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Abstract
BACKGROUND
Neoadjuvant chemotherapy is currently recommended as preoperative treatment
for locally advanced rectal cancer (LARC); however, evaluation of treatment
response to neoadjuvant chemotherapy is still challenging.

AIM
To create a multi-modal radiomics model to assess therapeutic response after
neoadjuvant chemotherapy for LARC.

METHODS
This retrospective study consecutively included 118 patients with LARC who
underwent both computed tomography (CT) and magnetic resonance imaging
(MRI) before neoadjuvant chemotherapy between October 2016 and June 2019.
Histopathological findings were used as the reference standard for pathological
response. Patients were randomly divided into a training set (n = 70) and a
validation set (n = 48). The performance of different models based on CT and
MRI, including apparent diffusion coefficient (ADC), dynamic contrast enhanced
T1 images (DCE-T1), high resolution T2-weighted imaging (HR-T2WI), and
imaging features, was assessed by using the receiver operating characteristic
curve analysis. This was demonstrated as area under the curve (AUC) and
accuracy (ACC). Calibration plots with Hosmer-Lemeshow tests were used to
investigate the agreement and performance characteristics of the nomogram.

RESULTS
Eighty out of 118 patients (68%) achieved a pathological response. For an
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individual radiomics model, HR-T2WI performed better (AUC = 0.859, ACC =
0.896) than CT (AUC = 0.766, ACC = 0.792), DCE-T1 (AUC = 0.812, ACC = 0.854),
and ADC (AUC = 0.828, ACC = 0.833) in the validation set. The imaging
performance for extramural venous invasion detection was relatively low in both
the training (AUC = 0.73, ACC = 0.714) and validation (AUC = 0.578, ACC =
0.583) sets. The multi-modal radiomics model reached an AUC of 0.925 and ACC
of 0.886 in the training set, and an AUC of 0.93 and ACC of 0.875 in the validation
set. For the clinical radiomics nomogram, good agreement was found between
the nomogram prediction and actual observation.

CONCLUSION
A multi-modal nomogram using traditional imaging features and radiomics of
preoperative CT and MRI adds accuracy to the prediction of treatment outcome,
and thus contributes to the personalized selection of neoadjuvant chemotherapy
for LARC.

Key words: Radiomics; Rectal cancer; Neoadjuvant chemotherapy; Magnetic resonance
imaging; Computed tomography

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Our study developed and validated a radiomics model that incorporated
computed tomography and magnetic resonance imaging radiomics features for
noninvasive and individualized prediction of clinical response to neoadjuvant
chemotherapy in patients with locally advanced rectal cancer. The combination of
computed tomography and magnetic resonance imaging radiomics features was
associated with better performance than any individual sequence. In contrast, the clinical
model based on extramural venous invasion achieved relatively low diagnostic
performance. The multi-modal nomogram facilitated the easy and noninvasive
estimation of clinical response to neoadjuvant chemotherapy. The proposed radiomics
model performs well, thereby guiding clinical decision-making and preoperative
assessment of neoadjuvant chemotherapy for locally advanced rectal cancer.

Citation: Li ZY, Wang XD, Li M, Liu XJ, Ye Z, Song B, Yuan F, Yuan Y, Xia CC, Zhang X,
Li Q. Multi-modal radiomics model to predict treatment response to neoadjuvant
chemotherapy for locally advanced rectal cancer. World J Gastroenterol 2020; 26(19): 2388-
2402
URL: https://www.wjgnet.com/1007-9327/full/v26/i19/2388.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i19.2388

INTRODUCTION
With the improvement in inspection technology and implementation of the concept of
individualized treatment,  the  early  detection rate  of  rectal  cancer  has  markedly
increased[1]. However, the postoperative recurrence rate of locally advanced rectal
cancer  (LARC)  is  high,  leading  to  poor  prognosis,  and  neoadjuvant  chemo-
radiotherapy (CRT) followed by total mesorectal excision (TME) is recommended for
LARC[2,3]. As previously reported[2,4-6], neoadjuvant CRT can downstage the rate of
LARC by 50%-60%, and achieve a pathological complete response (PCR) rate of 15%-
27%.

However, several studies[7-10] have reported that there were still 7%-37% of LARC
patients who do not respond to neoadjuvant CRT, which may not only increase CRT-
related side effects and economic burden, but also delay surgery time. Furthermore,
non-responders were associated with lower recurrence-free survival rate,  distant
metastasis, and local recurrence rate compared with good responders[11]. Therefore, it
is necessary to identify which patients can benefit from neoadjuvant CRT treatment.

Enhanced computed tomography (CT) and magnetic resonance imaging (MRI) are
recommended  and  commonly  used  for  LARC[3]  to  noninvasively  evaluate  the
therapeutic responses to neoadjuvant CRT. Different imaging techniques have been
reported to identify the response to neoadjuvant CRT, including fluorodeoxyglucose
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positron emission tomography (FDG PET),  T2-weighted MRI,  dynamic contrast-
enhanced MRI, and diffusion-weighted imaging (DWI); however, their performance is
varied and limited[12-15]. Thus, there is an increasing need to identify a more reliable
method for evaluating therapeutic response.

Radiomics,  which  involves  computer-based  extraction  of  a  large  number  of
quantitative imaging features, are analyzed with a specific clinical question in mind to
help clinical decision-making[16].  There are several reports of the successful use of
radiomics analysis for the classification of benign and malignant tissue[17],  adding
information  about  tumor  aggressiveness[18-20],  and  predicting  responsiveness  to
neoadjuvant CRT prior to initiation[21,22].  We hypothesize that CT and MRI-based
radiomics may add value in the evaluation of therapeutic responses to neoadjuvant
chemotherapy in patients with LARC; thus, improving qualitative assessment will
help differentiate patients with a clinical response from those with no response after
neoadjuvant chemotherapy.

The aim of this retrospective study was to create a multi-modal radiomics model
derived from CT and MRI, and to investigate the added value for predicting clinical
response in patients with LARC after neoadjuvant chemotherapy.

MATERIALS AND METHODS

Patients
This study was approved by the Ethics Committee of West China Hospital of Sichuan
University (No. 2019-140). Patient approval or informed consent for the review of
medical images was not required.

LARC was defined as the primary tumor invading the muscularized layer of the
intestinal wall (T3-4), with or without peripheral lymph node metastasis (N0-2), and
without distant metastasis, as detected by imaging or pathological examination[23]. We
retrospectively  included  patients  with  LARC  who  underwent  total  TME  after
neoadjuvant  chemotherapy  in  the  Gastrointestinal  Surgery  Department  of  our
hospital from October 2016 to June 2019. Inclusion criteria were: (1) Rectal MRI and
abdominal  enhanced  CT  scan  were  both  performed  before  neoadjuvant
chemotherapy; and (2) All patients received neoadjuvant chemotherapy before TME.
Exclusion criteria were: (1) Familial polyposis; (2) History of neoadjuvant CRT for
other  malignant  tumors;  (3)  CT  and  MRI  revealed  incomplete  images  prior  to
neoadjuvant chemotherapy. Image quality was poor,  and artifacts were obvious,
which could not be used for image segmentation and radiomic feature extraction and
analysis;  and (4)  Clinical,  laboratory,  and pathology data  were  incomplete.  The
patient selection process is summarized in Figure 1.

Neoadjuvant chemotherapy protocol
The first chemotherapy course adopted the CapeOx plan (oxaliplatin 30 mg/m², day 1
and capecitabine 850-1000 mg/m², bid, day 1-14). With no break time after the first
course, the second to fourth courses adopted the CapeOx plan with sequential oral
apatinib 250 mg qd for 10 consecutive days. There were breaks of 3 wk for the second
to the fourth course; and 3 wk after the fourth course of neoadjuvant chemotherapy,
TME surgery was performed.

CT and MR imaging protocol
Enhanced CT was performed using a 128-MDCT scanner (Somatom Definition AS+,
Siemens  Healthcare  Sector,  Forchheim,  Germany)  and a  dual-source  CT system
(Somatom Definition Flash, Siemens Healthcare Sector, Forchheim, Germany). Both
CT models had the same tube voltage (120 kV), tube current (200-210 mAs), and slice
thickness (2 mm). Intravenous nonionic contrast material (1.2 mL/kg; omnipaque 300
mg/mL, GE Healthcare) was administered via the antecubital vein, using a power
injector at  a  rate of  3  mL/s.  The area of  interest  was located in the center of  the
abdominal aorta at the level of the abdominal trunk. With a trigger threshold of the
aorta reaching 170 HU, the arterial phase (at the trigger) and the portal vein phase (30
s after the trigger) images were obtained.

MRI was performed using a 3.0-T magnet (Magnetom Skyra, Siemens Healthcare,
Erlangen, Germany) with an 18-channel matrix coil. All patients underwent bowel
preparation  with  antispasmodic  medications  before  imaging.  A  routine  clinical
imaging protocol was performed including axial HR-T2WI and axial DWI MRI with
apparent diffusion coefficient (ADC). Dynamic contrast-enhanced (DCE) images were
obtained using a fat-suppressed 3D gradient-echo T1 weighted sequence (volumetric
interpolated breath-hold examination, known as ‘VIBE’). Dynamic contrast-enhanced
images were obtained using 3D T1-VIBE with a volumetric acquisition of the entire
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Figure 1

Figure 1  Flowchart of patient inclusion and exclusion. LARC: Locally advanced rectal cancer; nCT: Neoadjuvant chemotherapy; TME: Total mesorectal excision;
WCH: West China Hospital; CT: Computed tomography; MRI: Magnetic resonance imaging.

rectum that began simultaneously with the intravenous administration of gadolinium
(0.5 mmol/mL; Omniscan, GE Healthcare, Cork, Ireland) followed by a 30 mL saline
flush (3 mL/s). The entire volume was acquired in one second, and the acquisition
was repeated over  a  one-minute  scan time to  acquire  an exact  evaluation of  the
medium  contrast  kinetics  in  the  tumor  tissue  of  all  vascular  phases.  The  MRI
parameters at our institution are summarized in Supplementary Table 1.

Assessment of extramural venous invasion
The  features  of  extramural  venous  invasion  (EMVI)  and  tumor  location  were
evaluated by two radiologists (with 8-12 years of experience in rectal cancer imaging)
who were blinded to pathological results using a scoring system from 0 to 4[24]. EMVI
scoring from 0 to 2 was defined as negativity, and EMVI scoring from 3 to 4 was
defined as positivity. Upon disagreement, they would reach a consensus through
negotiation.

Tumor segmentation, radiomics features extraction, and preprocessing
The open source software ITK-SNAP (3.6.0, open source, www.itksnap.org) was used
for image segmentation. Pre-treatment enhanced CT and MRI findings were analyzed
by a radiologist (with 8 years of experience in rectal cancer imaging), and validated by
a senior radiologist (with 12 years of experience in rectal cancer imaging) within 1-2
wk to  calculate  intraclass  correlation coefficients  (ICCs).  Both radiologists  were
blinded to the histopathology results. The regions of interest (ROIs) were created
manually  using  the  enhanced  CT,  HR-T2WI,  and  last  phase  (60  s  after  contrast
injection) images from DCE-T1 (DCE-T1-60s) and ADC data, including the whole
tumor and excluding the intestinal  lumen.  ROIs of  rectal  tumors were manually
drawn on each  slice.  In  order  to  decrease  data  variability  and make it  easier  to
evaluate quantitative radiomic features, intensity normalization was performed to
transform original CT and MR images into a similar intensity distribution[25].

The 118 patients were randomly divided into a training set (n = 70) and a validation
set (n = 48). A total of 396 radiomic features of each sequence were extracted from all
CT and MR images using the in-house Artificial Intelligence Kit software v.3.0.0.
Normalization of extracted features was performed in the first step before feature
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Table 1  Clinical characteristics of patients in training and validation cohorts, n (%)

Variable
Training cohort, n = 70 Validation cohort, n = 48

Response, n = 48 Non-response, n = 22 P value Response, n = 32 Non-response, n = 16 P value

T3 9 (18.8) 0 (0) 0.002 9 (28.1) 0 (0) 0.03

T4a 31 (64.6) 10 (45.5) 16 (50) 8 (50)

T4b 8 (16.7) 12 (54.6) 7 (21.9) 8 (50)

N0 8 (16.7) 1 (4.6) 0.4 6 (18.8) 2 (12.5) 0.6

N1 26 (54.2) 13 (59.1) 13 (40.6) 9 (56.3)

N2 14 (29.2) 8 (36.4) 13 (40.6) 5 (31.3)

Site: Ultralow 2 (4.2) 1 (4.55) 0.2 4 (12.5) 1 (6.3) 0.01

Site: Low 34 (70.8) 12 (54.6) 21 (65.6) 5 (31.3)

Site: High 12 (25) 9 (40.9) 7 (21.9) 10 (62.5)

EMVI positive 33 (68.8) 5 (22.7) < 0.001 24 (75) 2 (12.5) < 0.001

EMVI negative 15 (31.3) 17 (77.3) 8 (25) 14 (87.5)

Female 14 (29.2) 10 (45.5) 0.2 9 (28.1) 6 (37.5) 0.5

Male 34 (70.8) 12 (54.6) 23 (71.9) 10 (62.5)

CEA ≤ 3.4 32 (66.7) 14 (63.6) 0.8 21 (65.6) 12 (75) 0.5

CEA > 3.4 16 (33.3) 8 (36.4) 11 (34.4) 4 (25)

CA199 ≤ 22 39 (81.3) 19 (86.4) 0.6 29 (90.6) 14 (87.5) 0.7

CA199 > 22 9 (18.8) 3 (13.6) 3 (9.4) 2 (12.50)

Age in yr 59.2 ± 9.7 54.8 ± 10.5 0.09 60.8 ± 9.6 55.3 ± 11.1 0.08

BMI in kg/m2 22.9 ± 3.2 23.1 ± 3.2 0.8 22.8 ± 3.4 23.3 ± 2.9 0.6

Hb in g/L 134.8 ± 20.5 127.9 ± 19.5 0.2 131.4 ± 19.5 127.1 ± 22.2 0.5

Site: Ultralow: Lower margin of tumor involves anal canal; Site low: Lower margin of tumor is below peritoneal reflection; Site: High: Lower margin of
tumor is above peritoneal reflection; EMVI: Extramural venous invasion; CEA: Carcinoembryonic antigen; CA199: Carbohydrate antigen199; BMI: Body
mass index; Hb: Hemoglobin.

selection. We replaced outliers with the median of the particular variance vector when
the values reached beyond the range of the mean and standard deviation. In addition,
we standardized the data in a specific interval. The standardized formula was as
follows: (fi-u)/std, where fi represents a single characteristic datum, u is the average
value of the data column, and std is the standard deviation of the data column.

Radiomics feature selection
Adding  a  prior  feature  ranking  procedure  may  be  helpful  for  improving  final
performance. Therefore, after elimination of redundant features and features with low
reproducibility,  we used a  multivariate  ranking method [minimum redundancy
maximum relevance (mRMR)] to identify the most important features on the basis of a
heuristic scoring criterion, and only the top ranked features were retained[26-28]. The
least absolute shrinkage and selection operator (LASSO) was then used for selection
bias  of  the  features  from  the  20  top  ranked  features.  λ  was  the  regularization
parameter of LASSO regression and was selected when the ten-fold-cross-validation
error was minimal.

Using the balanced dataset
Considering  that  the  non-responders  group  contained  fewer  patients  than  the
responders group, this might have an adverse impact on classifier performance; thus,
the synthetic minority oversampling technique was applied with the joint weighting
of features in the optimal subset to generate samples from the minority group to
balance the size of the majority group[29-31]. The advantage of this method is to obtain
synthetic samples that have similar attribution values to existing samples and are “not
merely replications”, thus enhancing the representation of the minority group while
retaining the original structure of the samples.

Model building
Finally, the most significant features were determined to construct the radiomics
model on the basis of logistic regression. We first created five different models based
on individual enhanced CT, MRI (DCE-T1, HR-T2WI, ADC), and EMVI, and then
compared the performance of the models based on individual sequences and their
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Figure 2

Figure 2  A 56-year-old male with locally advanced rectal cancer. A-C: Representative manual segmentation of the whole lesion in the axial dynamic contrast
enhanced T1 images and enhanced computed tomography. Dotted lines represent the delineations of the regions of interest used to derive the radiomics features; D:
Three-dimensional volumetric reconstruction of the segmented lesion.

combination.  The  best  of  these  models  was  constructed  into  the  multi-modal
radiomics nomogram. Clinical risk factors were compared via univariate analysis, and
variables with P < 0.05 were included in the clinical model. Models were trained using
the repeated 10-fold-cross-validation method in  the training set,  and estimation
performance was evaluated in the validation set.

Reference standard and pathological assessment of response
The reference standard was the histopathological results generated by assessing the
basic histopathology of the tumor specimens after TME. Histopathological analysis
was performed by specialized gastrointestinal histopathologists with more than 10
years of experience who was blinded to imaging findings. Pathological grading of
primary tumor regression was defined according to the four-tier  American Joint
Committee on Cancer tumor regression grade (TRG) system[32]. TRG 0-2 was defined
as a response to neoadjuvant chemotherapy, and TRG 3 was defined as non-response.

Statistical analysis
Statistical analyses were performed with R software v. 3.4.3 (R Core Team, Vienna,
Austria).  Performance  of  the  different  models  was  assessed  using  the  receiver
operating characteristic curve (ROC) analysis, and demonstrated as area under the
curve  (AUC)  and  accuracy  (ACC).  Calibration  plots  were  used  to  graphically
investigate the performance characteristics of the nomogram. The DeLong test was
used for statistical comparison of the ROC curves. The t test or Mann-Whitney U test
was performed to compare continuous variables, while a χ2 or Fisher’s exact test was
used for classifying variables between groups. All statistical tests were two-sided, and
a Bonferroni-corrected P value was used to identify the significance of the feature by
multiple comparisons.

RESULTS

Patient characteristics
In this study, we enrolled 118 LARC patients who underwent TME after neoadjuvant
chemotherapy, including 38 (32.2%) non-responders (22 males, 16 females) and 80
(67.8%) responders (57 males, 23 females). The patients were randomly divided into
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the  training  set  (n  =  70)  and  the  validation  set  (n  =  48).  Demographic  and
clinicopathological characteristics of the cohort are presented in Table 1. Univariate
factor analysis showed statistically significant differences in EMVI between the two
groups (P < 0.001). There were no differences in gender, age, BMI, TNM stage[3] (T,
tumor;  N,  Lymph Node;  M,  Metastasis),  carcinoembryonic  antigen  (CEA)  level,
Carbohydrate antigen 199 (CA199) level, and lesion region between the response and
non-response groups.

Performance of radiomics models and nomogram
A total of 396 radiomic features of each sequence were extracted from all CT and MR
images  (42  first-order  histogram  features,  334  second-order  texture  features,  9
morphological features, and 11 gray-level zone size matrix features). After elimination
of redundant features and features with low reproducibility, 65 radiomic features,
including 18 features from enhanced CT, 14 from HR-T2WI, 17 from ADC, and 16
from DCE-T1 (Supplementary Table  2)  were used to  build individual  radiomics
models. For the combined model, we used a multivariate ranking method (mRMR) to
identify the most important features, and only the top ranked features were retained.
The most significant features were then investigated to construct the radiomics model
on  the  basis  of  logistic  regression.  Finally,  13  radiomic  features  with  non-zero
coefficients (two features from enhanced CT, one from HR-T2WI, five from ADC, and
five from DCE-T1) were selected to calculate the radiomics score. The names of the
selected features can be found in Supplementary Table 2. The agreement between the
two radiologists on selected radiomic features was considered excellent (ICC range:
0.654 to 0.923). The Lasso process is shown in Figure 3.

As shown in Table 2, for an individual sequence, the HR-T2WI model performed
better (AUC = 0.859, ACC = 0.896) than the CT (AUC = 0.766, ACC = 0.792), DCE-T1
(AUC = 0.812, ACC = 0.854), and ADC (AUC = 0.828, ACC = 0.833) models in the
validation set. The combined radiomics model had a significantly better performance
than CT (P = 0.03), while no significant differences were found when compared with
DCE-T1, HR-T2WI, and ADC in the training set (Figure 4A). In the validation set, the
combined radiomics model (AUC = 0.908, ACC = 0.812) had a better performance
than the individual DCE-T1, HR-T2WI, and ADC models, but the differences were not
significant.  The EMVI model  achieved a  relatively  low performance  in  both  the
training (AUC = 0.73, ACC = 0.714) and validation (AUC = 0.578, ACC = 0.583) sets.
When combined with radiomic features, the multi-modal radiomics model performed
better, and reached an AUC of 0.925 and ACC of 0.886 in the training set (Figure 4B),
and an AUC of  0.93 and ACC of  0.875 in the validation set.  The comparisons of
different radiomic feature model performances were presented in Supplementary
Table 3.

For the clinical radiomics nomogram, EMVI features and the radiomics score were
identified  by  univariate  analysis  (P  <  0.05).  In  multivariable  logistic  regression
analysis, the radiomics score [odds ratio (OR) =1.34, P < 0.001] and EMVI (OR = 6.72,
P = 0.01) significantly predicted the clinical response of neoadjuvant chemotherapy
for LARC. Therefore, the radiomics nomogram was constructed with the radiomics
score and EMVI, and good agreement was found between the nomogram prediction
and actual observation in the calibration plots (Hosmer-Lemeshow test; P  = 0.17)
(Figure 5).

DISCUSSION
Our study developed and validated a radiomics model that incorporated CT and MRI
features for the noninvasive and individualized prediction of clinical response to
neoadjuvant chemotherapy in patients with LARC. The combination of CT and MRI
(DCE-T1, HR-T2WI, and ADC) features was associated with better performance than
any individual  sequence.  In contrast,  the clinical  model  based on EMVI showed
relatively  low  performance.  A  multi-modal  nomogram  facilitated  an  easy  and
noninvasive  estimation  of  clinical  response  to  neoadjuvant  chemotherapy.  The
proposed radiomics model performed well,  thereby adding accuracy to decision-
making and the clinical assessment of neoadjuvant chemotherapy for LARC.

Although neoadjuvant CRT has been considered the standard treatment option for
LARC, the main target of  radiotherapy is  local  control,  and its  effects on distant
metastasis or overall survival are still controversial, especially in patients undergoing
TME surgery[33-35]. Moreover, the short- and long-term adverse effects of radiotherapy,
such as urogenital  anal dysfunction and occurrence of secondary cancer,  are not
negligible[36-38]. Due to progress in new effective chemotherapy strategies, the concept
of neoadjuvant chemotherapy without radiotherapy has emerged. Recently, several
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Table 2  Performance of optimal radiomic signatures

Characteristic AUC 95%CI Cut-off ACC Specificity Sensitivity

EMVI

Training 0.73 0.619-0.842 0.331 0.714 0.688 0.773

Validation 0.578 0.426-0.731 0.583 0.594 0.562

CT

Training 0.809 0.745-0.872 0.5 0.818 0.875 0.742

Validation 0.766 0.632-0.899 0.792 0.844 0.688

DCE-T1

Training 0.848 0.79-0.907 0.5 0.818 0.875 0.742

Validation 0.812 0.688-0.937 0.854 0.938 0.688

HR-T2WI

Training 0.845 0.786-0.903 0.5 0.857 0.932 0.758

Validation 0.859 0.746-0.973 0.896 0.969 0.75

ADC

Training 0.847 0.789-0.904 0.5 0.844 0.83 0.864

Validation 0.828 0.71-0.946 0.833 0.844 0.812

CRM

Training 0.921 0.842-1 0.318 0.886 0.854 0.955

Validation 0.908 0.823-0.994 0.812 0.812 0.812

MRM

Training 0.925 0.845-1 0.447 0.886 0.896 0.864

Validation 0.93 0.86-1 0.875 0.875 0.875

EMVI: Extramural venous invasion; CT: Computed tomography; DCE-T1: Dynamic contrast enhanced T1
images;  HR-T2WI:  High resolution T2-weighted imaging;  ADC:  Apparent  diffusion coefficient;  CRM:
Combined  radiomic  model;  MRM:  Multi-modal  radiomics  model;  AUC:  Area  under  the  curve;  CI:
Confidence interval; ACC: Accuracy.

studies[39-41] have evaluated the feasibility and efficacy of neoadjuvant chemotherapy
for LARC, and the results were promising; therefore, neoadjuvant chemotherapy
without radiotherapy was performed in our study.

Imaging examination plays a key role in the evaluation of response to neoadjuvant
chemotherapy  for  LARC.  Our  study  showed  that  MRI  features  of  EMVI  were
significantly  positive  in  the responder  group compared with the non-responder
group, which is consistent with the literature[42,43].  However, there were still some
limitations[44,45]  in the evaluation of EMVI using MRI: First,  the limitation of MRI
resolution ratio and scan slice thickness resulted in a poor display of small vessels,
and the examination results of EMVI may be false-negatives.  Second, some local
advanced cancers are accompanied by high vein invasion or extensive destruction of
the vascular wall and cell structure with no normal vascular structure. Furthermore,
MRI may indicate positive EMVI findings, which might increase the false-negative
rate of pathological diagnosis. Therefore, a more accurate model is needed to predict
the efficacy of neoadjuvant chemotherapy for LARC.

Recently, several studies have reported that radiomic features based on CT and
MRI  showed  a  good  relationship  with  tumor  biological  characteristics  and
heterogeneities, which was helpful in predicting the curative effect of neoadjuvant
CRT for LARC[21,22,46-48].  Most  of  the above studies aimed to predict  patients with
pathologic complete response (PCR) by radiomics analysis, so as to omit surgery and
over-treatment. Under neoadjuvant therapy, the rate of PCR was low, ranging from
15-27%[21,22,46-48], which indicated that approximately 80% of patients did not achieve
PCR and possibly received surgical intervention. However, even without PCR, the
patients achieved partial responsiveness and benefited from neoadjuvant CRT by
shrinking  the  tumor  and  descending  the  tumor  stage,  which  could  improve
resectability  rate[8,49].  According  to  the  TRG,  the  response  rate  of  neoadjuvant
chemotherapy was up to 67.8%, which means that 32.2% of patients did not benefit
from the therapeutic strategy, and suffered from side effects and pain due to systemic
chemotherapy.  Therefore,  the  purpose  of  our  study was  to  differentiate  clinical
response  (including complete  and partial)  from non-responding LARC patients
receiving neoadjuvant chemotherapy.

Multiparametric  MRI  radiomic  features  were  reported  to  hold  potential  in
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Figure 3

Figure 3  Texture feature selection using the least absolute shrinkage and selection operator binary logistic regression model. A: Tuning parameter λ
selection in the least absolute shrinkage and selection operator model used 10-fold cross-validation via minimum criteria. Area under the receiver operating
characteristic curve was plotted versus the log λ. Dotted vertical lines were drawn at the optimal values using the minimum criteria. A λ value of -5.47, with log λ,
according to 10-fold cross-validation; B: Least absolute shrinkage and selection operator coefficient profiles of the 20 top ranked texture features. A coefficient profile
plot was produced against the log λ sequence. A vertical line was drawn at the value selected using 10-fold cross-validation, where optimal λ resulted in 13 nonzero
coefficients.

predicting non-responsiveness to neoadjuvant therapy in patients with LARC, which
achieved an area under the ROC curve of 0.82-0.83[9,10]. In the present study, the HR-
T2WI model performed better (AUC 0.859, ACC 0.896) than the above. However,
most studies adopted a single examination method, and did not integrate multimodal
imaging  examination  methods.  Our  study  combined  enhanced  CT  with
multiparameter  MRI  to  construct  a  multi-modal  model  with  higher  prediction
efficiency than a single radiomics model.

In the era of precision medicine, a single feature or model can no longer meet the
requirements of individualized treatment. Only the comprehensive analysis of all
potentially useful information can improve the accuracy of prediction and diagnosis.
A recent study[50]  has shown that combining clinical variables with the radiomics
model can improve predictive performance of neoadjuvant CRT for LARC. However,
no differences were found in clinical variables of gender, age, BMI, TNM stage, CEA,
CA199, and lesion region between responder and non-responder groups in our study.
Thus, we created the multi-parameter radiomics model only combined with EMVI to
build a comprehensive prediction model, which had the highest prediction value in
the training (ROC 0.925) and validation (ROC 0.93) group, respectively. In addition,
this  prediction  model  was  made  into  a  visual  nomogram,  which  calculated  the
specific probability of each patient's curative effect based on the sum of the scores of
each risk factor, making it easier for clinicians to judge the specific situation of each
patient, and provide personalized treatments for patients.

There are several studies[22,46,51-53]  reporting the use of joint models to construct
nomograms, which have achieved a considerable prediction of neoadjuvant CRT for
LARC. However, most studies only used a single imaging method, such as CT, MRI,
or ultrasound. In contrast, the present study created a prediction model combined
with  CT  and  MRI,  which  has  been  the  routine  imaging  examination  method
recommended by guidelines. Therefore, our multi-modal radiomics prediction model
is economical and easy for clinical practice. Besides, some studies evaluated F18-FDG
PET/CT and/or MRI radiomic features, and reported a high predictive value for
curative effect[51,54]; however, F18-FDG PET examination is expensive and difficult to
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Figure 4

Figure 4  Receiver operating characteristic curves in the training set. A: Combined radiomics model [area under
the curve (AUC) = 0.908, accuracy (ACC) = 0.812] achieved a better performance than individual computed
tomography, dynamic contrast enhanced T1 images, high resolution T2-weighted imaging and apparent diffusion
coefficient models; B: The extramural venous invasion model achieved relatively low performance in the training
(AUC = 0.73, ACC = 0.714) set. In contrast, the multi-modal radiomics model (AUC = 0.925, ACC = 0.886) and
combined radiomics model (AUC = 0.921, ACC = 0.886) performed better. CRM: Combined radiomics model; DCE-
T1: Dynamic contrast enhanced T1 images; HR-T2WI: High resolution T2-weighted imaging; ADC: Apparent diffusion
coefficient; CT: Computed tomography; MRM: Multi-modal radiomics model; EMVI: Extramural venous invasion.

popularize.
Our research has several limitations. First, due to its retrospective design, there

might be selection bias, although the patients were continuously enrolled. Second, the
sample size  was small  as  the  neoadjuvant  chemotherapy protocol  is  new in our
hospital, and has not yet been widely used. Therefore, the results of the present study
remain to be proven using different protocols of neoadjuvant chemotherapy or CRT.
Third, some biological characteristics such as overexpression of human epidermal
growth factor receptor 2 and Ki-67 were reported to have good prediction of response
to  neoadjuvant  chemotherapy[55-57];  however,  in  our  study,  the  above  biological
markers were not available in all included patients. Thus, the multi-modal nomogram
combined with biological characteristics is desirable in the future.

In conclusion, the findings of this study showed that the multi-modal nomogram
established by radiomics of preoperative CT and MRI adds accuracy to prediction and
could contribute  to  the personalized selection of  neoadjuvant  chemotherapy for
LARC.
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Figure 5

Figure 5  Development of predictive nomograms. A: From each variable location on the corresponding axis, a line was drawn straight upward to the point axis and
a point was obtained. After adding up all points, a line from the total points axis was drawn to the bottom line to determine the probability of response to neoadjuvant
chemotherapy; B: Calibration curves for the radiomics nomogram in the training and validation cohort. The actual outcome of response to neoadjuvant chemotherapy
is represented on the y-axis, and the predicted probability is represented on the x-axis. The closer the fit of the diagonal red and blue lines to the ideal grey line
indicates the predictive accuracy of the nomogram. EMVI: Extramural venous invasion.

ARTICLE HIGHLIGHTS
Research background
Neoadjuvant chemotherapy is currently recommended as preoperative treatment for locally
advanced rectal cancer (LARC); however,  evaluation of treatment response to neoadjuvant
chemotherapy is still challenging.

Research motivation
Several studies have reported that there were still 7-37% of LARC patients who do not respond
to  neoadjuvant  CRT,  which may not  only  increase  CRT-related side  effects  and economic
burden, but also delay surgery time. Therefore, it is necessary to identify which patients can
benefit from neoadjuvant CRT treatment.

Research objectives
To create a multi-modal radiomics model to assess therapeutic response after neoadjuvant
chemotherapy for LARC.

Research methods
This retrospective study consecutively included 118 patients with LARC who underwent both
computed  tomography  (CT)  and  magnetic  resonance  imaging  (MRI)  before  neoadjuvant
chemotherapy between October 2016 and June 2019. Histopathological findings were used as the
reference standard for pathological response. Patients were randomly divided into a training set
(n = 70) and a validation set (n = 48). The performance of different models based on CT and MRI,
including apparent diffusion coefficient (ADC), dynamic contrast enhanced T1 images (DCE-T1),
high resolution T2-weighted imaging (HR-T2WI), and imaging features, was assessed by using
the receiver operating characteristic curve (ROC) analysis and was demonstrated as area under
the curve (AUC) and accuracy (ACC). Calibration plots with Hosmer-Lemeshow tests were used
to investigate the agreement and performance characteristics of the nomogram.

Research results
Eighty of 118 patients (68%) achieved a pathological response. For an individual radiomics
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model, HR-T2WI performed better (AUC 0.859, ACC 0.896) than CT (AUC = 0.766, ACC = 0.792),
DCE-T1 (AUC = 0.812, ACC = 0.854), and ADC (AUC = 0.828, ACC = 0.833) in the validation set.
The imaging performance for extramural venous invasion (EMVI) detection was relatively low in
both the training (AUC = 0.73, ACC = 0.714) and validation (AUC = 0.578, ACC = 0.583) sets. The
multi-modal radiomics model reached an AUC of 0.925 and ACC of 0.886 in the training set, and
an AUC of 0.93 and ACC of 0.875 in the validation set. For the clinical radiomics nomogram,
good agreement was found between the nomogram prediction and actual observation.

Research conclusions
A multi-modal nomogram using traditional imaging features and radiomics of preoperative CT
and MRI adds accuracy to the prediction of treatment outcome, and thus contributes to the
personalized selection of neoadjuvant chemotherapy for LARC.

Research perspectives
Some biological  characteristics  such as  overexpression of  human epidermal  growth factor
receptor  2  and  Ki-67  were  reported  to  have  good  prediction  of  response  to  neoadjuvant
chemotherapy; however, in our study, the above biological markers were not available in all
included patients. Thus, the multi-modal nomogram combined with biological characteristics is
desirable in the future.
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