for microRNA-regulated transgene 
expression systems. Many suitable microRNAs fulfilling 
this requirement have already been defined (please 
see reference[63,64]). Among them miR-122, a microRNA, 
almost exclusively expressed in liver tissue, represents 
the best candidate for a specific hepatocyte-de-tar
geting[20,65,66]. Indeed, successful miR-122-mediated 
suppression of transgene expression in liver was found 
in several studies[67-69]. However, specific microRNA ex
pression may not be sufficient to achieve a stringent 
microRNA-dependent transgene repression. 

Second, the expression level of a microRNA is crucial 
for microRNA-mediated regulation. High-throughput 
assays revealed that only the most abundant microRNAs 
within a cell mediate significant target suppression[70]. 
Consequently a fraction of microRNAs that is highly 
and specifically expressed in certain tissues, possibly 
involved in defining and maintaining tissue identity[71], 
are the most potent to de-target transgene expression. In 
general more highly expressed microRNAs repress their 
targets to a greater degree[67]. However, the relationship 
between microRNA expression and its repression activity 
is nonlinear; in one case it was shown that a 10-fold 
increase of microRNA concentration results only in a 10% 
increase of repression[72]. In addition, microRNA expression 
level is not the only determinant of repressive activity 
and repression capacity can differ among microRNAs. 
Kozomara et al[72] showed that although some microRNAs 
exhibit similar expression levels, they mediate very 
different repression levels. Conversely some microRNAs 
repress their targets to similar degrees despite of large 
difference in expression levels. Another key factor for 
microRNA-mediated repression of a miR‑TS-containing 
transcript is the need for a certain minimal microRNA 
expression threshold, quantified as 100 copies/pg small 
RNA by Brown et al[17]. The value is not only important 
because it defines the minimal amount which is necessary 
to suppress transgene repression but it also indicates that 
under a certain level, microRNAs are unable to induce 
repression. This consideration becomes important if the 
chosen microRNA is expressed in both the tissue where 
transgene expression is intended as well as in the tissue 
where it is not. Therefore microRNAs expressed under 
the minimal expression limit may not affect transgene 
expression in the targeted tissue.

Third, the configuration of the miR-TS is another 
important factor affecting repression efficacy. Corre
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sponding to the different mechanism of microRNA-
induced gene silencing, complete complementary miR-
TS allow per se higher suppression of the transgene 
than imperfectly complementary sequences[33,61,73-75]. 
As perfectly complementary target sequences are 
endonucleolytically cleaved between microRNA positions 
10/11, the microRNA is rapidly recycled[39,69,76-78]. Con
sequently complete complementarity reduces the risk of 
microRNA saturation and thus induction of undesirable 
side effects because the bioavailability of the cognate 

microRNA to regulate its natural targets is maintained[79].
In addition, the number of miR-TS repeats affects 

microRNA-mediated suppression of transgene expression. 
In general an increased number of miR-TS enhances 
microRNA-dependent transgene repression. But 
repression efficacy does not linearly correlate with an 
increasing number of miR‑TS, and above a certain 
number of miR-TS, only a relatively modest increase of 
repression of transgene expression is observed[67,73,80]. 
Thus maximal suppression of transgene expression of 
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Figure 1  Principle of microRNA-mediated suppression of transgene expression and viral replication. After transduction/infection of a cell, vector DNA/viral 
DNA is transcribed in the nucleus (for lentiviral vectors integrated into host DNA). The transcript/viral RNA containing artificial miR-TS (red boxes) is transported into 
the cytoplasm. If corresponding microRNA is expressed (A), it binds to miR-TS and the target RNA is endonucleolytically cleaved and degraded. If certain microRNAs 
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viral vectors, even under optimal conditions (highly and 
specifically expressed microRNA, use of tandem miR‑TS 
repeats), rarely exceeds 100-fold[9,61,67,68,81]. The reason 
for this limitation is currently not fully understood, but 
different factors may be involved. It seems that the 
rate-limiting steps in microRNA activity are the level 
and dynamics of association of the target mRNA with 
the microRNA-loaded RISC, rather than level of target 
transgene mRNA[17,72,82], which is directly dependent of 
vector and expression systems. We and others have 
shown that 3-4 identical repeats of miR‑TS are sufficient 
for efficient transgene repression (Table 1). An increase 
to 6 or even 12 copies is possible, but may only have a 
marginal effect on repression efficacy[67,80,83]. Moreover, 
an increase of miR-TS repeats can induce saturation of 
the respective microRNA, as more target sites means 
more substrate for the microRNA to bind, resulting in 
potentially undesirable off-target effects[76]. As shown by 
several studies, different miR‑TS can be inserted in series 
in order to de-target various cell types with different 
microRNA expression profiles[17,61,69,84]. On the other 
hand, a combination of miR‑TS corresponding to different 
microRNAs for a given cell type or tissue can enhance 
microRNA-mediated transgene suppression, especially if 
the microRNAs are only expressed at moderate levels[85]. 
Moreover, employing cooperative microRNAs may reduce 
the risk saturating the function of one microRNA[67]. An 
enhancement of microRNA-mediated suppression of 
transgene expression can also be achieved by combination 
of microRNA regulation with other regulation systems. 
Thus, Bennett et al[86] developed an adenoviral vector (AdV) 
system utilizing both microRNA-mediated regulation and 
the Cre recombinase (Cre)-loxP recombination system 
to further reduce hepatic transgene expression and to 
achieve relatively pure spleen-/dendritic cell-specific 
expression thereby improving AdV-based vaccination 
against transgene products. Although insertion of 
miR‑122TS into the transgene expression cassette of 
AdV suppressed liver expression by about 100-fold, 
significant transgene expression levels were still found in 
the liver[86,87]. Therefore they engineered an AdV carrying 
the transgene flanked by loxP sites and containing miR-
122TS, while another AdV expressed Cre equipped with 
miR-TS for miR‑142-3p, which is highly expressed in 
the spleen. Intravenous co-administration of the AdVs 
resulted in an approximately 3800-fold reduction of 
hepatic transgene expression and a slightly reduced, 
but substantial, transgene expression in the marginal 
zone of the spleen, which was sufficient to exhibit thera
peutic value[86]. In most studies, small 4 to 6 nucleotide 
long spacer sequences have been used to separate 
miR-TS repeats[9,61,67,68]. Introduction of spacers may, in 
general, reduce steric hindrance of enzyme complexes 
binding to microRNA/miR-TS duplexes and thus facilitate 
better repression. Nevertheless spacer-free multimeric 
miR-TS were also successfully applied for transgene 
repression[69]. Furthermore it is thought that, compared 
to longer spacers, insertion of shorter spacers might 
reduce the risk of formation of secondary structures 

around the miR-TS that might disturb base-paring of 
microRNA with the miR-TS[88,89]. Thus whether and to 
what degree spacer sequences affect efficacy of designed 
microRNA-regulated suppression systems remains to be 
elucidated. Besides the functional importance of applied 
miR-TS, copy number of miR-TS, as well as spacing 
between miR-TS, are relevant to viral vector construction, 
as it directly enlarges the transgene expression cassette 
inserted into the vector genome. As miR‑TS are small 
in size (about 22 bp), insertion of tandem repeats of 
miR-TS, including spacer sequences, generally does not 
constitute a capacity problem for most viral vectors. How
ever, for some viral vectors with low packaging capacity, 
such as self-complementary adeno-associated virus (AAV) 
vectors[90], keeping down the total length of miR-TS could 
be an essential requirement. In this regard, our group 
investigated whether shortening of miR-TS corresponding 
to miR‑122 affects the miR-122-mediated repression 
function. Indeed, we found that a deletion of up to 5 
nucleotides from the 5’ end of the miR-122TS was well 
tolerated and did not influence transgene suppression[67]. 
However, more studies are necessary to confirm our 
results for other miR‑TS.

Although a systematic investigation defining common 
standards for insertion of miR-TS into a transgene 
expression system is currently not available, location 
of the miR-TS in the mRNA is obviously important for 
repression efficacy. Based on knowledge of microRNA 
target recognition and microRNA-induced cleavage of 
cellular targets, it becomes obvious that secondary 
structures of the mRNA itself or structures formed by 
miR-TS insertion can also affect transgene suppression as 
accessibility to the target mRNA is hindered[78,91]. Since 
the 3’ UTR of mRNAs almost always lack secondary RNA 
structure[92], miR-TS can be placed there, usually near 
the stop codon, but insertion within the 5’ UTR or the 
open reading frame is also possible[93-96]. Other factors 
influencing repression capacity of a given microRNA 
include increased nuclear localization of a microRNA, 
its stability[97] and the stability of the microRNA/miR-TS 
duplex[70,72]. Concerning the latter, analysis of the free 
energy of multiple duplexes revealed a weak negative 
correlation of duplex stability and microRNA-mediated 
regression. Therefore lower stability seems to favor tran
sient interaction with target mRNAs and efficient down-
regulation of multiple targets[39,72].

In summary, optimal microRNA-mediated repression 
of the vector-encoded transgene needs high expression 
of the microRNA, insertion of 3-4 copies of miR-TS with 
complete complementarity, uniqueness with regard to 
regulation by other microRNA candidates and insertion 
within a site with low secondary structure. All these 
aspects need to be pre-evaluated for optimal microRNA-
mediated regulation of transgene expression of viral 
vectors. 

Although this technology displays many advantages 
compared to other methods, it is not without concerns. 
Given that endogenous microRNAs are involved in 
target regulation, miR-TS containing transgene mRNAs 
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Target cell/tissue for therapy miR-TS for Number miR‑TS Vector MicroRNA-regulated transgene De-targeted cell/tissue Ref.

Heart
   Heart miR-122 3, 5 AAV9 EGFP, lacZ, luciferase Liver [67,68]
   Heart miR-122 3 AAV9 Human S100A1 Liver, skeletal muscle [61]

miR-206 3
Cancer
   PyMT mouse breast cancer miR-1 4 AAV9- 

ESGLSQS
Herpes simplex virus 
thymidinkinase (and 

ganciclovir), luciferase

Heart [129]

   Metastatic hepatocellular 
   carcinoma model

miR-122 4 AAV8 Herpes simplex virus 
thymidinkinase (and 

ganciclovir), luciferase

Hepatocytes/liver [128]

   Glioblastoma cells in vitro miR-128 2 Lentiviral Herpes simplex virus 
thymidinkinase (and 

ganciclovir)

Neuronal differentiated 
cells

[127]

   Subcutaneous fibrosarcoma
   xenografts

miR-122 4 Adenoviral Luciferase Hepatocytes/liver [181]

   Intradermal melanoma 
   tumor

miR-122 4 Adenoviral Herpes simplex virus 
thymidinkinase

Hepatocytes/liver [87]

   Human glioma xenografts miR-31
miR-127
miR-143

3
3
3

Baculoviral Herpes simplex virus 
thymidinkinase (and 

ganciclovir)

Astrocytes/brain [85]

   Hepatocellular carcinoma
   model

miR-181 2 Adenoviral Human telomerase reverse 
transcriptase RNA-targeting 

ribozyme

Hematopoietic stem cell- 
and progenitor-derived 

blood cells

[130]

miR-122 3 Hepatocytes/liver [131]
HSC and iPSC
   Tumor-infiltrating 
   monocytes/macrophages

miR-126
miR-130a

2
2

Lentiviral Interferon-α Hematopoietic stem and 
progenitor cells

[134]

   Differentiated myeloid cells miR-126 2 Lentiviral Gp91phox Hematopoietic stem and 
progenitor cells

[135]

   Differentiated   
   hematopoietic cells

miR-126
miR-130a

4
4

Lentiviral Galactocerebrosidase Hematopoietic stem and 
progenitor cells

[133]

   Lymphoid progenitors, 
   myeloid cells

miR‑150 4 Lentiviral GFP Differentiated T and B 
lymphocytes

[132]

   Post-thymic T cells miR‑181a 4 Lentiviral GFP, inhibition of negative 
thymic selection

Developing T cells [182]

   Myeloid cells 
   Immature dendritic cells

miR‑223
miR‑155

4
4

Lentiviral EGFP, NGFR Granulocytes and 
monocytes, mature 

dendritic cells

[17]

   Human fetal fibroblasts miR-302a, d
miR-142-3p

4
4

Lentiviral EGFP, mCherry Human ES, neural 
progenitors

[137]

miR-155 4
miR-223 4

   ES, iPSC miR-292-3p 4 Lentiviral GFP, differentiation of ES to 
neural progenitors

Pluripotent cells [138]

   ES, iPSC let-7a 4 Lentiviral GFP Non pluripotent cells [136]
CNS and eye
   CNS miR-1 3 AAV9 lacZ, EGFP Heart, liver [69]

miR-122 3
   CNS/astrocytes miR-124 4 Lentiviral lacZ, glial glutamate transporter Neurons [141]
   CNS/cortical excitatory 
   neurons

miR-128
miR-221

4, 8, 12
4, 8

Lentiviral EGFP Cortical inhibitory 
neurons

[83]

   Retina/eye miR-124
miR-204

4
4

AAV5
AAV8

EGFP Photoreceptors/retinal 
pigment epithelium

[143]

   Photoreceptor/eye miR-181c 4 AAV2 (quadY-
F+T-V)

GFP Ganglion cells and inner 
retina

[144]

Immune system and other applications
   Skeletal muscle miR-142-3p 2, 4, 8 AAV1 Ovalbumin human sarcoglycan Antigen presenting cells [152,153]
   Hepatocytes/liver miR-142-3p 4 Lentiviral Factor Ⅸ, Ⅷ, induction 

immunologic tolerance
Antigen presenting cells [9,145,147,183]

   Dendritic cells/spleen miR-142-3p
miR-122

4
4

Adenoviral Luciferase, lacZ, combination 
with Cre-loxP system

Hepatocytes/liver [86]

   Neural stem cells miR‑124a 4 Lentiviral GFP, identification of neurons Neurons [184]
   Adipose tissue miR-122 3, 8 AAV8 Human leptin Hepatocytes/liver [185]
   Intramuscular delivery miR-122

miR-206
6
6

AAV8 201Ig immunoadhesin, 
luciferase

Liver, skeletal muscle [186]

Table 1  Application of microRNA-regulated vectors for gene therapy

Geisler A et al . MicroRNA-regulated viral vectors



43 May 20, 2016|Volume 6|Issue 2|WJEM|www.wjgnet.com

are in competition with cellular target mRNAs. By 
the use of complete complementary miR-TS, enabling 
rapid microRNA recycling, and defining an optimal target 
site number, the risk of microRNA saturation can be 
minimized. We and others showed that endogenous 
microRNA profile or microRNA-regulated genes were not 
altered after administration of optimized miR‑TS-bearing 
vectors[61,67,69,81].

Application of microRNA-regulated transgene 
expression systems 
Several promising results using microRNA-dependent 
regulation have been obtained for different disease 
models and vector systems (Table 1).

Application to cardiac gene therapy
AAV vectors have been established as the leading 
vector type for myocardial gene transfer in preclinical 
and clinical applications[98]. Their main advantage is 
their ability to transduce cardiomyocytes in vivo at high 
efficiency. In addition, AAV vectors allow long lasting 
expression of encoded transgenes and do not trigger 
a strong immune response or inflammation[99-102]. Im
portantly AAV vector-driven expression is performed 
without integration of the vector genome into the host 
genome[103] which, in consequence, reduces the risk of 
long term, irreversible side effects[104-106]. As conventional 
AAV vectors containing capsid proteins of serotype 2 
(AAV2) revealed a natural cardiac tropism, their trans
duction efficiency was limited. Therefore discovery of 
naturally occurring AAV serotypes carrying variations 
in the amino acid sequence of the capsid protein[107,108] 
enabled the development of pseudotyped AAV vectors 
and led to substantial improvement of cardiac gene 
transfer. AAV9 vectors are the most cardiotropic sero
type upon systemic vector administration for transgene 
delivery into the heart of rodents[109-115], whereas AAV6 
vectors seems to be superior to other serotypes in large 
animals[116]. In humans, a clinical phase 2b trial showed 
promising results upon intracoronary administration of an 
AAV1 vector expressing the calcium regulatory protein 
SERCA2a in patients with advanced heart failure[117]. 
However, improved cardiac transduction by serotype 
switch did not abrogate the intrinsic property of AAV 
resulting in sustained transduction of a broad range of 
tissues, in particular liver and skeletal muscle.

Transcriptional targeting represents another approach 
to increase cardiac specificity of AAV vectors. To restrict 
AAV vector-mediated transgene expression to the heart 
upon intravenous injection, a variety of cardiac-specific 

promoters have been investigated. Promoters of the 
heavy chain (MHC)[118-120] and the light chain (MLC)[121,122] of 
cardiac protein myosin are most potent to transcriptionally 
mediate heart-specific transgene expression. However, 
endogenous cardiac-specific promoters are too large to 
be packaged into AAV vectors and their core elements 
alone provide only weak transgene expression. Smaller 
hybrid promoters consisting of a cardiac core element 
and another strong enhancer element increased cardiac 
expression[109,122] but transgene expression was also 
detected in other tissues, especially in the liver, skeletal 
muscle and pancreas[61,122]. At this point it seems unlikely 
that promoter-only approaches will sufficiently target the 
vectors, therefore microRNA-dependent regulation of 
AAV vector-mediated transgene expression has shifted 
into focus to further improve cardiac specificity of AAV 
vectors (Figure 2). Two studies carried out by Qiao et 
al[68] and Geisler et al[67] addressed microRNA-mediated 
suppression of transgene expression in liver after sys
temic AAV9 vector application. Among three microRNA 
candidates (miR-122, miR-192 and miR-148a) that have 
been described to be selectively expressed in liver[65,123], 
we found that miR-122 was most abundantly expressed 
in murine liver, whereas expression in murine heart was 
approximately 5 orders of magnitude lower. Systemic 
application of AAV9 vectors containing miR‑122TS in the 3’ 
UTR of an EGFP reporter confirmed effectiveness of miR-
122-mediated suppression in the liver, whereas cardiac 
expression remained unaffected. Interestingly, microRNA-
mediated transgene suppression in the liver was by far 
more efficient than transcriptional control by the en-CMV-
MLC0.26 cardiac hybrid promoter[67]. The other study 
carried out by Qiao et al[68] confirmed improved specificity 
of miR-122-regulated AAV9 vectors. Similar to our study, 
they reported that microRNA-mediated increase of 
cardiac specific expression was even more efficient than 
transcriptional control of transgene expression by an en-
MHC-TNT hybrid promoter.

Abundant transgene expression upon systemic AAV9 
vector application can also be found in the skeletal 
muscle. Therefore transgene suppression in this tissue 
is necessary to further enhance the cardio-specificity 
of AAV vector-mediated gene transfer. According to the 
guidelines for microRNA selection (see above), only 
miR‑206 fulfills the major requirements of microRNA-
mediated repression: It is highly expressed in the skeletal 
muscle and absent in the heart. However, we found 
that a transgene containing miR-206TS was strongly 
suppressed in both the skeletal muscle and heart of mice 

   Human fibroblasts HFL1 miR-124 4 Lentiviral, 
replication 
deficient

Neural conversion genes Ascl1, 
Brn2 and Myt1L

Human induced 
neurons 

[179]

   Skeletal muscle miR-208a 2 AAV9 Human calpain3 Heart [81]

miR-TS: Artificial microRNA target sites; HSC: Hematopoietic stem cell; CNS: Central nervous system; AAV: Adeno-associated virus; GFP: Green 
fluorescent protein; EGFP: Enhanced green fluorescent protein; iPSC: Induced pluripotent stem cells; NGFR: Nerve growth factor receptor; ES: Embryonic 
stem cells; HFL1: Human fetal lung fibroblast 1.
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following systemic application of AAV9 vector. The reason 
for this is binding of the miR-1, which shows high sequence 
homology to miR-206 and is highly expressed in heart 
tissue. By introducing single nucleotide substitutions into 
the seed region of the microRNA/miR-206TS duplex, we 
generated mutated miR-206TS that became resistant to 
miR-1 regulation but remained fully sensitive to miR-206[61] 
(Figure 3). This was a result of compensatory effects 
induced by perfect complementarity of the 3’ portion of 
miR‑206 to mutated miR‑206TS. In vivo transgene ex
pression of AAV9 vectors bearing mutated miR‑206TS 
and miR‑122TS was strongly suppressed in both skeletal 
muscle and the liver, whereas expression in heart 
remained unaffected[61]. Interestingly, contrary to the 
generally applicable concept of miR-TS recognition and 
repression by microRNAs, we observed that insertion 
of single nucleotide mutations within miR‑206TS can 
even enhance miR‑206-mediated transgene repression. 
Although the underlying mechanism remains to be 
elucidated, we observed similar results for miR‑122TS 
repression but not for other modified miR-TS (data not 
published).

Application to suicide gene cancer therapy
Regulation of transgene expression by endogenous 
microRNAs has been exploited for vector-mediated 
suicide gene therapy with Herpes Simplex Virus thy
midine kinase (HSV‑tk). Expression of the HSV-tk 
mediates phosphorylation of the prodrug ganciclovir 
(GCV), thus inhibiting DNA replication in rapidly dividing 
cancer cells. As phosphorylated GCV is also toxic in 
normal cells[124], tumor cell-specific expression of HSV-
tk is required. AdVs are widely used in cancer gene 
therapy. However, they exhibit strong hepatotropism 
after systemic application and can induce severe 
hepatotoxicity after HSV-tk delivery[125,126]. Repression 
of HSV-tk containing miR-122TS induced by miR‑122 
distinctly reduced hepatotoxicity upon local delivery by 
AdV, without altering the antitumor effects, as miR-122 
is weakly expressed in transduced melanoma tumor 
cells but highly expressed in hepatocytes[87]. In another 
approach, a lentiviral vector (LV) expressing HSV‑tk in 
combination with ganciclovir showed improved tumor 
specificity in vitro by miR‑128-mediated transgene 
regulation, a microRNA that is differentially expressed 
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between glioblastoma cells and normal brain tissue[127]. 
Other studies confirmed the reduction of side effects 
by microRNA-dependent suppression of suicide genes 
in cancer gene therapy approaches. Wu et al[85] found 
that in addition to transcriptional control by a glioma-
specific promoter, insertion of miR‑TS for the miR‑31, 
miR‑127 and miR‑143 into baculoviral vectors led to 
repression of HSV-tk in normal neural cells. As these 
microRNAs are more highly expressed in these cells than 
in glioma cells, this approach led to reduced HSV‑tk/GCV 
induced cytotoxicity. More recently, Della Peruta et al[128] 
improved tumor specificity of systemically applied AAV8 
vectors expressing HSV‑tk linked with miR-122TS in 
combination with a liver-specific promoter in a syngeneic 
metastatic murine hepatocellular carcinoma (HCC) 
model. Administration of the vector and GCV treatment 
resulted in a reduction of cancer growth and number 
of metastases without liver toxicity. Moreover Trepel et 
al[129] used miR-TS of the miR‑1 to inhibit cytotoxicity in 
heart after HSV-tk delivery with an AAV9 vector capsid 
variant. Animals treated with the vector were protected 
from cardiac HSV-tk expression and drug-induced 
development of dilative cardiomyopathy, whereas de
livery of the suicide gene to tumors significantly inhibited 
tumor growth after GCV treatment. Another study 
recently carried out by Won et al[130] improved specificity 
of cancer gene therapy by developing microRNA-re
gulated trans-splicing ribozyme that targets human 
telomerase reverse transcriptase (hTERT) RNA in cancer 
cells. The group Ⅰ intron-based ribozyme targets and 
cleaves its substrate RNA and trans-splices an exon 
attached at its 3’ end (e.g., a therapeutic RNA) onto 
the cleaved target RNA, resulting in expression of the 
therapeutic RNA and repression of substrate RNA. As the 
ribozyme specifically targets hTERT RNA positive cancer 
cells, but also hematopoietic stem cell-derived blood 
cells, the ribozyme was modified by inserting target 
sites for the blood cell-specific miR‑181a downstream 
of its 3’ exon. Analysis of AdV-mediated expression of 
the hTERT-targeting trans-splicing ribozyme harboring 
miR‑181aTS with HSV-tk gene as a 3  ́exon under control 
of a liver-specific promoter and GCV treatment resulted 
in specific anticancer effects. Moreover systemic vector 

application in an orthotopic multifocal HCC mouse model 
demonstrated a regression of liver tumor nodules and 
tumor volume, with minimal hepatotoxicity[130]. In a similar 
approach, AdV-mediated administration of the hTERT-
targeting trans-splicing ribozyme containing miR‑122TS 
resulted in efficient anti-cancer effects and reduced 
hepatotoxicity[131].

Application to hematopoietic and pluripotent stem cell 
therapy
For hematopoietic stem cell (HSC) therapy, lineage- and 
differentiation stage-specific microRNA expression can 
be used to specifically express a transgene in a discrete 
subset of progeny. Although integrating vectors, such 
as LVs, mediate long-term expression in progenitor 
cells, expression needs to be often restricted to their 
differentiated progeny. Therefore Brown et al[17] showed 
that miR‑223 de-targets transgene expression in the 
myeloid progeny of HSC (granulocytes and monocytes), 
thus restricting expression to the lymphoid progeny. 
Similarly, transgenes were equipped with miR-TS for 
miR‑150 and miR-155, thus repressing their expression 
in mature T and B cells and mature dendritic cells, 
but not in lymphoid progenitors or immature dendritic 
cells, respectively[17,132]. On the other hand, microRNA-
regulation technology also worked if the expression 
of a toxic transgene needs to be avoided in hemato
poietic pluripotent stem/progenitors cells (HSPC). In 
this regard it has been shown that miR-126 and miR-
130a, both expressed in the HSPC compartment, but 
not in mature blood cells, suppressed LV-mediated 
transgene expression of galactocerebrosidase contain
ing the corresponding miR-TS in HSC, allowing long-
term hematopoiesis after vector transduction and a 
stable bone marrow graft in mice. Moreover a robust 
expression of galactocerebrosidase in mature hema
topoietic cells enabled successful treatment of globoid 
cell leukodystrophy in a mouse model[133]. In a similar 
approach Escobar et al[134] targeted interferon-α expres
sion to tumor-infiltrating monocytes/macrophages using 
a combination of transcriptional and miR-126-/miR‑130a-
mediated control during post-transplant hematopoiesis 
to limit HSC exposure to the transgene thereby inhi
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biting breast cancer progression. Furthermore in an 
approach using therapeutic LV encoding gp91phox 
linked with miR‑126TS under the control of a myeloid-
specific promoter, high levels of myeloid-specific 
transgene expression was achieved for X-linked chronic 
granulomatous disease therapy, entirely sparing the 
miR-126 positive CD34+ HSC compartment. As ectopic 
gp91phox expression in HSC could cause production of 
reactive oxygen species that may damage DNA, alter 
cell growth or induce apoptosis, the transcriptionally and 
post-transcriptionally regulated LV reduced off‑target 
expression and effectively corrected the X-phenotype in 
gp91phox-deficient mice[135]. 

MicroRNA-regulated reporter expression systems 
can also be used to track the differentiation of stem 
cells and have been widely disseminated in the field of 
pluripotent stem cell technology (induced pluripotent 
stem cells, embryonic stem cells)[17,136-138]. A big challenge 
in this field is the in vitro generation of a homogenous 
cell population of a pre-defined lineage which can be 
successfully transplanted. Therefore cell type- and diffe
rentiation-specific microRNAs are helpful to identify 
and select cells with desired differentiation fates. Upon 
differentiation, cells can be selected either by combining 
miR‑TS with a positive or negative regulator such as 
neomycin or thymidine kinase[17,136] or by combining 
with a reporter, such as GFP, and sorting by fluorescent 
activated cell sorting (FACS)[138], respectively.

Application to central nervous system and eye
Gene therapy holds promise for treating of genetic as 
well as metabolic disorders of the central nervous system 
(CNS) and in particular AAVs have received growing 
interest as viral vector systems for gene delivery in 
the last few years. Besides the well-known generally 
favorable properties of AAV vectors, several AAV sero
types are able to cross the blood-brain barrier and thus 
effect an efficient transduction of cells of the CNS with 
systemic vector application[139]. Based on the broad 
range of tissue targeting by AAV9 vectors, Xie et al[69] 
exploited miR-TS technology to restrict AAV9 vectors 
to the CNS. Therefore they constructed AAV9 vectors 
with miR-TS completely complementary to hepatocyte-
specific miR-122 and muscle-specific miR-1 in order to 
repress reporter gene expression in liver, heart and the 
skeletal muscle. In vivo comparison of vectors, each 
bearing one or three miR‑122TS or/and miR-1TS, found 
that the number of miR-TS repeats inversely correlated 
with reporter expression levels in tissues where the 
corresponding microRNA is expressed. Moreover 
systemic application of the microRNA-regulated AAV9 
vector resulted in distinct suppression of the transgene 
in the liver and muscle, whereas it was not altered in 
the brain. Most vector systems transducing the CNS 
have a strong neurotropism. However, for several neuro
degenerative disorders, certain cell types of the CNS, 
such as astrocytes, need to be specifically targeted, 
as they exhibit important physiological functions and 
may display altered functions. Among CNS-specific 

microRNAs, miR-124 is specifically expressed in neurons 
but absent in astrocytes[140]. Accordingly, Colin et al[141] 
demonstrated that insertion of miR-124TS into a LV is 
sufficient to repress transgene expression in neuronal 
cells in vitro and in vivo, whereas expression remained 
unaffected in astrocytes. Moreover, exploiting microRNA 
regulation enables more than targeting transgene ex
pression to neurons or supporting cells. Thus Sayeg et 
al[83] showed that a combinatory regulation of a locally 
applied LV by miR‑128 and miR‑221 targeted transgene 
expression between neuronal subtypes in the murine 
neocortex as expression was selectively inhibited in 
excitatory neurons but not in inhibitory cells.

Inherent retinal degeneration of the eye results from 
impaired function of the retinal pigment epithelium (RPE) 
or photoreceptor (PR) cells and leads to severe visual 
deficits and blindness[142]. In an approach to restrict 
AAV-vector-mediated EGFP reporter gene expression 
to either RPE or PRs, Karali et al[143] subretinally applied 
miR‑TS‑bearing AAV5 vectors into the eye of mice 
and pigs. AAV vectors containing miR-204TS were 
selectively repressed in RPE, which was in agreement 
with the miR‑204 expression in RPE. In contrast the 
EGFP reporter was repressed in PRs but not in RPE if 
the vector was equipped with miR-TS for miR-124, a 
microRNA that is expressed in PRs but absent in RPE. 
For advanced retinal gene therapy, Kay et al[144] recently 
developed an AAV2 vector capsid mutant with a strongly 
increased transduction efficacy for PRs upon intravitreal 
vector delivery. Furthermore, transgene expression was 
restricted to PRs only by use of a combinatorial approach 
of a PR-specific promoter and incorporation of multiple 
target sites for miR-181c, a microRNA which is expressed 
in retinal ganglion cells and the inner retina.

Application to reduce transgene-directed 
immunogenicity
The concept of microRNA-mediated negative regulation 
of transgene expression was first shown by Brown et 
al[9] in order to reduce off-target transgene expression 
in APC upon systemic injection of LV. By combining a 
hepatocytic-specific promoter and target sites for the 
hematopoietic-lineage specific miR-142-3p, a reduced 
transgene expression in APCs allowed a long-term 
expression of clotting factor F.Ⅸ for stable correction 
of hemophilia B mice upon systemic LV administra
tion[145,146]. Furthermore it was shown that this combined 
approach induced an immunological tolerance for the 
transgene[147-149] resulting from hepatocyte-directed 
expression[147,150]. Further studies confirmed these results 
for other vector systems. Intramuscular application of 
AAV vectors leads to appearance of immune responses 
against the transgene and rapid decrease of transgene 
expression, possibly as a result of vector transduction of 
APC[151]. Thus Majowicz et al[152] and Boisgerault et al[153] 
inserted target sites for miR‑142‑3p into the transgene 
expression cassette of AAV1 vectors. Upon intramuscular 
application they observed prolonged expression of the 
transgene in the skeletal muscle, which correlated with 
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reduced immunogenicity to the transgene. 

Oncovirotherapy and vaccines
Besides the development of microRNA-regulated viral 
vectors in order to de-target transgene expression in 
certain tissues, lineages or differentiation states or to 
identify cell subsets, modification of tropism of replication 
competent oncolytic viruses (OV) has gained growing 
interest. Although OVs preferentially replicate in tumor 
cells, application to cancer gene therapy is limited by 
their replication and corresponding induction of toxicity 
in normal tissues. By insertion of miR‑TS for tissue-
specific microRNAs into the viral genome, microRNAs 
have been used to reduce replication in normal cells, while 
maintaining their oncolytic potential in tumor cells. This 
was initially shown by Kelly et al[154], who engineered a 
coxsackie A21 OV with miR‑TS for the skeletal muscle-
specific miR‑206 and muscle-specific miR‑133a, thus 
reducing myotoxicity while maintaining oncolytic potential. 
MicroRNA-regulation of OVs to increase tumor specificity 
has been successfully applied for several RNA[84,155-158] 
and DNA[80,93,159-167] viruses in the meantime. For detailed 
information the reader is referred to Ruiz et al[168].

Another aspect that needs to be addressed is the 
enhancement of safety of live attenuated virus vaccines 
by microRNA-regulation[169]. Insertion of miR‑TS into 
the viral genome leads to reduced primary replication 
in the viral target organ, whereas weaker replication in 
other tissues induces protective immunity of the host. 
This was successfully shown for poliovirus[170], influenza 
virus[171], flaviviruses[172-175] and alphavirus[176].

Other applications 
Activity of a given microRNA can be easily identified by 
coupling corresponding miR-TS to a reporter gene such 
as lacZ, GFP or luciferase and analysis of reporter gene 
expression. This allows dynamic measurement of microRNA 

expression over time on a single cell basis. Because 
reporter gene expression is observed as microRNA-
mediated shut down of expression, the absence of signal 
might be not distinguishable from false negative results 
of failed transduction or transgene silencing. By LV-
mediated co-expression of the microRNA-regulated 
sensor reporter and a second non-microRNA-regulated 
reporter, both under the control of a bi‑directional pro
moter, microRNA activity can be measured independently 
from vector dose, transduction level and promoter 
activity[9,17,133]. This principle has been applied to con
struct a microRNA reporter library for analysis of 
microRNA activity in FACS-sorted cells. This technique 
has many advantages, as it allows the measurement of 
microRNA bioactivity in heterogeneous cell populations 
such as HSC[133] or neural stem cells[177]. However, for 
microRNAs with expression levels close to the detection 
threshold of the reporter system, its reliability is limited 
and other methods are preferred. Thus recently a miR-
ON system (Figure 4) was generated to identify small 
subpopulations of microRNA-expressing cells and to 
select them directly. This system includes transduction of 
a repressor containing miR-TS, together with a reporter 
under its regulation. Reporter activity is observed only 
if the upstream repressor mRNA is degraded and cells 
expressing corresponding microRNA become selectable 
by reporter gene expression[178]. 

Furthermore microRNA-mediated regulation of 
transgene expression can help to improve direct cell 
conversion as shown for conversion of human fibroblasts 
into functional neurons (human induced neurons) by a 
self-regulating vector. Insertion of miR-TS for the neuron-
specific miR-124 linked to the neural reprogramming 
genes Ascl1, Brn2 and Myt1L of an integration deficient 
LV facilitated a down-regulation of conversion gene 
expression once the cell has reached a stable neuronal 
fate, thereby allowing for a more complete functional 
maturation of the cells in culture[179]. 
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For additional applications in further fields, the reader 
is referred to Table 1.

CONCLUSION
In this review we have described the features of microRNA-
regulated transgene expression, including its technical 
mechanisms and its application to transgene delivery 
by viral vectors. The variety of examples showed how 
microRNA regulation can be diversely exploited in diffe
rent contexts as vectors, routes of application or fields 
of research in general. Compared to other targeting 
strategies, including transcriptional and transductional 
targeting, microRNA-regulation displays many advan
tages. Insertion of approximately 100 bp sequence of 
miR-TS can be easily accomplished by conventional 
cloning techniques. In general the small size of miR‑TS 
prevents interference with the packaging capacity 
for therapeutic genes or foreign genes, thus making 
it applicable for both viral vectors and viruses. This 
system has now become a major technique for specific 
application of therapeutic transgenes, for increased tumor 
specificity of oncolytic viruses and enhanced safety of 
recombinant live attenuated virus vaccines. Nevertheless 
each miR-TS needs to be carefully evaluated with regard 
to its optimal effectiveness. Moreover, as many viral 
vectors have a broad tissue tropism, which in general 
requires the use of several target sites to restrict a 
transgene to a specific tissue or cell type, target site 
optimization is required. The miR-ON system may be an 
alternative to overcome this disadvantage. Importantly, 
it may also be a platform to develop microRNA-regulated 
shRNA and artificial microRNA expression systems, which 
are currently not available. 

Based on the results of the overall studies inves
tigating potential side effects induced by microRNA-
mediated transgene regulation, no major side effects 
have been observed to date, suggesting the mechanism 
is safe for therapeutic use. But there is a need to consider 
specific guidelines concerning the complementary 
between target sites and its corresponding microRNA, 
the number of target sites and the strength of transgene 
expression. In summary, microRNA regulation has been 
emerged as a powerful new technology to improve 
vector-mediated transgene expression in vitro and in 
vivo. It has the potential to be translated into clinical 
applications, thereby improving efficacy and safety of 
gene- and virotherapeutic approaches to the degree that 
their use can become more common and be applied to 
additional indications.
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