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Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly 
recognized cause of liver-related morbidity and mortality. 
It can develop secondary to numerous causes but a 
great majority of NAFLD cases occur in patients who are 
obese or present with other components of metabolic 
syndrome (hypertension, dyslipidemia, diabetes). This 
is called primary NAFLD and insulin resistance plays a 
key role in its pathogenesis. Obesity is characterized 
by expanded adipose tissue, which is under a state of 
chronic inflammation. This disturbs the normal storage 
and endocrine functions of adipose tissue. In obesity, the 
secretome (adipokines, cytokines, free fatty acids and 
other lipid moieties) of fatty tissue is amplified, which 
through its autocrine, paracrine actions in fat tissue and 
systemic effects especially in the liver leads to an altered 
metabolic state with insulin resistance (IR). IR leads 
to hyperglycemia and reactive hyperinsulinemia, which 
stimulates lipid-accumulating processes and impairs 
hepatic lipid metabolism. IR enhances free fatty acid 
delivery to liver from the adipose tissue storage due to 
uninhibited lipolysis. These changes result in hepatic 
abnormal fat accumulation, which may initiate the 
hepatic IR and further aggravate the altered metabolic 
state of whole body. Hepatic steatosis can also be 
explained by the fact that there is enhanced dietary 
fat delivery and physical inactivity. IR and NAFLD are 
also seen in various lipodystrophic states in contrary to 
popular belief that these problems only occur due to 
excessive adiposity in obesity. Hence, altered physiology 
of adipose tissue is central to development of IR, 
metabolic syndrome and NAFLD.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a disease of  
this modern era. It has burst out onto the clinical landscape 
over the past 25 years[1] and is likely to become the most 
common cause of  chronic liver disease[2]. The prevalence 
of  NAFLD in the general US population is approximately 
20% (17% to 33%)[3,4]. Similar data are obtained in the 
Japanese and Italian populations[5,6]. NAFLD comprises 
a morphological spectrum of  liver lesions ranging from 
simple triglyceride accumulation in hepatocytes (hepatic 
steatosis; HS) to inflammatory and hepatocellular 
ballooning injury (non-alcoholic steatohepatitis; NASH), 
eventually leading to fibrosis and cirrhosis[7]. Excessive 
alcohol intake (> 20 mg/d in females and > 40 mg/d in 
males) must be excluded to diagnose NAFLD[8]. NAFLD 
is the most frequent cause of  abnormal liver function 
tests (80% of  cases) in the US[9]. Although elevated liver 
enzymes often correlate poorly with degree of  chronic 
liver injury[10], steatosis and fibrosis, a persistently elevated 
alanine aminotransferase (ALT) level is often the tipping 
point for further diagnostic evaluation. With adoption of  
the new ALT standard (≤ 30 U/L in men and ≤ 19 U/L 
in women)[11,12], NAFLD can be detected in early stages 
and thus may be useful in counseling patients about further 
workup. Liver biopsy is subsequently required to confirm 
the diagnosis of  NASH. Recently, a NAFLD activity score 
(NAS) was proposed[13] to assess natural progression and 
therapy; however, it requires repeated liver biopsies (Table 1).  
Recently, it has been suggested that the non-invasive 
blood test called NASH FibroSURE TMwhich includes 
quantitative surrogate markers for steatosis (SteatoTest)[14], 
fibrosis (FibroTest)[15] and NASH (NASH Test)[16] is 
able to assess the liver status of  subjects with NAFLD. 
These have a sensitivity/specificity of  71%/72% for 
significant steatosis; 88%/50% for NASH and 83%/78% 
for advanced fibrosis. Further novel non-invasive tests are 
needed that will improve the diagnostic accuracy for the 
presence, grade and stage of  NAFLD.

The pathophysiology of  NAFLD is complex and 
available data suggest that environmental factors such as 
diet, exercise, and/or toxins[17] are likely to be important 
in its causation. The fact that the prevalence of  NAFLD 
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varies among different racial groups[18,19] and that there are 
variable rates of  disease progression within individuals 
with similar risk factors strongly indicates that genes also 
play a role[20]. A recent study suggests that abnormalities in 
at least 23 genes may be involved[21]. However, like other 
common complex metabolic diseases, there is likely to 
be an interaction between the environment and genetics 
that determines phenotypic expression of  NAFLD in 
any individual patient. The great majority of  NAFLD 
occurs in the setting of  so-called metabolic syndrome 
(MS), in which insulin resistance (IR) plays a key role[22,23]. 
The prevalence of  MS (22%) and of  NAFLD (20%) in 
the general US population are amazingly similar[24]. These 
observations support that primary NAFLD is a hepatic 
complication of  MS. Other much less common causes of  
NAFLD (secondary NAFLD) are drugs; amiodarone[25] 
glucocorticoids[26], tamoxifen[27] and isoniazid[28], surgical 
procedures; gastroplasty and bypass surgeries for morbid 
obesity[29-31], total parenteral nutrition[32], metabolic 
genetic disorders; abetalipoproteinemia[33], tyrosinemia 
and lipodystrophy; congenital disorders[34] and anti-HⅣ 
drugs[35].

The Third Report of  National Cholesterol Education 

Program (Adult Treatment Panel Ⅲ; ATPⅢ) provides a 
working definition of  MS[36] based on a combination of  
5 categorical risk factors: central obesity, hypertension, 
hypertriglyceridemia, low levels of  HDL-cholesterol, 
and hyperglycemia. The prevalence of  MS is on the rise 
due to obesity and sedentary life style. Obesity is defined 
by World Health Organization as excess weight gain for 
a given height. The prevalence of  obesity (BMI ≥ 30 
kg/m2) in the US is 31%, and the prevalence of  morbid 
obesity (BMI ≥ 40 kg/m2) is growing even at a greater 
rate than that of  obesity[37]. The most obvious body change 
in obesity is increase in the fat mass, which becomes a key 
pathological contributor to MS and is related to abnormal 
production of  cytokines, chronic sub-clinical inflammatory 
state and abnormal coagulation. The prevalence of  
NAFLD increases to 74% in obese persons and 90% in 
morbidly obese persons[38,39]. The probability of  NAFLD 
progression increases with the degree of  obesity, and 
about 15%-30% of  morbidly obese patients (BMI ≥ 35 
kg/m2) have NASH[40].

The presence and severity of  NAFLD/NASH are 
closely related to coexistence of  MS components[41], obesity 
and other risk factors for IR[42]. This paper reviews the 
chemical and molecular basis of  IR, highlighting the role 
of  adipose tissue and adipocytokines in its development 
especially in obese people. Brief  consideration is also given 
to normal lipid metabolic pathways of  liver to explain the 
involvement of  IR in pathogenic mechanisms of  NAFLD.

NORMAL LIPID METABOLISM
After meals, dietary triglycerides (TAG) are transported to 
the liver from intestines (via chylomicrons). In addition, 
hepatic TAG synthesis from fatty acids (FA) and glycerol 
occurs under the influence of  insulin in the postprandial 
state[43]. TAG are secreted into blood as very low density 
lipoproteins (VLDL) that are either stored in adipose 
tissue as re-esterified TAG or metabolized into FA and 
used as energy source. Excessive TAG within the liver 
may be stored as lipid droplets in hepatocytes (Figure 1).  
The sources of  FA for hepatic TAG formation are 
either from the plasma (nonesterified fatty acid; NEFA) 
pool or FA newly synthesized within the liver through 
de novo lipogenesis (DNL). Metabolic steps of  DNL are 

Table 1  Histological scoring and staging system for NASH

Steatosis                        Steatohepatitis Stages of NASH

Macrovesicular Lobular Inflammation Ballooning Fibrosis
Definition
and score

Large fat droplet with signet cell appearance 
of hepatocytes

Assessment of inflammatory foci 
on 200 × field

Swollen hepatocytes On trichome staining

0 Less than 5% Less than 2 foci None None
1 5% to 33% 2 to 4 foci Few Perisinusoidal (zone 3) or periportal

1a-mild, zone 3
1b-moderate, zone 3
1c-portal or periportal

2 33% to 66% More than 4 foci Many cells or prominent
ballooning

Perisinusoidal (zone 3) 
and portal/periportal

3 More than 66% - - Bridging
4 - - - Cirrhosis

NAFLD activity score (NAS) is defined as the unweighted sum of steatosis (macrovesicular), lobular inflammation and ballooning. Score for a particular 
histology ranges from 0 to 8[13].  NASH: non-alcoholic steatohepatitis.
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Figure 1  Lipid metabolism in liver. All steps indicated by + are stimulated by 
insulin. Insulin suppresses the secretion of VLDL and the β-oxidation of fatty acids. 
Thus hyperinsulinemia in the setting of insulin resistance favors TAG accumulation 
in liver. TAG: triglycerides; VLDL: very low density lipoprotein; FA: fatty acid; NEFA: 
nonesterified fatty acids; DNL: de novo lipogenesis; ATP: adenosine triphosphate.



important, precisely regulated and involve mitochondria[44]. 
In the postprandia l  s tate of  energ y (Adenosine 
triphosphate; ATP) excess, surplus glucose is used as FA 
substrate. Glucose via its conversion to pyruvate enters 
the Kreb's cycle of  mitochondria. Citrate formed in the 
Kreb's cycle is shuttled to cytosol where it is converted to 
acetyl-CoA by ATP citrate lyase. Acetyl-CoA carboxylase 
1 (ACC1) enzyme then converts acetyl-CoA to malonyl-
CoA, which is used by fatty acid synthase to form different 
long chain FA in cytosol. The hepatic uptake of  FA from 
NEFA pool is not regulated and as a result the influx 
directly relates to plasma FA concentration. The affluent 
diets of  modern age hence promote accumulation of  
surplus fat in the hepatocytes by providing more dietary 
TAG[45], FA (expanding NEFA pool) as well as glucose 
(substrate of  DNL). Increased insulin levels after meals 
promote all of  the steps of  hepatic fat accumulation. 
Oxidation of  FA occurs in mitochondria, peroxisomes, 
and microsomes. Short-chain and medium-chain FA are 
oxidized in mitochondria only[46]. Long-chain and very 
long-chain FA are shortened by the extramitochondrial 
(peroxisomes and microsomes) oxidation first and then 
mitochondrion enzymes complete the process. Entry 
of  FA into mitochondria is the rate-limiting step of  
oxidation. FA must be activated by fatty acyl-CoA synthase 
to fatty acyl-CoA in the cytoplasm. The transport of  
fatty acyl-CoA into the mitochondria is accomplished 
by the intermediation of  carnitine acyltransferaseⅠ
(CPT-1), an enzyme that resides in the outer mitochondrial 
membrane[47].

Three molecular mediators of  lipid metabolism 
namely: Sterol regulatory element-binding protein 
(SREBP1-c), carbohydrate response element-binding 
protein (ChREBP) and peroxisome prol iferat ive 
activated receptor (PPAR-γ) are worth mentioning at 
this point. Insulin acts on SREBP1-c on hepatocyte cell 
membranes[48], which transcriptionally activates most of  
the genes involved in DNL. SREBP1-c also activates 
ACC-2, an isoform of  ACC that produces malonyl-CoA 
at the mitochondrial membrane[49]. Increase in malonyl-
CoA decreases β-oxidation because it inhibits CPT-1 at 
higher concentrations[50] and hence leads to FA build up. 
Hyperglycemia can also stimulate lipogenesis directly by 
activating ChREBP[51], which induces gene expression 
of  liver-type pyruvate kinase (L-PK), a key regulatory 
enzyme in glycolysis[52]. L-PK catalyzes the conversion of  
phosphoenolpyruvate (PEP) to pyruvate, which enters 
the Kreb's cycle to generate citrate. Citrate is a principal 
source of  acetyl-CoA used for FA synthesis. ChREBP 
stimulates gene expression of  most enzymes involved in 
DNL[53]. Hence hyperglycemia stimulates both glycolysis 
and lipogenesis, thereby facilitating the conversion of  
glucose to FA under conditions of  energy excess. PPAR-γ 
transcription factor participates in the development of  
HS in rodents. Normally, PPAR-γ is expressed at very low 
levels in the liver; however, in animal models with IR and 
fatty livers its expression is markedly increased[54]. Studies 
demonstrate that SREBP-1c can also transcriptionally 
activate PPAR-γ [55]. The genetic deletion of  hepatic 
PPAR-γ in livers of  ob/ob mice markedly alleviates the 
development of  HS[56], independent of  the presence of  

hyperinsulinemia or hyperglycemia. The precise molecular 
events mediated by PPAR-γ that promote hepatic TAG 
deposition have not been fully defined. It is also not 
known whether PPAR-γ expression is increased in human 
fatty livers.

INSULIN RESISTANCE
Insulin resistance (IR) may be defined as altered metabolic 
condition in which higher than normal insulin levels are 
needed to achieve normal metabolic responses or normal 
insulin concentrations fail to achieve a normal metabolic 
response. IR manifests with a reduced efficiency of  
insulin to inhibit hepatic glucose production and stimulate 
glucose utilization in skeletal muscle and adipose tissue. 
Subsequent high glucose levels result in compensatory 
hyperinsulinemia, which accounts for the elevation of  
Homeostasis Model Assessment (HOMA)-IR values[57,58]. 
Incidence of  IR increases with age[59] and is almost 
always higher in males[60]. Other important conditions 
associated with IR include hyperuricaemia[61], gallstones[62], 
thrombophilia[63], endothelial dysfunction and polycystic 
ovary syndrome[64].

The biological action of  insulin depends upon 
interaction of  insulin with its specific receptor (Table 2).  
The insulin receptor is a glycosylated tetramer consisting 
of  two extra cellular insulin binding (alpha) subunits and 
two trans-membranous (beta) subunits with tyrosine 
kinase activity. Insulin activates the receptor and causes 
subsequent tyrosine phosphorylation of  insulin receptor 
substrate proteins (namely IRS-1 and IRS-2). This 
initiates a cascade of  events leading to translocation 
of  a specific glucose transporter-4 (GLUT-4) from 
intracellular pool to the cell membrane. GLUT-4 facilitates 
glucose transport along the concentration gradient from 
extracellular space into the cytoplasm of  myocytes and 
adipocytes. The mechanisms responsible for IR may 
involve insulin binding, IRS proteins or even GLUT-4[65]. 
IR can be central (hepatic) or peripheral (muscle, fat 
tissue) depending upon the primary site of  involvement. 
Peripheral IR impairs uptake of  glucose from blood into 
skeletal muscles and adipose tissues. It manifests with 
increased free FA liberation from adipose tissue secondary 
to the unopposed antilipolytic action of  insulin on 
hormone-sensitive lipase (HSL)[66] and is best measured 
through the euglycemic clamp technique[67]. Hepatic IR 
manifests with unrestrained hepatic glucose production 
resulting from impaired glycogen synthesis and failure of  
insulin to suppress gluconeogenesis[68]. Hepatic IR may 
also be caused by fat accumulation in hepatocytes itself[69]. 
Regarding the primary site of  IR in NAFLD (peripheral vs 
hepatic), recent data indicate the periphery to be the initial 
site followed by or resulting in HS exacerbating hepatic IR 
and thus the degree of  overall IR[70].

Organ-specific deposition of  fat is a strong predictor 
of  hyperinsulinemia and IR. Analogous to fat in the liver, 
increased intramyocellular TAG content closely correlates 
with muscle IR. The aberrantly high availability of  NEFA 
reduces muscle use of  glucose (main consumer of  glucose 
in the body)[71]. The resultant hyperglycemia potentiates 
glucose-stimulated insulin secretion, which chronically 
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burns out β-cells. This explains the link between obesity, 
IR and development of  type 2 diabetes. 

The metabolic and cellular mechanism(s) linking IR 
to NAFLD are complex and are not fully understood. 
There are several distinct clinical syndromes associated 
with severe IR, which are also associated with NAFLD, 
e.g. obesity, diabetes mellitus and lipoatrophy[72,73]. The 
severity of  NAFLD improves after pharmacological and 
non-pharmacological interventions aiming at restoring 
insulin sensitivity[74]. This demonstrates the role of  IR in 

pathogenesis of  NAFLD and a 'two hit' process has been 
proposed to explain it[75].

Two hit hypothesis 
Non-alcoholic fatty liver disease represents a continuum 
of  hepatic injuries, which progress from simple fatty liver 
(FL or HS) to hepatocellular ballooning degeneration, 
formation of  Mallory bodies and fibrosis (NASH). The 
first hit involves accumulation of  TAG in hepatocytes as 
described above. It has also been recognized that HS in 

Table 2  Pathophysiology of insulin resistance

Actions of insulin Mechanism of action of insulin Alterations in insulin resistant states Net metabolic effect
   (a) Stimulatory
Increases glucose transport:
   In adipocytes
   In myocytes

-Insulin binds to its membrane receptor to cause
 up regulation of GLUT-4 via mediation of IRS-1/2
 (activated by phosphorylation at tyrosine sites)

-Impaired post receptor signaling
involving IRS proteins
-Abnormal phosphorylation of IRS-1 
makes it inhibitor of the receptor
kinase
-Activation of IKK-β by free FA and
 cytokines leads to activation of 
NF-κB which further inhibits the 
genes involved in GLUT synthesis

-Hyperglycemia 
-Decreased glucose utilization as
energy source
-Reactive hyperinsulinemia

Increases glycogenesis
   In hepatocytes
   In myocytes

-By providing the building blocks
-Increases expression and activity of glycogen
synthase and inhibiting the glycogenolytic enzymes

-Decreased glycogen synthesis -Hyperglycemia
-Decreased postprandial glycogen
stores in liver

Increases lipogenesis
   In adipose tissue
   In liver (DNL)

-Increases the supply of substrates
-Postprandial stimulation of FAS, ACC and SCD1
-Increases supply of free FA in AT 

-Further increase in lipogenesis,
esp. DNL
-Increased delivery of free FA to liver
-Decreased oxidation in hepatocytes

-Excessive fat storage in AT and 
in other tissues (lipotoxicity)
-Hepatic steatosis
-Increased adiposity 

Increases protein synthesis 
in muscles

-Activates the translational machinery
-Activates protein kinase B which activates 
the protein synthesizing enzymes
-In long term exposure increases ribosome in cells

-Decreased protein synthesis -Sarcopenia

Increases glucose oxidative 
pathways

-Enhances glycolysis and Kreb's cycle by 
activating all the key regulator enzymes

-Inhibited
-Lipid oxidation preferentially used
for energy purposes

-Hyperglycemia
-Oxidative stress in hepatocytes

   (b) Inhibitory
Decreases gluconeogenesis
in liver

-Inhibits pyruvate carboxylase, glucose 6
phosphatase and PEP kinase
-Shuttles substrates to lipogenesis

-Enhanced gluconeogenesis
-Decreased inhibition of key
regulatory enzymes
-Activation of AMPK

-Increased hepatic glucose output
-Excessive availability of 
substrates for lipogenesis
-Fasting hyperglycemia

Decreases hepatic glucose 
output

-Decreases gluconeogenesis
-Increases glycogen synthesis
-Increases oxidation of glucose

-Increased gluconeogenesis
-Decreased glycogenesis and 
oxidative disposal of glucose

-Hyperglycemia

Suppresses lipolysis in adipose
tissue

-Suppression of HSL -Increased rate of free FA release in
fasting state in lean and obese
-When corrected for body weight in 
obese, postprandial lipolysis may
seem to be normal or even decreased

-Increased plasma free FA both in
fasting and post-prandial states
(May be due to a mass effect of 
overall expansion of body fat 
depots in case of obese)
-Increased free FA efflux
-Increased VLDL

Decreases apolipoprotein 
secretion

-Insulin decreases the synthesis and secretion 
of Apo-B and Apo-C

-Hyperinsulinemia causes further 
suppression of expression of 
apolipoprotein genes and also 
inhibits post translational
modifications and secretion 
-Enhanced synthesis of Apo-B 48 in 
intestines

-Trapping of TAG inside the liver
-Hepatic steatosis
-Increased VLDL

Suppresses β oxidation of fatty 
acids

-Insulin acts via binding to SREBP-1 transcription
factor to cause increased expression of ACC-1
leading to generation of FAS substrates for
lipogenesis

-Reactive hyperinsulinemia with
unrestricted effect on SREBP causes
further inhibition of β-oxidation of
free FA in hepatocytes mitochondria

-Hepatic steatosis
-CYP system over expression 
and generation of ROS

Hyperinsulinemia and hyperglycemia are two main net metabolic effects of IR. IR also contributes to expansion of NEFA pool and is now alone considered to be 
responsible for both the hits of 'two hit hypotheses' of NAFLD. IKK-β: Inhibitor of kappaB kinase beta; NF-κB: Nuclear factor-kappa B; FAS: Fatty acyl synthase; 
ACC: Acyl-CoA carboxylase; SCD: stearoyl-CoA desaturase; PEP: Phosphoenol pyruvate; CYP: Cytochrome P. FA: fatty acids; AT: adipose tissue; HSL: hormone 
sensitive lipase; SREBP: sterol regulatory element binding protein;IRS:receptor substrate proteins;  GLUT: glucose transporter; AMPK: adenosine monophosphate 
kinase; ROS: reactive oxygen species.
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itself  leads to hepatic IR by activating protein kinase-theta 
(PKC-θ) and Jun N-terminal kinase (JNK)[65,76], which 
interfere with tyrosine phosphorylation of  IRS-1 and 
IRS-2 and impairs insulin action in hepatocytes[77]. Steatosis 
and IR can cause and potentiate each other creating a 
vicious cycle of  metabolic dysfunction.

Once the presence of  hepatic steatosis is established, 
progression to steatohepatitis involves a 'second hit' and 
oxidative stress is thought to play a key role. Fatty liver is 
more susceptible to oxidative injury[78]. Oxidative stress 
results from an imbalance of  prooxidants (enhanced 
reactive oxygen species; ROS/reactive nitrogen species; 
RNS) and antioxidants (nutritional deficiencies) and 
leads to lipid peroxidation[79]. The chemical modification 
of  biologic molecules may be directly toxic to the cells 
or may stimulate host-immune response that leads 
to inf lammation, collagen production and further 
progression of  disease[80-82]. The factors promoting 
prooxidant generation include mitochondrial dysfunction 
(NADPH oxidase, electron transport chain leakage)[83] 
and induction of  hepatic cytochrome (microsomal, 
peroxisomal CYP2E1)[84,85] resulting from overburden 
of  FA oxidation system (described above)[86]. It is now 
believed that IR itself  may predispose to oxidative 
stress by stimulating microsomal lipid peroxidases and 
by decreasing mitochondrial β-oxidation[81]. CYP2E1 is 
normally suppressed by insulin but is invariably increased 
in the livers of  patients with NASH[87] and in rodent 
dietary models of  steatohepatitis CYP2E1 is the catalyst 
of  microsomal lipid peroxidation[88]. Attention should 
now shift from considering hepatic steatosis as a benign 
process to an important unhealthy condition, which leads 
to IR, oxidative stress and further progression of  NAFLD. 
This is evident from the fact that severe forms of  NASH 
correlate well with presence of  hepatic steatosis, visceral 
obesity and MS[89].

ADIPOSE TISSUE AND OBESITY
Earlier it was generally believed that the purpose of  
adipose tissue (AT) was simply a repository of  fat. The first 
report suggesting the fat was an active metabolic tissue was 
published by Von Gierke[90]. Presently it is considered an 
endocrine organ and a key regulator of  both metabolism 
and inflammation[91]. In adult mammals, the major bulk of  
AT is a loose association of  lipid-filled adipocytes which 
are held in a framework of  collagen (stroma) containing 
stromal-vascular cells, fibroblastic connective tissue cells, 
leukocytes, macrophages and pre-adipocytes (not yet filled 
with lipid). Approximately 60% to 85% of  the weight of  
white adipose tissue is lipid, with 90%-99% being TAG. 
Small amounts of  free FA, diglycerides, cholesterol and 
phospholipids are also present. AT is the only organ with 
unlimited growth potential at any stage of  our life. The 
size of  adipose tissue mass is a function of  both adipocyte 
number and size. It can expand by hyperplastic (increase 
in number) and hypertrophic (increase in the size of  
adipocytes) growth. Hypertrophy occurs primarily by lipid 
accumulation within the cell and is reversible, however 
once adipocyte hyperplasia occurs, they remain throughout 
the life. Adipocytes are specially adapted for the uptake 

and release of  energy in the form of  FA. Fatty acids are 
converted to TAG inside adipocytes which accumulate 
as surplus fuel during caloric abundance and released as 
NEFA back to the circulation as needed in the periods 
of  food shortage and calorie debt (e.g. fasting, starvation, 
exercise). Adipose tissue is extensively supplied with blood 
circulation. Insulin plays a major role in the control of  AT 
development and function. It not only regulates lipogenesis 
but also the rate of  lipolysis and NEFA efflux. Adipose 
tissue in adults can be divided into two types depending 
on its location: subcutaneous and visceral (intraperitoneal: 
omental and mesenteric fat). Both fat depots differ in 
pathophysiology. Insulin actions are blunted in omental 
compared with subcutaneous AT[92] and can be explained 
by the increased endogenous protein tyrosine phosphatase 
1B (which down regulates the insulin receptors) levels in 
omental adipocytes[93]. Visceral adiposity is more strongly 
correlated with NALFD/MS and is measured by waist-
to-hip ratio[94]. CT and MRI are the gold standards for 
measuring visceral fat[95].

ROLE OF ADIPOSE TISSUE IN
NON-ALCOHOLIC FATTY LIVER DISEASE
Excess  ad ipose  t i s sue  pred isposes  towards  the 
development of  IR by virtue of  its secreted factors[96]. Well 
over 100 secreted factors have been identified. Adipokines 
are biologically active proteins secreted both by cellular 
and stromal fractions of  AT. In addition adipocytes also 
secrete FA, cytokines, cholesterol, steroid hormones 
and prostaglandins[97]. Secretion of  all factors except 
adiponectin increases as AT enlarges in obesity[98]. Various 
stimuli have been proposed to explain the overproduction 
of  adipokines in obesity. These include increase in 
mass, chronic inflammation with infiltration of  AT by 
macrophages, hypoxia (growth of  adipose tissue ahead of  
angiogenesis), endoplasmic reticulum stress and oxidative 
stress[99]. This increase in synthesis is however reversible 
and decreases with weight loss[100].

The links between adiposity and development of  IR 
and NAFLD thereafter can be explained by the following 
hypotheses.

Portal/visceral hypothesis
From an anatomical perspective, visceral adipocytes can 
be a crucial source of  FA and other factors entering 
portal circulation[101]. FA are elevated in sera of  obese and 
diabetic patients. Like protein hormones free FA are also 
thought to be potent signaling molecules[102]. Enhanced 
delivery of  FA from enlarged visceral adipose tissue to the 
liver leads to reduced hepatic insulin clearance with further 
increase of  circulating insulin levels[103]. FA stimulate 
hepatic gluconeogenesis, TAG synthesis and impair insulin 
suppression of  hepatic glucose output[103]. Intrahepatic 
lipids increase by 22% for any 1% increase in total, by 21% 
for any 1% increase in subcutaneous and by 104% for 1% 
increase in intra-abdominal adipose tissue[104]. NEFA levels 
are raised in the peripheral blood of  NASH patients[105], 
however measurements of  portal NEFA levels are still 
needed to justify the portal theory (Figure 2).
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Endocrine paradigm
Adipocytokines have wide-ranging effects on food intake, 
energy expenditure and metabolism. These are secreted 
by one cell for the purpose of  altering either its own 
function (autocrine effect) or those of  adjacent cells 
(paracrine effect). In many instances, individual cytokines 
have multiple biologic activities. Different cytokines have 
similar activity, which provides biologic redundancy within 
the inflammatory and immune systems. As a result, it is 
infrequent that loss or neutralization of  one cytokine will 
markedly interfere with either of  these systems. This fact 
has great significance in the studies of  genetic knock out 
animals. FA released from adipose tissue have a variety of  
systemic effects including induction of  peripheral IR. In 
myocytes free FA compete with glucose for its entry and 
utilization[106] and as a consequence, lead to ATP depletion, 
diminished GLUT-4 translocation and reduced muscular 
glycogen synthesis[107].
Leptin: Leptin is the first adipokine that was described[108]. 

Encoded by "ob" gene, it is primarily synthesized and 
released into the circulation by mature adipocyte in 
response to changes in body fat mass and nutritional 
status[109]. In hypothalamus, leptin stimulates anorexigenic 
pathways and decreases food intake[110]. Circulating levels 
of  leptin are high in obese, proportional to BMI[111,112] 
and acutely decrease in response to fasting or restriction 
of  energy intake to a much larger extent than would be 
expected for smaller reductions of  adiposity[113] and low 
levels act as a signal of  negative energy balance. Adipocyte 
size and anatomical location (subcutaneous) appear to be 
the major determinants of  leptin mRNA expression and 
secretion. In vivo, overfeeding and obesity, glucocorticoid 
treatments, glucose, and insulin administration increase 
circulating leptin levels[114,115] , whereas fasting, sustained 
exercise, cold exposure, and weight loss reduce leptin 
levels[116,117]. Leptin acts as an insulin-sensitizing hormone 
and reduces lipid content of  myocytes, hepatocytes and 
pancreatic β-cells[118]. In muscle, insulin sensitization is 
achieved through inhibition of  malonyl-CoA synthesis[119], 
which increases transport of  FA into mitochondria. 
Leptin directly stimulates adenosine monophosphate 
kinase (AMPK), which activates ATP-producing catabolic 
pathways, such as β-oxidation, glycolysis and inhibits ATP-
consuming anabolic pathways[120]. Animals lacking leptin 
effects; ob/ob mice (leptin gene mutation), db/db mice 
and fa/fa rats (leptin receptor gene mutations) are obese, 
insulin resistant and have HS[121,122] , while leptin injections 
attenuate their fatty livers and metabolic abnormalities[123]. 
In humans with lipoatrophic diabetes, there is little or no 
fat mass, diminished leptin levels, markedly elevated TAG 
and also fatty liver[124]. Leptin therapy in them reduces 
liver enzymes, BMI, hepatic fat content and histological 
features of  steatohepatitis[125]. In obese NAFLD patients, 
leptin levels are elevated and are directly correlated with 
the severity of  HS[126]. This brings up the concept of  leptin 
resistance[127]. The anti-steatotic and insulin-sensitizing 
actions of  leptin are blunted in obesity. The reason for 
this phenomenon is currently poorly understood and it 
may result from defects in leptin signaling or transport 
across blood brain barrier[128]. In animal models leptin is a 
critical fibrogenic factor[129]. This action may be mediated 
by transforming growth factor (TGF)-β or may involve 
activation of  hepatic stellate cells (HSC) directly. HSC, 
upon activation produce leptin[130], which further stimulates 
fibrogenesis, as both quiescent and activated HSC express 
leptin receptors[131].
Adiponectin: Adiponectin, an antilipogenic and insulin-
sensitizing protein[132] is almost exclusively expressed in 
white AT adipocytes and circulates at high levels[133]. In 
contrast to other adipokines, its expression and serum 
levels are reduced in obesity and a variety of  insulin 
resistant states[134]. In obese rats the cellular mRNA and 
circulating levels of  adiponectin are low[135,136] and prompt 
increase is seen with body weight reduction through food 
restriction[134]. Similar inverse correlation between BMI and 
adiponectin is also observed in Pima Indians[137]. IL-6 and 
TNF-α are potent inhibitors of  adiponectin expression[138] 
and high levels of  these cytokines in obesity and NAFLD 
explain this relationship. The decline in adiponectin levels 
coincide with the onset of  IR[135,139] and various links 
have been suggested between low circulating adiponectin, 

Figure 2  Portal/Visceral hypothesis. Human adipose tissue (AT) is a potent 
source of inflammatory cytokines and that the majority of this release is due 
to the nonfat cells in the AT except for leptin and adiponectin that are primarily 
secreted by adipocytes. Adipocytes secrete at least as much PAI-1 (plasminogen 
activator inhibitor-1), MCP-1 (macrophage chemotaxis protein), IL-8 (Interleukin), 
and IL-6 in vitro as they do leptin but the nonfat cells of AT secrete even more of 
these proteins. The secretion of leptin by the nonfat cells is negligible. Obesity 
markedly elevates the total release of TNF-α, IL-6, and IL-8 by AT. Visceral fat 
releases more resistin, IL-6, PAI-1, TGF β1, IL-8 and IL-10 per gram of tissue than 
subcutaneous fat. (+) indicates fold increase in secretion in obesity; (-) indicates 
protective effect.
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increased liver fat content and the degree of  hepatic 
IR[140,141]. Administration of  adiponectin ameliorates IR 
in mouse models of  obesity and diabetes[142]. The insulin 
sensitizing properties of  adiponectin are due to its ability 
to activate AMPK in hepatocytes, myocytes and locally in 
adipocytes. In turn, it enhances hepatic FA oxidation and 
insulin suppression of  glucose production[143], myocellular 
FA oxidation (by inactivation of  ACC-1)[144] and lipolysis 
in AT. Adiponectin also has anti-inflammatory effects and 
inhibits the local production of  TNF-α and IFN. Low 
adiponectin levels might predispose liver to cell necrosis 
and[145,146] correlate with the severity of  NASH and liver 
enzyme abnormalities[147]. Adiponectin therapy improves 
IR in lipodystrophy, however, complete reversal of  IR in 
the animal models requires co-administration of  leptin, 
further supporting the importance of  coordinated roles of  
different adipokines in causation of  this complex disease.
Tumor necrosis factor-α: TNF-α is synthesized and 
secreted by visceral adipocytes, stromovascular cells 
and endotoxin-activated macrophages[148]. Unstimulated 
adipose tissue releases relatively small amounts of  
TNF-α[149]. Its effects depend upon interaction with TNF 
receptors (TNF-R1 and TNF-R2) and also with more 
than 20 different cytokine receptors. TNF receptors are 
also secreted by adipocytes. TNF-R1 mediates apoptosis 
and lipolysis while TNF-R2 is involved in the induction 
of  IR[150]. TNF-α mainly acts in an autocrine/paracrine 
fashion in AT and plays a central role in the generation 
of  IR in rodents. It does so directly by reducing mRNA 
expression of  GLUT-4[148], reducing lipoprotein lipase 
(LPL) activity and increasing expression of  hormone 
sensitive lipase in AT. Also TNF-α impairs insulin 
signaling through JNK mediated serine phosphorylation 
of  IRS proteins in the surrounding adipocytes[151]. TNF-α 
causes activation of  PPAR-γ also and reduces expression 
and secretion of  leptin by adipocytes. In vitro studies 
on human adipose tissue do not show any clear role of  
TNF-α in causing these direct metabolic derangements. 
Circulating TNF-α is increased in obese[152] and diabetic 
subjects while weight loss decreases its levels. Although 
the correlation between IR and plasma TNF-α is weak, 
adipocyte TNF-α mRNA levels correlate well with BMI, 
body fat and hyperinsulinemia. To date no study has 
demonstrated whether TNF-α, via the portal vein reaches 
the liver and causes hepatic injury. However, the local 
production of  TNF-α by Kupffer cells has been proposed 
to play a key role in the pathogenesis of  NASH/NAFLD. 
FL in ob/ob mice is significantly improved by inhibition 
of  hepatic TNF-α production or by infusion of  anti-
TNF-α antibodies[153]. TNF-α knockout could prevent 
the development of  IR induced by a high fat diet in mice, 
suggesting a role of  TNF-α in mediating free FA-induced 
IR.
Interleukin-6: IL-6 is predominantly an endocrine 
cytokine[154] with multiple systemic effects ranging from 
inflammation to host defense (regulation of  B and T 
cell functions) and tissue injury. Approximately 33% of  
circulating IL-6 come from the AT, of  which the matrix 
components with immune cells (monocytes), fibroblasts 
and endothelial cells contribute the major part (90%). 
Omental fat secretes 3 times more IL-6 than subcutaneous 

AT. However, IL-6 expression in subcutaneous fat is prone 
to rapid changes following meals, exercise (mediated via 
stimulation) and weight changes. Plasma IL-6 levels are 
increased in obesity[152] and predict the development of  
type 2 diabetes, metabolic syndrome and cardiovascular 
diseases[155,156].  It has a weak inhibitory effect on 
adipogenesis. In paracrine fashion, it decreases adiponectin 
secretion from the surrounding adipocytes, inhibits 
lipoprotein lipase (LPL) on endothelial cells and activates 
lipolysis (post exercise). IL-6 can enter the liver via portal 
circulation from visceral adipose tissue and mediates its 
effects on hepatocytes by interacting with its receptor, 
activating suppressor of  cytokines signaling-3 (SOCS-3). 
This causes inhibition of  IRS phosphorylation, which 
leads to hepatic IR[157]. IL-6 also has pro-inflammatory 
properties and causes activation of  Kupffer cells resulting 
in fibrogenesis. It also enhances hepatic C-reactive protein 
synthesis. Paradoxically, administration of  IL-6 in the 
cerebrospinal fluid of  rats decreases body weight and IR, 
probably by enhancing the energy expenditure due to its 
action on hypothalamus.
Resistin: Resistin is claimed to represent an important 
link between obesity and IR[158]. In humans the major 
source of  resistin is probably from the peripheral blood 
macrophages and adipocytes[159] and its levels correlate 
with IL-6[160] and BMI[161,162]. In mice, recombinant 
resistin promotes systemic IR by AMPK activation and 
decreasing upregulation of  GLUT-4 in adipocytes whereas 
anti-resistin antibody administration improves IR[163]. 
Mice lacking resistin (rstn-/-) exhibit low blood glucose 
levels after fasting owing to reduced hepatic glucose 
production[164]. Its serum levels are higher in mouse models 
of  obesity and decrease by PPARγ agonist treatment[165].
Acylation-stimulating protein: Adipose tissue releases 
substantial amounts of  acylation-stimulating protein (ASP), 
which is derived from the interaction of  complement C3, 
factor B and adipsin[166]. ASP stimulates glucose transport 
and enhances TAG storage in adipocytes[167]. These 
stimulatory effects are independent of  and complementary 
to those of  insulin[168]. Insulin itself  increases the 
production of  ASP precursor C3 in adipocytes[169]. 
Production of  ASP may also be increased by IL-6 [168] and 
its levels in NAFLD are high correlating with HOMA-
IR score[170]. Although ASP levels are increased in obese 
subjects, resistance to ASP could redirect FA flux away 
from AT and towards the liver causing HS.
Angiotensinogen: Angiotensinogen is also found in 
adipocytes[171] and its levels are increased in obesity[172]. 
Nascent data suggest it may be important in NAFLD, 
because angiotensin Ⅱ antagonists improve liver function 
tests in patients with NAFLD and attenuate fibrosis in 
animal models[173].

Lipodystrophy-the ectopic fat storage syndrome
Hepatic steatosis is not only confined to obese subjects 
with excessive fat tissue, but it occurs frequently in 
lipodystrophy characterized by severe loss of  AT from 
different regions of  the body[174] and correlates directly 
in severity with the extent of  fat loss[175]. Patients with 
congenital or acquired generalized lipodystrophy often 
are insulin resistant, diabetic and their HS may progress 
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to cirrhosis[176]. The mechanism for HS in lipodystrophy 
is related to the reduced storage capacity of  AT depots 
and diversion of  TAG to other tissues[69]. Also the failure 
of  AT mass to expand and accommodate a high-energy 
influx causes impaired adipokine production. Experiments 
in mice and humans demonstrate development of  severe 
IR with lipodystrophy[177,178]. IR in lipoatrophic mice is 
fully reversed by a combination of  physiological doses 
of  adiponectin and leptin, but only partially by either 
adiponectin or leptin alone. This suggests that reduced 
adiponectin and leptin levels might be causing NAFLD in 
subjects with lipodystrophy[179].

ROLE IN NON-ALCOHOLIC
STEATOHEPATITIS AND CIRRHOSIS
Subjects with NASH are at significantly increased risk 
to develop cirrhosis. Once cirrhosis has developed, the 
characteristic hepatocellular changes, as well as steatosis, 

are often no longer conspicuous, possibly leading to such 
cases being mistakenly diagnosed as cryptogenic. Studies 
suggest that NAFLD is the most important cause of  
cryptogenic cirrhosis[180,181]. A fraction of  NAFLD patients 
develop hepatocellular carcinoma[182]. The risk of  this 
malignant complication is increased more than 4 times in 
cirrhotic patients compared to the general population[183]. 
About 3% of  NASH cases may progress to terminal liver 
failure, requiring liver transplantation[184]. At present, up to 
4% to 10% of  liver transplants can probably be accounted 
for by end-stage NASH[4]; this estimate is very likely to rise. 
The pathogenesis of  progression is not well understood 
and various risk factors are proposed. Low intake of  
antioxidant vitamins, high intake of  saturated fat[185], 
presence of  small bowel bacterial overgrowth[186] and 
obstructive sleep apnea[187] may contribute to it in different 
settings. Eventually, various factors (cytokines, hormones, 
neurotransmitters or FA) through their interactions 
modulate the necro-inflammatory component of  NASH 

Table 3  Serum factors in obesity and potential mechanisms of NASH

Factors Increase in obesity Source: tissue/cells Basis of increased levels Role in development of NASH 

FFA[199] 41% Diet
Adipose tissue: (adipocytes) 
visceral/subcutaneous

-Over nutrition
-Unopposed peripheral
lipolytic activity secondary
to IR

-Lipotoxicity
-Induce JNK dependent hepatocytes apoptosis
-Cause Bax translocation to hepatocyte
lysosomes leading to lysosomal degradation
and release of cathepsin B
-Enhance expression of apoptosis effectors
(TNF-α and Fas)
-Generation of ROS at ETC of mitochondria
-Increase in hepatic lipid peroxidation

TNF-α[152] 28% Liver: Kupffer cells/macrophages
/HSC/hepatocytes
Adipose tissue: macrophages 
in matrix/adipocytes 

-Chronic inflammation
in adipose tissue with
macrophage infiltration
-LPS/endotoxins from small
bowel overgrowth
-Viral infection
-Ethanol
-Reactive oxygen species

-Receptor mediated mitochondrial injury 
with release of ROS and caspases
-Induction of lipid peroxidation and 
cell necrosis (intermediation of ceramide)
-TNF-α R1 activation leads to Fas 
induced apoptosis
-Causes release of other cytotoxic cytokines
(IL-6, TGF-β) from activated Kupffer cells

IL-6[152] 46% Blood: monocytes/endothelial cells
Adipose tissue: subcutaneous/
omental
Liver: Kupffer cells/HSC/
macrophages

-TNF-α mediated activation 
of Kupffer cells
-Pro-inflammatory cytokines
release by cells (macrophages)
in adipose tissue

-Mediates synthesis of acute phase proteins 
by hepatocytes
-Activates HSC to cause fibrosis and 
up regulate various genes involved

Leptin[111,112] 4 .2 to 5.8 times Adipose tissue: mature 
adipocyte/few matrix cells
Liver: activated HSC

-Increased mass of 
adipose tissue
-Chronic inflammatory
mediators in adipose tissue
-Leptin resistance

-Regulates hepatic fibrosis by activation 
of HSC (induction of α2 collagen gene) 
and modulation of Kupffer cell function
-Protects HSC from apoptosis and 
enhances their regeneration
-Up regulates profibrogenic TGF-β synthesis

Resistin[161,162] Non significant Adipose tissue: visceral/
subcutaneous (adipocytes) 
Blood: monocytes
Liver: Kupffer cells

-IL-6 and TNF-α release in
adipose tissue secondary 
to inflammation
-Chronic liver injury

-NF-κB mediated activation of HSC and 
release of pro-inflammatory (MCP, 
IL-8, TNF-α) and fibrogenic 
(TGF-β, leptin) cytokines

IL-8[200] 33% Inflammatory cells in adipose tissue,
liver and blood

-Pro-inflammatory cytokines -Mediates inflammatory response in NASH

PAI-1[201] 3.5 times Liver: (activated HSC)
Adipose tissue: visceral/omental 
(matrix and adipocytes)

-Locally produced TGF-β 
and TNF-α

-Inhibits the activation of fibrinolytic 
plasmin during fibrogenesis

Angiotensinogen[172] 14%.........................
................................
................................
................................
..

Liver: hepatocytes
Adipose tissue: visceral/
subcutaneous (adipocytes)

-Hyperinsulinemia of IR
-FFA 

-Activates HSC to secrete TGF-β to cause
fibrosis

FFA: Free fatty acids; JNK: Janus N kinase; ROS: Reactive oxygen species; ETC: Electron transport chain; TNF-α: Tumor necrosis factor-α; HSC: Hepatic stellate 
cells; IL: Interleukin; TGF-β: Transforming growth factor-β; MCP: Monocyte chemoattractant protein; NF-κB: Nuclear factor-kappa B; PAI-1: Plasminogen 
activator inhibitor-1; IR: Insulin resistance.

Qureshi K et al . Adipose tissue and NAFLD                                                                                                      3547

www.wjgnet.com



(Table 3).
The development of  fibrosis indicates further 

progression of  liver injury. Extracellular accumulation of  
collagen matrix is predominantly localized in pericentral 
and perisinusoidal areas of  the hepatic lobule[188]. However, 
isolated portal fibrosis (IPF) is also found to be associated 
with hepatic steatosis in NAFLD[39,189]. HSC, owing to 
their localization in hepatic lobule play a pivotal role in 
the deposition of  collagen. HSC undergo a phenotypic 
transition (activation) to myofibroblast-like cells that 
synthesize different extracellular matrix components[190]. 
HSC acquire ability to effectively proliferate and migrate 
to the area of  liver injury and express soluble mediators 
of  inflammation, angiogenesis and hepatocyte growth[191]. 
Obesity and IR are independently associated with the 
progression and degree of  fibrosis[40,192]. This view is 
supported by the increase in cell proliferation and collagen 
production by insulin in cultured HSC[193]. Hyperglycemia 
also acts as a stimulus to secretion of  the profibrogenic 
cytokine (connective tissue growth factor)[194]. Oxidative 
stress is implicated in activation of  HSC and products of  
oxidative stress have been shown to have profibrogenic 
actions in in vitro studies[195]. Among adipokines, leptin 
stimulates collagen expression, proliferation and 
prevention of  apoptosis of  HSC[196]. However, association 
between plasma leptin levels and the degree of  fibrosis 
is not clearly identified. The levels of  anti-fibrogenic 
adiponectin are markedly diminished in obesity. Resistin is 
recently shown to modulate human HSC activity[197]. Other 
cytokines like IL-10 and TGF-β also dictate the extent of  
fibrosis in NASH. It is believed that release of  TGF-β1 
by necrotic hepatocytes may be one of  the first signals to 
activate adjacent quiescent HSC[198].

CONCLUSION
NAFLD is emerging as one of  the most common liver 
disorders claiming urgent attention of  the public, clinicians 
and researchers. Obesity is an epidemic health disorder 
and NAFLD can be a major health problem. Lifestyle 
modifications including calorie restriction, physical activity 
and weight loss are main therapeutic modalities. Future 
research is warranted to elucidate the pathogenesis of  
NAFLD and NASH, thereby developing accurate non-
invasive diagnostic tests and novel therapeutic protocols.
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