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Abstract
The recently proposed nomenclature change from non-alcoholic fatty liver disease 
to metabolic dysfunction-associated fatty liver disease (MAFLD) has resulted in 
the reappraisal of epidemiological trends and associations with other chronic 
diseases. In this context, MAFLD appears to be tightly linked to incident chronic 
kidney disease (CKD). This association may be attributed to multiple shared risk 
factors including type 2 diabetes mellitus, arterial hypertension, obesity, dyslip-
idemia, and insulin resistance. Moreover, similarities in their molecular 
pathophysiologic mechanisms can be detected, since inflammation, oxidative 
stress, fibrosis, and gut dysbiosis are highly prevalent in these pathologic states. 
At the same time, lines of evidence suggest a genetic predisposition to MAFLD 
due to gene polymorphisms, such as the PNPLA3 rs738409 G allele polymo-
rphism, which may also propagate renal dysfunction. Concerning their mana-
gement, available treatment considerations for obesity (bariatric surgery) and 
novel antidiabetic agents (glucagon-like peptide 1 receptor agonists, sodium-
glucose co-transporter 2 inhibitors) appear beneficial in preclinical and clinical 
studies of MAFLD and CKD modeling. Moreover, alternative approaches such as 
melatonin supplementation, farnesoid X receptor agonists, and gut microbiota 
modulation may represent attractive options in the future. With a look to the 
future, additional adequately sized studies are required, focusing on preventing 
renal complications in patients with MAFLD and the appropriate management of 
individuals with concomitant MAFLD and CKD.

Key Words: Metabolic dysfunction-associated fatty liver disease; Chronic kidney disease; 
Hepatic steatosis; inflammation; Type 2 diabetes mellitus; Obesity
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Core Tip: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a recently defined pathological 
state aiming to identify individuals at increased risk of adverse prognosis. Numerous epidemiological 
studies propose that chronic kidney disease may be among its complications. Their shared risk factors, 
molecular mechanisms, and genetic predisposition represent the basis for this relationship. Accordingly, 
treatment approaches with combined efficacy in MAFLD and chronic renal impairment are expected to 
positively impact the natural history of this deleterious interaction, which remains to be confirmed in 
future studies.

Citation: Theofilis P, Vordoni A, Kalaitzidis RG. Interplay between metabolic dysfunction-associated fatty liver 
disease and chronic kidney disease: Epidemiology, pathophysiologic mechanisms, and treatment considerations. 
World J Gastroenterol 2022; 28(39): 5691-5706
URL: https://www.wjgnet.com/1007-9327/full/v28/i39/5691.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i39.5691

INTRODUCTION
Metabolic abnormalities, namely obesity and type 2 diabetes mellitus (T2DM) constitute contemporary 
pandemics with a high prevalence and rising incidence[1,2]. Although cardiovascular diseases remain 
the most prominent complication of metabolic derangement, hepatic insult is frequent, as documented 
in recently reported epidemiologic trends of non-alcoholic fatty liver disease (NAFLD) and non-
alcoholic steatohepatitis (NASH)[3,4]. However, the existing NAFLD definition required the exclusion 
of other forms of liver disease instead of providing positive criteria for the diagnosis of metabolic 
dysfunction-associated fatty liver disease (MAFLD). A recent expert consensus tried to resolve this gap 
in evidence by providing a simple and comprehensive MAFLD definition and diagnostic criteria[5]. 
These included the presence of steatosis along with a main metabolic abnormality (overweight/obesity 
or T2DM) or at least two metabolic risk factors.

The establishment of MAFLD as an entity may promote the need for intense research in this field to 
define its epidemiology better, identify predisposing and prognostic factors, and evaluate effective 
therapeutic approaches. Moreover, investigating the association between MAFLD and other 
pathological states, primarily cardiac and renal diseases, will improve our understanding of this 
complex entity. Even though the link between MAFLD and cardiovascular disease has been the most 
extensively studied[6], ample evidence suggests the relationship between MAFLD and chronic kidney 
disease (CKD).

In this narrative review, we elaborate on this interaction by assessing its epidemiological features, the 
involved pathophysiologic pathways, and the potential therapeutic interventions.

MAFLD AND CKD; EPIDEMIOLOGICAL TRENDS
Due to the recent change in terminology and diagnostic criteria, we are now beginning to reevaluate the 
epidemiological characteristics of MAFLD. In a recently reported study that followed a meta-analytic 
approach, the prevalence of MAFLD in overweight or obese subjects was 50.7%[7]. The authors pointed 
to potential geographic variations in MAFLD prevalence, with South American populations exhibiting 
the highest prevalence rates (approximately 71%). Moreover, they detected a significantly higher 
prevalence in male subjects and in obese compared to overweight. No differences according to age or 
income were reported. Finally, T2DM and metabolic syndrome prevalence was 19.7% and 57.5%, 
respectively. A similar prevalence (47%) was detected in a cross-sectional study of the Mexican 
population, with male sex, older age, and increasing body mass index (BMI) being predictive factors[8]. 
Other than high prevalence rates, there is an association between MAFLD and all-cause mortality, 
which extends to cancer- and cardiovascular disease-related mortality[9]. Moreover, a higher risk of 
atherosclerotic disease, heart failure, obstructive sleep apnea, and malignancy has been reported[9].

According to the available evidence, MAFLD is tied to a higher incidence of CKD. To begin with, in 
an analysis of approximately 270000 individuals that underwent National Health Insurance Service 
health examinations, MAFLD was associated with an increased risk of incident CKD compared to non-
metabolic NAFLD (adjusted hazard ratio 1.18, 95% confidence interval [CI]: 1.01-1.39; P = 0.04)[10]. In 
the study by Tanaka et al[11] in a sizeable Japanese population followed up for 10 years, MAFLD was a 
determinant of incident CKD irrespective of age, sex, smoking, coronary artery disease, estimated 
glomerular filtration rate (eGFR), and metabolic risk factors (diabetes mellitus [DM], hypertension, 
hyperlipidemia, obesity). Notably, such observations were not made for the presence of NAFLD or only 
fatty liver[11]. In a Chinese cohort of 6873 participants with a 4.6-year follow-up, the investigators noted 
a higher risk of CKD in MAFLD subjects (risk ratio 1.64, 95%CI: 1.39-1.94)[12]. Last but not least, the 
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authors of a recently published systematic review and meta-analysis found a potent association between 
a MAFLD diagnosis and new onset of CKD (hazard ratio 1.53, 95%CI: 1.38-1.68)[9]. Contradictory to the 
findings mentioned above, in an analysis of the National Health and Nutrition Examination Surveys of 
the United States 2017-2018, the relationship between MAFLD and CKD was not statistically significant 
after the propensity score matching[13]. Scientific interest is intense in this field due to the recently 
proposed change in the nomenclature of NAFLD into MAFLD. Future studies are eagerly awaited to 
assess the association between MAFLD and CKD and the prognosis of individuals with concomitant 
CKD and MAFLD.

Concerning the interplay between MAFLD and CKD, the use of transient elastography is of great 
importance. Ciardullo et al[14], in their meta-analysis of seven cross-sectional studies, detected an 
association of non-invasively assessed liver fibrosis with increased urinary albumin-to-creatinine ratio 
(UACR) (odds ratio [OR] 1.98, 95%CI: 1.29-3.05; P = 0.002) and incident CKD (OR 2.49, 95%CI: 1.89-3.29; 
P < 0.001). The study by Freitas et al[15] further stressed the role of transient elastography. Liver fibrosis, 
assessed by the liver stiffness measurements (LSM), was associated with early kidney dysfunction, 
characterized by the development of microalbuminuria (UACR 30-300 mg/g) or a drop in eGFR to < 60 
mL/min/1.73 m2 in MAFLD individuals[15]. LSM values of over 6.1 kPa were predictive of the 
endpoint, with a sensitivity and specificity of 85.7% and 67.6%, respectively[15]. It appears that 
Fibroscan-derived controlled attenuated parameter (CAP) may be a more crucial predictor of prevalent 
CKD in subjects with MAFLD than LSM. Specifically, CAP values of 353 dB/m were associated with 
CKD, even after multivariable adjustment (OR 1.07, 95%CI: 1.00-1.20; P = 0.01)[16].

PATHOPHYSIOLOGIC PATHWAYS LINKING MAFLD WITH CKD
According to those recently published reports, it is evident that MAFLD is a growing pandemic due to 
the constantly rising prevalence of its underlying risk factors. Moreover, the association between 
MAFLD and incident CKD is remarkable but unsurprising, due to the common pathophysiologic 
mechanisms surrounding those entities (Figure 1). To begin with, the main risk factors for CKD 
development, T2DM and arterial hypertension[17-19], are among the established diagnostic criteria for 
MAFLD. The same could be argued for obesity, prediabetes, dyslipidemia, and insulin resistance since 
studies have proposed an independent association between the risk factors mentioned above and 
incident CKD[17,19-21].

Inflammatory hypothesis in MAFLD and CKD
Regarding the involved molecular mechanisms, we should stress the role of inflammation. We know 
that inflammation is among the cardinal features of MAFLD, with elevations of high-sensitivity C 
reactive protein (hsCRP) being among the criteria of metabolic dysregulation. hsCRP elevation was 
correlated with the extent of liver steatosis and fibrosis in 393 obese individuals with MAFLD, even after 
adjustment for confounding factors[22]. Chronic, low-grade inflammation may propagate oxidative 
stress and endothelial dysfunction in MAFLD[23,24]. Ultimately, liver fibrosis ensues due to 
extracellular matrix formation and collagen deposition[25], potentially progressing to cirrhosis and 
hepatocellular carcinoma. Intriguingly, this pro-inflammatory state could facilitate the development of 
CKD, with nuclear factor kappa B (NF-κB) mediating the activation of endothelial cells, mesangial cells, 
podocytes, and tubular epithelial cells, resulting in increased permeability, the release of inflammatory 
mediators, and proteinuria[26]. In this deleterious setting, the additional extracellular matrix 
remodeling, epithelial-to-mesenchymal transition, and interstitial fibrosis contribute to the progression 
of CKD[27]. We should also stress that the contribution of MAFLD and CKD to the systemic inflam-
matory milieu could have deleterious cardiovascular implications[28-32].

Obesity and adipokines
Obesity, another shared risk factor for MAFLD and CKD, is also pivotal in their development. Adipose 
tissue is a known endocrine organ with critical regulatory functions on satiety, insulin sensitivity, 
inflammation, and the renin-angiotensin system through the secretion of adipokines[33,34]. The most 
well-characterized hazardous adipokine in FLD, leptin, by interacting with its primary receptor Ob-Rb, 
results in Janus kinase 2 phosphorylation, in turn leading to the upregulation of the Akt/mammalian 
target of rapamycin (mTOR), signal transducer and activator of transcription 5, and mitogen-activated 
protein kinase (MAPK) pathways[35]. This may aid in the development and progression of hepatic 
steatosis, steatohepatitis, and liver fibrosis. By contrast, low levels of the protective adipokine 
adiponectin are significantly associated with advanced fibrosis[36]. Moreover, an increased leptin-to-
adiponectin ratio is positively correlated with the increasing severity of steatosis[37]. The imbalance in 
leptin and adiponectin may influence the development of CKD, as leptin could induce sympathetic 
nervous system activation and blood pressure increases[38], as well as transforming growth factor-β 
synthesis[39]. A recently reported longitudinal study of 2646 Koreans without CKD showed that higher 
plasma leptin was predictive of incident CKD after a 2.8-year mean follow-up[40]. On the other hand, 
adiponectin could have renoprotective effects by ameliorating renal inflammation, oxidative stress, and 
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Figure 1 Common pathophysiologic mechanisms in metabolic dysfunction-associated fatty liver disease and chronic kidney disease. 
FXR: Farnesoid X receptor; MAFLD: Metabolic dysfunction-associated fatty liver disease; SCFA: Short-chain fatty acid; TMAO: Trimethylamine N-oxide.

fibrosis[41]. However, multiple studies have shown that high adiponectin levels are inversely associated 
with eGFR in individuals with CKD[42] and were predictive of renal function deterioration in subjects 
without CKD[43].

Gut dysbiosis
The role of the gut microbiome in human health and disease is a highly relevant field of scientific 
interest. Therefore, potential associations of gut dysbiosis with MAFLD and CKD have been suggested 
in the past years, strengthening the importance of the gut-liver-kidney axis. In altered gut microbiome 
synthesis, hazardous metabolites such as trimethylamine N-oxide (TMAO), p-cresyl sulfate, and indoxyl 
sulfate may be formed.

TMAO is the most extensively studied metabolite regarding its health implications[44]. According to 
preclinical studies, it may aggravate hepatic steatosis and steatohepatitis by modulating bile acid 
metabolism, inhibiting farnesoid X receptor activation, and reducing hepatic cholesterol overload[45,
46]. NAFLD presence and severity were correlated with circulating TMAO in a study of Chinese 
individuals[47]. The levels of TMAO were higher in individuals with obesity and NASH, only in the 
presence of T2DM[48]. TMAO was also associated with all-cause mortality only in NAFLD patients in 
the Prevention of Renal and Vascular End-stage Disease cohort study, even after adjustment for 
confounders[49]. Regarding the kidney, TMAO may exert deleterious effects, such as promoting inflam-
mation and fibrosis[50-52]. In a meta-analysis of kidney function indices involving 32 clinical studies 
with 42062 participants, TMAO concentration was associated with advanced CKD, inversely correlated 
with eGFR, and positively correlated with UACR, serum creatinine, and serum cystatin C[53]. 
Circulating TMAO was predictive of all-cause and cardiovascular mortality in a recently reported 
systematic review and meta-analysis, with this finding being irrespective of kidney function and 
common risk factors (DM, hypertension, dyslipidemia, inflammation)[54].

Depletion of bacteria responsible for the production of beneficial short-chain fatty acids (SCFAs), such 
as acetate, propionate, and butyrate, in the setting of a disrupted gut microbiome may lead to 
deleterious effects in the liver and kidney. These SCFAs could promote anti-inflammatory and anti-
oxidative actions by limiting neutrophil recruitment, macrophage secretion of pro-inflammatory 
mediators, and histone deacetylase-induced NF-κB activation while promoting anti-inflammatory 
interleukin-10 formation by T regulatory cells[55]. Increased availability of SCFA-producing bacteria or 
SCFA treatment in clinical studies of patients on hemodialysis patients has resulted in lowering inflam-
matory markers and ameliorating renal function[56,57]. SCFAs are also helpful in the prevention of 
MAFLD due to the effects mentioned above, together with hepatic AMP-activated protein kinase 
(AMPK) activation and glucagon-like peptide 1 receptor (GLP1-R) activation, promotion of satiety, and 
abrogation of insulin resistance[58].

Gene polymorphisms
Polymorphisms in a few NAFLD-associated genes may also be associated with CKD. PNPLA3 rs738409 
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G allele polymorphism is the most well-studied and correlated with NAFLD risk and severity[59]. Its 
potential association with renal outcomes has been investigated with conflicting evidence, as it may 
propagate podocyte activation and lipid nephrotoxicity. Initially, Sun et al[60] found a significant link 
between the G/G PNPLA3 genotype with glomerular and tubular injury. In a United Kingdom Biobank 
analysis, the rs738409 single nucleotide polymorphism was associated with decreased eGFR, 
independently of metabolic risk factors[61]. Patients homozygous for the PNPLA3 rs738409 had a higher 
prevalence of CKD and lower eGFR irrespective of liver stiffness and other risk factors in the study of 
Mantovani et al[62]. This study also found similar expression of PNPLA3 in podocytes, hepatocytes, and 
hepatic stellate cells[62]. The same study group had previously proven the independent association of 
the G/G PNPLA3 rs738409 polymorphism phenotype with eGFR and CKD in post-menopausal women 
with T2DM[63]. However, no associations between PNPLA3 rs738409 gene polymorphism and kidney 
function were detected in other studies[64-67].

Other polymorphisms have also been investigated, albeit to a lesser degree. Risk alleles for KLF6 
rs3750861 and SOD2 rs4880 polymorphisms correlate with kidney function in MAFLD[65]. Moreover, in 
a population of biopsy-proven NAFLD, the HSD17B13 rs72613567 A alleles were protective against 
albuminuria but not eGFR decline[68]. Lastly, an association between the MBOAT7-TMC4 rs641738 T/T 
genotype and lower eGFR was detected in a cohort of Asian individuals with biopsy-proven NAFLD
[67]. While the genetic predisposition of kidney dysfunction in FLD represents an exciting hypothesis, 
further studies are required to improve our understanding of this link.

THERAPEUTIC APPROACHES
Treating patients with MAFLD and CKD requires therapeutic interventions to ameliorate their 
prognosis by targeting their shared risk factors and pathophysiology. Although studies have not 
explicitly assessed this subgroup of patients, we may assume that interventions with documented 
efficacy in MAFLD[69-81] and CKD[82-90] could lead to positive outcomes in this combination of 
diseases (Table 1). Moreover, due to the recent change in the nomenclature with the introduction of 
MAFLD, we should stress that most of the available clinical evidence discussed below is derived from 
studies of NAFLD patients. Therefore, future appropriately designed studies considering the novel 
MAFLD diagnostic criteria will shed additional light on managing this entity.

Bariatric surgery
Since obesity is among the main risk factors for the development of MAFLD, the role of bariatric surgery 
may be crucial in carefully selected eligible individuals. Initially, we should state that the prevalence of 
MAFLD may be exceptionally high in those morbidly obese patients that are eligible for bariatric 
surgery. Ciardullo et al[91] have demonstrated this association in a study of 434 potential candidates for 
bariatric surgery, with the prevalence of steatosis and fibrosis being 76.7% and 23.1%, respectively. In 
the only study assessing bariatric surgery in MAFLD patients, Meneses et al[69] prospectively enrolled 
52 subjects whose MAFLD status was evaluated via liver biopsy. Those with a histological diagnosis of 
steatohepatitis were followed up with an additional biopsy 12 mo after the index procedure. Most 
subjects with steatohepatitis did not experience any disease progression, while a significant proportion 
(56.5%) exhibited complete resolution. Additionally, fibrosis and fibrotic scores were improved, 
highlighting a non-negligible benefit of bariatric surgery in this small-scale study.

Bearing in mind the increased prevalence (~80%) of steatosis in morbidly obese patients (BMI > 40 
kg/m2)[92], several clinical implications can be made regarding kidney outcomes. To begin with, 
compared with individuals who have undergone a bariatric surgery procedure, severely obese subjects 
had greater odds of having stage III CKD (OR 3.10, 95%CI: 3.05-3.14, P < 0.001) and end-stage renal 
disease (OR 1.13, 95%CI: 1.09-1.18, P < 0.001). This finding was consistent even after adjustment for CKD 
risk factors[93]. The performance of sleeve gastrectomy could have renoprotective effects, as shown in a 
retrospective analysis of 1330 individuals undergoing this procedure. The investigators noted a greater 
improvement of eGFR in subjects with impaired kidney function 12 mo after the procedure[82]. A rise in 
eGFR, together with albuminuria reduction, was observed by Wee et al[83] in their retrospective study 
of 557 Asian patients after metabolic bariatric surgery. Importantly, the CKD stage improved in 12.9% of 
the study participants, while the prevalence of albuminuria (UACR > 3.5 mg/mmol) decreased from 
24.8% to 1.9% at the 1-year follow-up[83]. Fathy et al[84] also noted an astonishing albuminuria 
remission rate (83%) in 137 non-diabetic, non-hypertensive, severely obese subjects with albuminuria 
who underwent bariatric surgery. Moreover, in another study, subjects undergoing bariatric surgery 
had a lesser incidence of kidney disease than the control group (hazard ratio 0.46, 95%CI: 0.22-0.92)[85]. 
A systematic review and meta-analysis of 19 studies revealed that bariatric surgery led to ameliorated 
eGFR and lesser odds of incident albuminuria[94]. The observed benefits may be attributed to enhanced 
glomerular hyperfiltration, reduction in detrimental adipocyte-derived mediators such as leptin, and 
alterations in pro-inflammatory and pro-fibrotic molecule expression[95].
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Table 1 Selected human studies assessing various treatment approaches in metabolic dysfunction-associated fatty liver disease and 
chronic kidney disease

Study Treatment Finding

MAFLD

Meneses et al[69] Bariatric surgery Stabilization of fibrosis or complete resolution; ↓ NAFLD fibrosis score

Li et al[70] GLP1-RA ↓ Liver fat

Morieri et al[71] GLP1-RA ↓ MAFLD prevalence

Jianping et al[72] GLP1-RA Improvement in histological MAFLD features

Akuta et al[73] Canagliflozin ↓ Histological steatosis, lobular inflammation, and fibrosis stage

Takahashi et al[74] Ipragliflozin ↓ Hepatic fibrosis; Steatohepatitis resolution

Pakravan et al[75] Melatonin ↓ Inflammation; Improvement of ultrasonographic fatty liver grade

Akhavan et al[76] Melatonin ↓ Hepatic enzyme levels

Rinella et al[77] Obeticholic acid ↓ Hepatic enzyme levels↓ Liver fibrosis

Neuschwander-Tetri et al[78] Obeticholic acid Improvement in histological features

Mohamad Nor et al[79] Probiotics ↔ Elastography-derived hepatic steatosis and fibrosis

Derosa et al[80] Probiotics ↓ Hepatic steatosis index; ↓ Ultrasonographic steatosis

Musazadeh et al[81] Probiotics ↓ Hepatic enzyme levels

CKD

Funes et al[82] Bariatric surgery ↑ eGFR

Wee et al[83] Bariatric surgery ↑ eGFR↓ Albuminuria

Fathy et al[84] Bariatric surgery ↓ Albuminuria

Dash et al[85] Bariatric surgery ↓ Kidney disease incidence

Shaman et al[86] GLP1-RAs ↓ Albuminuria; Halted eGFR decline

Perkovic et al[87] Canagliflozin Reduction in the renal outcome (ESKD, doubling of serum creatinine, 
or renal death) by 34%

Heerspink et al[88] Dapagliflozin Reduction in the renal outcome (decline in eGFR of ≥ 50%, ESKD, or 
renal death) by 44%

Bhatt et al[89] Sotagliflozin Reduction in the renal outcome (decline in eGFR of ≥ 50%, ESKD, renal 
transplantation) by 29%

Wang et al[90] Probiotic Halted eGFR decline; ↓ Inflammation

↑: Increase; ↓: Decrease; ↔: No change. CKD: Chronic kidney disease; eGFR: Estimated glomerular filtration rate; ESKD: End-stage kidney disease; GLP1-
RA: Glucagon-like peptide 1 receptor agonist; MAFLD: Metabolic dysfunction-associated fatty liver disease; NAFLD: Non-alcoholic fatty liver disease.

GLP1-R agonists
GLP1-R agonists (GLP1-RAs) are novel potent antidiabetic agents with proven efficacy in reducing 
major adverse cardiovascular events. Besides their glucose-lowering action, their beneficial hepatic 
effects may be related to the influence on the AMPK/mTOR pathway, as shown by Reis-Barbosa et al
[96] in obese C57BL/6 mice treated with subcutaneous semaglutide. Other inflammatory and oxidative 
pathways in the liver could be inhibited by GLP1-RAs, such as the receptor for advanced glycation end 
products/nicotinamide-adenine dinucleotide phosphate oxidase 2, limiting liver injury and fibrosis in 
mice on a high-fat diet[97]. Concerning human studies, patients with MAFLD treated with GLP1-RAs 
have exhibited a significant reduction in liver fat, which may be positively correlated to fibroblast 
growth factor 21[70]. The use of GLP1-RAs also resulted in a significant reduction of MAFLD prevalence 
(defined based on hepatic steatosis index > 36) during a 24-mo follow-up[71]. Interestingly, the effect 
was evident only in subjects on human-based GLP1-RAs[71]. Moreover, in a meta-analysis of 4 
randomized clinical trials, semaglutide was associated with significant decreases in body weight, 
alanine aminotransferase, liver steatosis, and stiffness[98]. GLP1-RAs may also improve histologic 
features on MAFLD, such as liver fat deposition, steatohepatitis, and fibrosis, as shown by the 
systematic review and meta-analysis of Jianping et al[72].
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GLP1-RAs have shown benefits in preventing the development or halting the progression of CKD. As 
demonstrated above, their effect in ameliorating steatosis and promoting anti-oxidative and anti-inflam-
matory actions may be among the determining factors in this renoprotective effect, together with weight 
loss, blood pressure, and glucose-lowering[99]. Other speculated mechanisms include glomerular 
hyperfiltration, the regulation of the renin-angiotensin system, sodium-hydrogen exchanger-3, and renal 
endothelial vasodilation[100]. Regarding clinical evidence, and as recently shown in a pooled analysis of 
the SUSTAIN 6 and LEADER trials of patients with T2DM, semaglutide and liraglutide diminished 
albuminuria and eGFR decline, especially in subjects with CKD (eGFR < 60 mL/min/1.73 m2)[86]. 
Moreover, efpeglenatide, an exendin-4-based GLP1-RA, also led to favorable renal outcomes compared 
to placebo in the AMPLITUDE-O trial of individuals with T2DM, irrespective of eGFR and concurrent 
sodium-glucose co-transporter-2 (SGLT2) inhibitor use[101,102]. As far as head-to-head comparisons, 
the renoprotective effects of GLP1-RAs were of greater magnitude compared with dipeptidyl peptidase-
4 inhibitors[103], whereas SGLT2 inhibitors may promote increased renal benefits[104,105].

Dual GLP1 and glucose-dependent insulinotropic peptide receptor agonists have recently emerged 
into the spotlight owing to the results of the SURMOUNT-1 clinical trial of tirzepatide for the treatment 
of obesity[106]. Regarding FLD, the administration of a hybrid agonist by the name of 19W in C57BL/6J 
on a high-fat diet decreased the area of liver fibrosis[107]. Moreover, dual GLP1/2 receptor agonists 
may also ameliorate NASH prognosis, as shown in C57BL/6J mice on a high-fat diet/high fructose and 
sucrose solution through an improvement in liver fibrosis[108]. However, these concepts need further 
validation in preclinical settings. Concerning clinical evidence, tirzepatide dose-dependently 
ameliorated biomarkers of NASH such as alanine transaminase, aspartate aminotransferase, keratin-18, 
and procollagen III compared to placebo. At the same time, it was associated with an increase in 
adiponectin[109]. Lastly, in a recently published substudy of the SURPASS-3 MRI clinical trial, adminis-
tration of tirzepatide in patients with T2DM decreased the liver fat content along with the volume of 
visceral and abdominal subcutaneous adipose tissue, compared to insulin degludec[110].

SGLT2 inhibitors
SGLT2 inhibitors have been at the forefront of scientific research owing to the remarkable reduction in 
the rate of heart failure hospitalization and their ability to impact cardiac remodeling[111,112]. Their 
pleiotropic mechanisms of action have been a topic of continuous investigation[111,113], and their 
therapeutic indications are constantly expanding. In the field of MAFLD, specifically in obese, diabetic 
mice with FLD treated with empagliflozin, Kurtz et al[114] documented a reduction in hepatic steatosis, 
which was correlated with the whitening of the adipose tissue. Empagliflozin may also attenuate 
hepatocyte lipotoxicity through the calcium/calmodulin dependent protein kinase beta/AMPKα 
pathway[115]. Another SGLT2 inhibitor, ipragliflozin, ameliorated the progression of MAFLD in STAM 
mice with β cell depletion, evidenced by decreased histologic steatosis, hepatocyte ballooning, inflam-
mation, and fibrosis[116]. This effect was accompanied by antioxidant and mitochondrial transport-
related gene upregulation, and overexpression of miR-19b-3p[116]. Additionally, dapagliflozin reduced 
liver fat accumulation in male NIH mice on a high-fat diet by acting on the AMPK/mTOR pathway
[117]. Moving to clinical evidence, empagliflozin may lessen liver fibrosis, insulin resistance, and 
hepatic enzyme concentrations, as shown by the systematic review and meta-analysis of Zhang et al
[118]. An interesting study on the importance of SGLT2 inhibition in MAFLD was performed by Akuta 
et al[73], who retrospectively reviewed patients with T2DM and FLD initiated on canagliflozin with 
consequent biopsy results over a period of 5 years. Compared to pre-treatment biopsy, the investigators 
noted a histologic improvement in 50% of the participants and a decrease in steatosis, lobular inflam-
mation, and fibrosis stage in 67%, 33%, and 33%, respectively, at the 5th year. In line with this study, 
ipragliflozin use in patients with T2DM and FLD led to significant improvements in hepatic fibrosis and 
greater rates of steatohepatitis resolution compared to the control group[74]. According to the available 
evidence, we can assume that SGLT2 inhibitors will become an essential tool in the prevention and 
treatment of MAFLD.

While the use of SGLT2 inhibitors in MAFLD is gaining ground, this drug class is an established 
treatment option for CKD. Among the putative nephroprotective mechanisms are the regulation of 
autophagy and the resulting inflammation, oxidative stress, endothelial dysfunction, fibrosis, and 
apoptosis, the reduction of intraglomerular and blood pressure, and the improvement of podocyt-
opathy. Large-scale randomized clinical trials on CKD patients such as CREDENCE[87], DAPA-CKD
[88], and SCORED[89] demonstrated the unequivocal benefit of SGLT2 inhibition in reducing the rate of 
adverse renal outcomes and eGFR decline. The upcoming EMPA-KIDNEY trial was stopped early due 
to clear efficacy detected in the interim analysis, and the detailed results are eagerly awaited. 
Subanalyses of the abovementioned trials stressed the effect of SGLT2 inhibitors on kidney outcomes 
independently of T2DM status, baseline hemoglobin A1c, CKD etiology, and stage[119-122]. The 
upcoming revision of existing CKD guidelines should incorporate this option in CKD treatment 
algorithms.

Melatonin
Melatonin, a crucial hormone produced in response to darkness, could be an additional approach to 
managing MAFLD and CKD due to its pleiotropic effects, as we have previously reviewed[123]. Starting 
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with its impact on MAFLD, fine particulate matter-induced hepatic steatosis was ameliorated with the 
administration of melatonin in apolipoprotein E knockout (ApoE-/-) mice through anti-oxidative 
mechanisms involving protein tyrosine phosphatase 1B and nuclear factor erythroid 2-related factor 2 
signaling pathways[124]. Furthermore, melatonin promoted anti-inflammatory actions by modulating 
NACHT, LRR, and PYD domain-containing protein 3 inflammasome activation and downregulating the 
toll-like receptor 4/NF-κB pathway in C57BL/6 mice models of high-fat diet-induced steatohepatitis
[125]. This resulted in histopathological improvement of steatosis, ballooning, inflammation, fibrosis, 
and overall disease score[125]. In clinical studies, the administration of oral melatonin thrice daily for 3 
mo ameliorated metabolic and inflammatory indices, as well as ultrasonography fatty liver grade, in 
patients with histologically proven NAFLD[75]. In a meta-analysis of studies with NAFLD patients, 
alanine transaminase, alkaline phosphatase, gamma-glutamyl transferase, triglycerides, and total 
cholesterol were significantly reduced after melatonin supplementation[76]. However, more clinical 
trials are needed to improve our understanding of the importance of melatonin treatment in MAFLD 
development, progression, and prognosis.

Melatonin supplementation has also been attempted in CKD, both preclinically and clinically. Based 
on experimental studies, several mechanisms of nephroprotection have been suggested, including anti-
oxidative, anti-inflammatory, anti-fibrotic, and anti-apoptotic[123]. Although there is no reliable clinical 
evidence concerning CKD prognosis after melatonin therapy, human trials have proven an anti-
oxidative and anti-inflammatory effect, paired with improved glycemia[126,127]. Moreover, 
ameliorating mitochondrial damage and promoting autophagy could represent other putative effects of 
melatonin treatment[123].

Farnesoid X receptor agonists
Farnesoid X receptor agonists have demonstrated efficacy both in fatty liver disease regression and 
kidney disease. The most commonly used agent of this drug class, obeticholic acid, at a dose of 25 mg, 
led to significant improvement in liver function tests, elastography-derived and histologically proven 
liver fibrosis in patients with steatohepatitis and liver fibrosis (F2-F3)[77]. Based on the results of the 
FLINT trial of patients with non-cirrhotic, non-alcoholic steatohepatitis, obeticholic acid 25 mg adminis-
tration led to an improvement in liver histology in 45% of the participants compared to in the control 
group (relative risk 1.9, 95%CI: 1.3-2.8)[78]. Although the dosage of 25 mg may be more efficacious than 
10 mg, it may be met with a more significant burden of side effects and possibly higher discontinuation 
rates[128]. Preclinical evidence has suggested the potential of farnesoid X receptor agonists in experi-
mental kidney disease by abrogating inflammation, oxidative stress, fibrosis, and apoptosis[129-132]. 
Due to the lack of clinical data, the efficacy of farnesoid X receptor agonists in CKD remains speculative 
to date.

Gut microbiome modulation
Targeting the gut microbiome may represent an appealing approach to the holistic management of 
MAFLD and CKD. Probiotics such as Bifidobacterium animalis, B. bifidum, B. adolescentis, Lactobacillus 
paracasei, L. plantarum, L. reuteri, and Weissella cibaria have been assessed in preclinical FLD models and 
may alter gut permeability, ultimately affecting the processes of inflammation and oxidative stress 
among others[133-138]. Unfortunately, a probiotic supplement containing six different Lactobacillus and 
Bifidobacterium species for 6 mo did not improve hepatic steatosis and fibrosis evaluated by 
elastography in ultrasonography-diagnosed NAFLD subjects[79]. By contrast, a high-concentration 
probiotic combination of Streptococcus thermophilus, multiple Bifidobacteria and Lactobacilli led to a 
reduction of hepatic steatosis index as well as ultrasonographic steatosis in a double-blind, placebo-
controlled, randomized clinical trial of NAFLD patients[80]. A recently reported umbrella systematic 
review and meta-analysis also suggested liver biochemical improvement through the administration of 
probiotics in NAFLD patients[81]. Although probiotics appear helpful in experimental FLD settings, 
more clinical trials are required to improve our understanding of their importance in human MAFLD.

Moving to CKD, L. rhamnosus administration for 14 wk in 5/6 nephrectomized mice diminished gut-
derived uremic toxins and systemic inflammatory markers by restoring intestinal integrity and 
protecting against renal fibrosis[139]. Anti-inflammatory, anti-apoptotic, and anti-fibrotic effects with L. 
rhamnosus were demonstrated in cisplatin-induced CKD rat models by acting on the MAPK/NF-
ĸB/cyclooxygenase-2, the p53/B-cell lymphoma 2-associated X protein/caspase-3, and the signal 
transducer and activator of 3 pathway[140]. Moreover, a lactobacillus mixture consisting of L. paracasei 
and L. plantarum led to attenuated kidney injury, inflammation, and fibrosis in adenine-induced CKD 
mouse models, while also restoring gut microbial composition[141]. Translating these findings in a 
clinical setting of patients with advanced CKD, 6 mo of treatment with a probiotic formulation 
containing L. acidophilus, B. longum, and B. bifidum significantly halted the eGFR decline, together with 
lowering of inflammatory markers[90].

Although still experimental, TMAO inhibitors may represent a possible approach to modulating gut 
microbiota. Using 3,3-dimethyl-1-butanol, a trimethylamine formation inhibitor, decreased plasma 
TMAO levels and attenuated renal inflammation, oxidative stress, and fibrosis in C57BL/6 mice on a 
high-fat diet[142]. Importantly, no changes in blood pressure and weight adiposity parameters were 
noted[142]. Iodomethylcholine (IMC), a selective gut microbial choline TMA-lyase inhibitor, was also 
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able to diminish TMAO production and revert the renal function decline and tubulointerstitial fibrosis 
in isoproterenol-induced CKD mouse models on a choline diet[143]. Similar observations were made in 
ApoE-/- mouse models with adenine-induced CKD treated with IMC, together with ameliorated 
microalbuminuria, cardiac hypertrophy, and vascular inflammation indices[144]. These molecules have 
not been assessed yet in FLD, and upcoming studies evaluating their efficacy are awaited.

CONCLUSION
In conclusion, it has become evident that the newly defined MAFLD is associated with high prevalence 
and mortality rates and is an independent predictor of CKD. The degree of hepatic steatosis and fibrosis 
in this group of patients correlates with kidney function indices such as urinary albumin-to-creatinine 
ratio and estimated glomerular filtration rate. This interaction is unsurprising, as these entities have 
shared risk factors and deleterious molecular mechanisms such as inflammation, oxidative stress, and 
gut dysbiosis. At the same time, gene polymorphisms associated with fatty liver disease predisposition 
may also propagate renal dysfunction. In the field of treatment, pharmacologic interventions have 
demonstrated considerable preclinical and clinical efficacy in ameliorating surrogate disease markers 
and clinical outcomes in these pathological states. Future studies should aim at the subpopulation of 
MAFLD patients with renal impairment to appropriately determine their prognosis and the impact of 
treatment approaches.
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