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Abstract
At the 3’ end of genomic hepatitis C virus (HCV) RNA 
there is a highly conserved untranslated region, the 3’
X-tail, which forms part of the 3’UTR. This region plays 
key functions in regulation of critical processes of the viral 
life cycle. The 3’X region is essential for viral replication 
and infectivity. It is also responsible for regulation of 
switching between translation and transcription of the 
viral RNA. There is some evidence indicating the con
tribution of the 3’X region to the translation efficiency of 
the viral polyprotein and to the encapsidation process. 
Several different secondary structure models of the 3’X 
region, based on computer predictions and experimental 
structure probing, have been proposed. It is likely that 
the 3’X region adopts more than one structural form in 
infected cells and that a specific equilibrium between the 
various forms regulates several aspects of the viral life 
cycle. The most intriguing explanations of the structural 
heterogeneity problem of the 3’X region came with the 
discovery of its involvement in long-range RNA-RNA 
interactions and the potential for homodimer formation. 
This article summarizes current knowledge on the struc
ture and function of the 3’X region of hepatitis C genomic 
RNA, reviews previous opinions, presents new hypotheses 
and summarizes the questions that still remain unan
swered.

Key words: Hepatitis C virus; 3’UTR; 3’X-tail; 3’X region; 
3’X RNA; RNA structure

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Several different secondary structure models of 
the 3’X region have been proposed. It is likely that the 3’
X region adopts more than one structural form in infected 
cells and that a specific equilibrium between the various 
forms regulates several aspects of the viral life cycle. This 
article summarizes current knowledge of the structure 
and function of the 3’X region of hepatitis C genomic RNA, 
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reviews previous opinions, presents new hypotheses and 
summarizes the questions that still remain unanswered.
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INTRODUCTION
Hepatitis C virus (HCV) belongs to the family Flaviviridae, 
a member of the genus hepaciviruses. HCV was identified 
in 1989 as one of the viruses capable of causing viral 
hepatitis, in addition to the previously known hepatitis A 
and B viruses (HAV, HBV)[1]. There are seven major HCV 
genotypes that differ in virulence and their geographic 
distribution[2]. Currently, it is estimated that worldwide 
more than 185 million people are infected with HCV, 
which represents 2.8% of the world’s population[3]. In­
fection usually takes place in the absence of obvious 
clinical symptoms, and the resulting inflammation of 
the liver often progresses to become chronic, usually 
lasting for years. In time, the chronic inflammation can 
lead to cirrhosis of the liver and ultimately liver failure or 
to the development of primary liver cancer[4]. Although 
the virus replicates mainly in hepatocytes, it also occurs 
in peripheral blood mononuclear and central nervous 
system microglia[5,6]. In people with simultaneous infec­
tion with HIV (human immunodeficiency virus), HCV repli­
cation was also observed in other tissues[7]. Sometimes 
HCV enters cells of the immune system, leading to very 
long-lasting effects which are extremely difficult to treat 
effectively[8].

While progress has been made in the treatment of 
some other common viral infections, HCV infection re­
mains an important health problem in the world. Current 
standard treatment methods have the desired thera­
peutic effect on 40%-60% of patients[4]. The new highly 
effective drug, grazoprevir, is able to cure patients with 
93% effectivity[9], unfortunately, the treatment is still 
very expensive and out of reach for the majority of the 
infected individuals, many of whom live in Third World 
countries. So far, no HCV vaccine has been developed, 
which is due to the high genetic variability of the virus, 
comparable to the genetic variability of HIV. In the 
absence of widely accessible conventional drugs and vac­
cines, numerous attempts have been made to design 
inhibitors of viral proteins, inhibitory oligomers of the 
antisense and ribozyme type, and more recently also of 
RNA interference tools directed against viral RNA[4,10,11].

HCV is a small, enveloped virus with a diameter of 
40-60 nm, whose genome is a single-stranded, positive-
sense RNA of about 9.6 kb in length[6,10,12]. In the viral 
replication process, the positive-sense RNA strand is tran­
scribed into negative-sense counterpart, the replication 
intermediate, which serves as the template for the RNA 

synthesis of progeny genomes. The HCV genome has 
one very long open reading frame (ORF). It encodes a 
precursor polyprotein, which is digested in a series of 
cleavage processes to finally produce proteins: C, E1, 
E2, p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B[13]. The 
coding sequence of the HCV genome is flanked by two 
untranslated regions: the 5’UTR and the 3’UTR (5’ and 
3’ untranslated regions). Both these regions play key 
functions in regulating HCV life cycle and determine its 
expression level. The 5’UTR contains a highly structured 
regulatory element, an IRES (internal ribosome entry 
site), that enables cap-independent translation. The 3’
UTR is engaged in the replication process and in the 
regulation of translation. In addition, control of other pro­
cesses as, for example, assembly of virions and switching 
between different developmental phases takes place with 
the participation of the structural RNA elements present 
at the very 3’ end of the HCV genome.

This article presents the current state of knowledge 
about the structure and functions of the most terminal 
section of the 3’UTR of hepatitis C virus, the 3’X-tail. 

STRUCTURE OF THE 3’UTR REGION
HCV 3’UTR has a variable length of 170 to 250 nucleo­
tides (Figure 1). Three characteristic sections have been 
recognized in this region: immediately after the stop co­
don there is a variable region about 25-130 nucleotides 
in length, characterized by high sequence heterogeneity 
between various genotypes, but conserved within the 
same genotype of the virus. Next there is a poly-pyri­
midine segment of varying length, independent of the 
type, or even a subtype of virus, ranging from about 
30 to 130 nucleotides. At the very end of the genome, 
there is an 3’X region, discovered 6 years after cloning of 
the virus, which is 98 nucleotides long and is an almost 
absolutely conserved sequence[6]. 

Within the first, variable region of 3’UTR, two se­
quence motifs are present that are found in all geno­
types of HCV. These are: the ACACUCC section, which 
represents a seed-region for miR-122[14], and the UG 
dinucleotide located at the very end of the region, di­
rectly upstream the poly (U/UC) section[6]. The stop 
codon is located in the apical loop of the stem-loop motif, 
named 5BSL3.4 or SL9360, which is created partly from 
the terminal nucleotides of the ORF encoding the NS5B 
protein and partly from non-coding nucleotides. The 
poly-pyrimidine section can be divided into a two poly 
(UC) parts uneven in length, which are separated by 
the one poly (U) region. The poly-pyrimidine segment 
is heterogeneous, not only in terms of length, but also 
in nucleotide sequence. In genotypes 2a, 3a, 3b there 
are several conserved adenosine residues in this region 
that are missing in genotypes 1b and 2b[6]. Individual 
guanosine residues are also observed on rare occasions.

3'X-tail
Initially, it was suspected that at the 3' terminus of 
the HCV genome a poly (U) or poly (A) sequence was 
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present. The existence of the 98-nt long 3'X region was 
discovered by Tanaka and colleagues in 1995[15]. Almost 
simultanously the presence of the 3'X at the end of the 
HCV genome identified Kolykhalov et al[16]. Comparison 
of the sequence of this RNA segment in different viral 
isolates indicated 96%-100% sequence conservation 
of the 3'X region, with only single substitutions in the 3' 
terminal 46-nt sequence[6]. This is an unusual feature 
for this dynamically changing virus, that suggests its 
extremely important function.

Several different secondary structure models of the 3'X 
region were proposed, based on computer predictions 
and experimental structure probing by chemical modi­
fication, enzyme digestion, RNA cleavage induced by 
Pb2+ ions, NMR (nuclear magnetic resonance) and SAXS 
(small angle X-ray scattering). A stable structure of the 
SL1 hairpin was proposed for the 3' part of the 3'X RNA, 
which is common to different structural models (Figure 

2)[17-21]. The 52-nucleotide segment making up the 5' part 
of the 3'X region could not be assigned an unambiguous 
structure based on the experimental results obtained. 
The proposed models were only partially confirmed by 
the results of experimental studies[6,17,18]. Poor ordering 
of this fragment or formation of more than one structural 
form have been suggested[17,18,20]. 

One of the first structural models of the 3'X region 
suggested the presence of three hairpin motifs: SL1, 
SL2, and SL3 (Figure 2A)[17,18]. Another structural model 
suggested a set of four hairpins: SL1, SL2a, SL2b 
and SL3, where SL1 and SL3 did not differ from the 
first model, but two shorter hairpins replaced the SL2 
motif[20]. The main reason for the proposed change was 
the observation of strong DMS modifications, as well 
as Pb2+ ion-induced cleavages, in the middle of the SL2 
double-stranded stem (C44-C45), which indicated a 
single-stranded or highly flexible region there. In this four 
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Figure 1  Secondary structure model of the 3'UTR of hepatitis C virus genome with adjacent 3' terminal sequence of the coding region. The stop codon is 
indicated by a gray ellipse. The regions involved in the kissing-interactions are marked with blue lines; the region involved in dimerization is indicated by a red line; the 
seed region for miR122 is highlighted in bold.
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genome, while the open conformation, SL1' with the 3' 
overhang is associated with dimerization (described in 
the next section).

The role of selected metal ions was investigated 
regarding its influence on the structure of the 3'X-tail 
but it seems that neither magnesium, nor sodium ion 
concentration determine its folding, within the range of 
normal physiological conditions[26]. However, at higher 
ionic strength, extended homodimers are preferentially 
formed over 2xSL monomers[24]. A chaperone role of 
the viral C protein (core protein), has also been sug­
gested[23,27]. Long-range RNA-RNA interactions with 5’ 
sequences in the genome or with a second genomic RNA 
molecule seems to influence the structure of the 3'X 
region more than the presence of specific metal ions.

It is very likely that the 3'X region can adopt more 
than one structural form in infected cells and that a spe­
cific equilibrium between these forms regulates several 
processes of the viral life cycle. These different structural 
forms may be favored by distinct viral genotypes what 
can help to explain their differential virulence and drug 
resistance[28,29].

Long range RNA-RNA interactions
Previous investigation of genomic HCV RNA and a con­

stem-loop model (4xSL), the reactive cytidine residues 
are located in the apical loop of the short SL2b motif 
(Figure 2B). In addition, it was noted that the SL2a and 
SL2b hairpins have the potential to create a pseudoknot 
after rearrangement of their base pairing[20]. However, 
discovery of functionally important long-range kissing 
interactions between a sequence located in the apical 
loop of the SL2 hairpin and the upstream sequence in the 
region encoding NS5B[22] (see next section), seemed to 
support the three- (3xSL), but not the four- (4xSL) stem-
loop model for the 3'X region. Thus, the 3xSL structure 
model of the 3'X-tail became the favored idea during the 
following decade.

Recently, based on NMR and SAXS studies, a two-
hairpin model (2xSL) has been proposed for the 3'X 
region, consisting of the SL1 and SL2' (named elsewhere 
also SL2/3) (Figure 2C)[21,23,24]. In addition, in this model 
the SL1 hairpin may fold in two different ways: the 
closed structure - SL1 or the open one - SL1', differing by 
the three terminal base-pairs of the hairpin being paired 
or unpaired, respectively (Figure 2C)[21,23,25]. In the 2xSL 
model the previously identified flexible cytosine residues 
(C44-C45) are located within the internal loop of the SL2' 
motif. The closed conformation of SL1 is associated with 
long-range kissing interactions with another part of the 

Dutkiewicz M et al . Structural forms of the 3’X region

Figure 2  Diverse secondary structure models proposed for the 3'X region of hepatitis C virus genome. A: The 3xSL model[17,18]; B: The 4xSL model[20]; C: The 
2xSL model[21]. The region involved in the kissing-interactions is indicated with blue line, the region involved in dimerization is marked with red line; possible alternative 
folding of separate fragments are displayed as gray rectangles.

A B C

SL 3

SL 2

SL 2

SL 1

Closed

SL 3

SL 2b

SL 2a

SL 1

Closed

SL 2'

SL 1' SL 1

ClosedOpen



3378 August 14, 2018|Volume 24|Issue 30|WJG|www.wjgnet.com

struct containing only 5'UTR and 3'UTR did not show 
any interaction of the X region with other regions of 
the molecules studied. This suggested the structural 
independence of these two regions of viral RNA from 
each other[17]. Later tertiary[30-32] interactions at the 
3' end of the HCV genomic strand were proposed by 
Friebe et al[22]. The kissing interactions between the 
absolutely conserved “k” segment of the X region: 
32X-GCUGUGA-38X and the “k′” segment of the NS5B 
coding sequence: 9281-UCACAGC-9287 do not require 
a protein chaperone. These sequence stretches are lo­
cated within apical parts of SL elements called SL2 or 
SL2' and 5BSL3.2, which is one of the domains in the 
CRE (cis-acting replication element) (Figure 1)[22,28,31,33]. 
It is easy to imagine that kissing interactions could be 
initiated by any complementary stretch of nucleotides 
located within two apical loops of RNA hairpins. This 
scenario was previously suggested for the 3xSL model of 
the 3'X-tail[22,28,31,33]. However, recent studies with the use 
of mutagenesis, NMR and SAXS methods, indicate that 
before kissing-interactions are formed, the “k”- sequence 
in the X region is involved in base pairing within the SL2' 
element[21,24]. How the 5BSL3.2 element is able to induce 
the conformational transition from SL2' to SL2, or more 
globally: from 2xSL to 3xSL form of the 3'X, remains 
unclear. The next great challenge is to elucidate step by 
step how this transition occurs. 

Two replicon systems, Con1b and JF-H1, have been 
investigated with a SHAPE method, which is based on 
a chemical modification of single-stranded RNA resi­
dues. The replicons are constructed on the basis of 
two different viral genotypes 1b and 2a, respectively. 
The experimental results showed that the proposed 
kissing interactions were detectable only for replicon 
JF-H1 (genotype 2a). The results obtained for replicon 
Con1b were in agreement with data obtained for the 
genotype 1a (strain H) of the virus and favors the open 
conformation of SL1'. In this open conformation the 
very 3' end of the SL' remains single-stranded, and that 
is associated with an increase in the efficiency of RNA 
synthesis initiation. In fact, subtype 1b is more virulent 
and resistant to interferon-based therapy than other 
genotypes, including subtype 2a[29,34]. This suggests 
how virus virulence and drug response is significantly 
influenced by the long-range kissing interactions, which 
likely cause changes in the base-pairing character of the 
very 3’ terminal nucleotides.

Dimerization
Another intriguing set of tertiary interactions were pro­
posed for the 3’X region of HCV genome by Ivanyi-
Nagy et al[23]. Primarily in vitro investigations showed 
that the apical part of the SL2 hairpin in the 3xSL model, 
29X-CUAG-32X, is able to interact with the respective 
palindromic sequence in the second 3’X RNA molecule 
thus inducing the formation of a homodimer[35]. The 
16-nt palindromic sequence, called also DLS (dimerization 
leading stretch) is absolutely conserved among all 

HCV genotypes[36]. The homodimer, consisting of two 
isolated 3’X-RNA molecules, was characterized in vitro 
by NMR and SAXS. It was proposed that the resulting 
homoduplex could involve shorter (SL2) or extended 
(SL2’) sequence fragments (Figure 3)[21,23-25,35]. The 
core protein supports the formation and stabilizes the 
extended homodimer[24].

The dimerization of the HCV genome still remains 
unproved in vivo and its function remains to be eluci­
dated. It was suggested that the dimerization could be 
helpful in ensuring that only full-length progeny RNA 
molecules are encapsidated[24]. Moreover, the unwinding 
of the 3’-end of the genome, could greatly facilitate the 
minus RNA synthesis[37]. Masante et al[38] suggested 
that the homodimeric genome operates as a preferred 
template for the HCV polymerase (NS5B). Additionally, 
dimerization might enhance the rate of RNA recom­
bination between two homologue RNA strands (resumed 
in[39]). The equilibrium between 2xSL monomers and 
dimers would likely also be tuned by the local con­
centration of RNA and the presence of core protein[24].

FUNCTIONS OF THE 3’UTR REGION
Hepatitis C virus can only infect humans and chim­
panzees; there is no experimental model of its infectivity 
among small animals. For this reason, very few studies 
on the spread of the virus have been carried out in 
vivo. An experiment was carried out by Yanagi et al[40], 
in which a number of viral constructs containing dele­
tions within the 3’UTR were injected into the liver of 
the chimpanzee at time intervals, and then the animal 
was examined for the presence of HCV RNA, anti-HCV 
antibodies and liver enzymes in its serum. Viral mutants 
lacking the entire 3’X region or parts thereof (nt: 1-50 
and 57-98) were not able to replicate. Also viral infection 
was not observed when a mutant containing no poly 
(U/UC) segment was used. Only the construct devoid 
of 24 nucleotides within the variable region turned out 
to be infectious, indicating that this region is not essen­
tial for the viral life cycle under these conditions[40]. A 
similar experiment was carried out by Kolykhalov et 
al[41], and the obtained results were in line with previous 
observations of Yanagi et al[40].

One of the possible explanations of 3’X region func­
tion was its influence on genomic RNA stability. This has 
been shown in vitro but is not equally important for all 
genotypes of the virus[42].

Replication process 
The information on the involvement of individual parts 
of the 3’UTR in the life cycle of the virus presented in 
the previous section was confirmed in research with the 
replicating Huh7 and HeLa cell systems[19,22,42,43]. Namely, 
constructs devoid of the entire poly (U/UC) section, were 
not able to replicate[42,43], and the minimum length of the 
polypyrimidine segment was 50 nt in one study[43], and 
only 26 nt in the other[42]. In contrast, the deletion of the 
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3’X region or any one of its parts, SL1, SL2 or SL3, led 
to a complete failure to replicate[42,43] and only few point 
mutations in this region were tolerated[19,43]. In turn, the 
removal of the variable region from the 3’UTR of the 
viral genome only reduced the efficiency of the process 
leading to decrease in the rate of replication[22,42,43]. In 
addition, it has been shown that the region directly 
upstream the stop codon plays a key role in viral repli­
cation[22]. 

The site of the NS5B polymerase attachment within 
region 3’X has been mapped to be within the SL2 
sequence and within the SL1[44]. They are protected 
against digestion with RNase T1 at guanosine residues 
at positions 41, 42, 50 and 53. The direct interaction of 
the 3’X RNA with the NS5B protein has been found in 
studies conducted in vitro[6,12,44-46]. The specificity of the 
viral polymerase to the model RNA template is relatively 

low and the presence of the 3’X region is not always 
necessary for RNA synthesis[6,12,37,45]. However, in the 
case of matrices containing genomic or subgenomic 
RNA, the presence of the 3’X region is necessary for the 
efficiency and the specificity of the process. It has been 
shown that the lack of this sequence, or a part thereof, 
almost completely inhibits replication, and in the case of 
deletion of nucleotides in positions 31-40, the product is 
too long[12,44]. 

The NS5B polymerase catalytic center probably only 
interacts with a single-stranded RNA fragment. The 
initiation of replication seems to take place in the SL1 
loop, 21 nucleotides from the 3’ end of the 3’X RNA[12]. 
However, another research group, Kim et al[46] indicates 
that the process begins near the 3’ terminus, in a region 
rich in purines. However, in studies carried out in a 
cellular system, it has been shown that the presence 
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Figure 3  Long-range RNA-RNA interactions proposed for the 3'X region of hepatitis C virus genome. A: The homodimeric interactions between two 3'X regions 
embedded into two RNA molecules, model according to Cantero-Camacho et al[24]; B: The kissing-interactions with SL5B3.2[22,28,31,33]. Nucleotide sequence involved in 
dimerization is additionally indicated with red line, while those involved in the kissing-interactions are marked with blue lines.
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of the 3’ terminal GU dinucleotide is preferred in the 
reaction[19]. Similar preferences of the replicase for the 
U at the 3’-end of the template RNA were observed by 
Shimm et al[47] in the in vitro system. Also, Kao et al[37] 
postulate that the enzyme requires a stable secondary 
template structure and at least one unpaired cytidine 
residue at its 3’ end to initiate RNA synthesis. Butcher 
et al[48] proposed a replication initiation scenario, one 
common to various polymerases, in which the synthesis 
of a new strand of RNA begins with a nucleotide com­
plementary to the penultimate of the 3’ end of the 
nucleotide of the template molecule. Secondly, a 
complementary nucleotide is added to the remainder of 
the template at the 3' end, and only after the synthesis 
of this dinucleotide-primer is the complementary strand 
of viral RNA synthesized. Many observations suggest 
that NS5B is a non-specific enzyme, i.e. it can recognize 
more than one nucleotide sequence. The presence of 
specific Ⅰ-, Ⅱ- and tertiary structures at the 3’-end of 
the template RNA may allow modulation of the specificity 
of the enzyme for better yield and/or greater precision in 
the selection of the origin. In addition, both viral and host 
proteins can be involved in the replication process[6,49]. 

In summary, it should be noted that this replication 
phase of the life cycle of the virus has not yet been pre­
cisely understood. In addition to interacting with the 
viral polymerase, the 3’X region also interacts with other 
proteins one of them being the NS3 viral protein[49]. 
Acting as a helicase, it is probably a very important com­
ponent of the replication complex, because the NS5B 
polymerase tends to detach from the RNA template when 
it encounters very stable RNA secondary structures[50]. 
The specific interaction between NS3 and the HCV 3’UTR 
probably involves a large part of this region containing 
the sequence 3’X and the poly (U/UC) section, since 
none of these elements alone is sufficient to form a 
stable complex with this protein[49]. 

Translation process
One of the earliest known cellular proteins interacting 
with HCV 3’UTR was the PTB protein. The interaction 
of PTB with the 3’X region may be related to the regu­
lation of the translation process. The proposed site of 
PTB binding is 21 nucleotides from the 5’ end of the 
3’X region (SL3), containing a part of the consensus 
sequence recognized by this protein[18]. Similar results 
are presented by Tsuchihara et al[51] suggesting that 
the region involved in the interaction with PTB is 19 nuc­
leotides from the 5’ end of the 3’X region and extends 7 
nucleotides upstream this sequence. The mutagenesis 
data showed that both secondary structure and the 
nucleotide sequence in the SL2 and SL3 regions are im­
portant for this interaction[18,51]. 

The 3’UTR has been ascribed as a translation en­
hancer[52-56]. One of mechanisms proposed by which 
enhancing the process is achieved, is the interaction 
between the 5’ and 3’ ends of the HCV genome, me­
diated by the PTB protein and another, hypothetical Y 

protein[57]. The effect of enhancing translation through 
genome cyclization is observed in many viruses[58]. 
However, not all results indicate PTB enhances HCV 
translation, sometimes the protein seems to be even 
inhibitory[59]. There is also no consensus on the impact of 
the 3’UTR on the efficiency of translation. For example, 
Murakami et al[59] observed that in an in vitro system, 
deletion of SL3 in the 3’X region and/or the poly (U/UC) 
section resulted in an increase in the amount of protein 
produced. A possible explanation for this observation 
would be that these sequence fragments, by interacting 
with other protein factors, inhibit the translation process. 
In other studies, however, it was observed that the 
presence of 3’UTR had no effect on the increase of the 
product amount and the efficiency of the polyprotein 
cleavage process[43,60]. It appears the choice of the 
experimental model plays a key role in this kind of re­
search. For example, while in the lysate from rabbit 
reticulocytes no effect of 3’UTR on translation efficiency 
is observed[42,53], in HeLa cells, hepatocytes and in an in 
vivo mouse model the presence of the 3’UTR stimulates 
this process[53]. Recently, the role of 3’UTR in enhancing 
translational efficiency has been reported both in the 
rabbit reticulocyte lysate and in Huh7 cells[61]. 

Finally, it has been shown that the region X interacts 
with the ribosomal proteins L22, L3, S3 and mL3[62]. 
Similar viral RNA - L22 protein interactions have been 
observed for EBV (Epstein-Barr virus) and HPV-1 (human 
type 1 papilloma virus), showing a positive effect of L22 
on translational efficiency[62]. Meanwhile, in the case of 
Qβ virus, ribosomal host proteins are involved in the 
formation of the viral replication complex[62]. It is unclear 
whether the interaction of ribosomal proteins with the 
HCV X region is related to the replication or translation 
process, or to both of these processes. The demonstrated 
ability of HCV protein NS5B to bind to the ribosome[63] is 
reminiscent of the strategy used by the Qβ virus, which 
uses ribosomal proteins to build its replication complex. 

CONCLUSION
The most intriguing feature of the 3’X region is its ex­
tremely high sequence conservation. The maintenance 
of a 98-nt long stretch of RNA at over 95% conservation 
places severe constraints on such a fast-mutating RNA 
virus. Apparently almost any change to this stretch 
result in progeny incapable of reproducing which rapidly 
disappear from the population.

The high sequence conservation might be explained 
by existence of different structural forms of the 3’X 
region. Within one structure there is usually a way to 
neutralize point mutations by adaptive mutations in 
another structure, thus restoring important base-pairing. 
Simultaneous compensation of mutations in two (or 
more) different structures/forms is much less probable. 
However, instead of several different structural forms 
of the X-region, the long-range RNA-RNA interactions 
with the involvement of that region could explain its high 
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sequence conservation.
Evidence indicates the 3’X region is involved in a 

number of interactions including kissing 5BSL3.2 (re­
quired for replication), an interaction with the second 
RNA molecule carrying the X-region sequence (homo­
dimerization), binding of the NS5B protein (for initiation 
of RNA synthesis), an interaction with NS3 helicase 
(for elongation of RNA synthesis), binding of PTB (for 
proposed translation regulation). Is it possible that one 
structural form of the 3’X region supports such different 
interactions? The answer is: yes, it is possible, but un­
likely. On the other hand, it is easy to imagine that 
different structural forms of this region are responsible for 
different processes and interactions. For instance: 2xSL - 
structure for dimerization and enhanced RNA synthesis, 
3xSL - structure for kissing interactions that supports 
translation.

Hopefully in-depth in vivo structure mapping of the 
3’X-region at the various replication stages, in different 
cellular compartments will answer these questions to 
give us a better understanding of the virus and lead to 
additional means to control it.
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