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Abstract
An established contribution of neuroinflammation to multiple brain pathologies 
has raised the requirement for therapeutic strategies to overcome it in order to 
prevent age- and disease-dependent cognitive decline. Mesenchymal stem cells 
(MSCs) produce multiple growth and neurotrophic factors and seem to evade 
immune rejection due to low expression of major histocompatibility complex class 
I molecules. Therefore, MSCs are widely used in experiments and clinical trials of 
regenerative medicine. This review summarizes recent data concerning the 
optimization of MSC use for therapeutic purposes with the emphasis on the 
achievements of the last 2 years. Specific attention is paid to extracellular vesicles 
secreted by MSCs and to the role of α7 nicotinic acetylcholine receptors. The 
reviewed data demonstrate that MSCs have a significant therapeutic potential in 
treating neuroinflammation-related cognitive disfunctions including age-related 
neurodegenerative diseases. The novel data demonstrate that maximal the-
rapeutic effect is being achieved when MSCs penetrate the brain and produce 
their stimulating factors in situ. Consequently, therapeutic application using 
MSCs should include measures to facilitate their homing to the brain, support the 
survival in the brain microenvironment, and stimulate the production of 
neurotrophic and anti-inflammatory factors. These measures include but are not 
limited to genetic modification of MSCs and pre-conditioning before tran-
splantation.

Key Words: Mesenchymal stem cells; Neuroinflammation; Cognition; α7 Nicotinic 
acetylcholine receptor; Extracellular vesicles; Alzheimer disease
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treating neuroinflammation-related cognitive disfunctions including age-related 
neurodegenerative diseases. The review summarizes recent data concerning opti-
mization of MSC use for therapeutic purposes with the emphasis on the achievements 
of the last 2 years. Specific attention is paid to extracellular vesicles secreted by MSCs 
and to the role of α7 nicotinic acetylcholine receptors. The main conclusion is that 
therapeutic application of MSCs should include measures to facilitate their homing to 
the brain, support the survival in the brain microenvironment and stimulate the 
production of neurotrophic and anti-inflammatory factors.

Citation: Skok M. Mesenchymal stem cells as a potential therapeutic tool to cure cognitive 
impairment caused by neuroinflammation. World J Stem Cells 2021; 13(8): 1072-1083
URL: https://www.wjgnet.com/1948-0210/full/v13/i8/1072.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i8.1072

INTRODUCTION
Neuroinflammation is an inflammatory response within the central nervous system: 
The brain or spinal cord. It is mediated by pro-inflammatory cytokines [interleukin 
(IL)-1β, IL-6, tumor necrosis factor (TNF)-α], chemokines (CCL2, CCL5, CXCL1), 
reactive oxygen species and secondary messengers (NO and prostaglandins) produced 
by glia (microglia and astrocytes), endothelial cells, and peripherally derived immune 
cells[1,2]. Neuroinflammation is a physiological response to infection, traumatic brain 
injury, toxic metabolites, or autoimmunity and, if appropriately controlled, is bene-
ficial to the host organism. It induces symptoms including fever, weakness, and 
headache, and supports the recovery mechanisms. Physiological levels of IL-1β, 
presumably released from neurons, function as a neuromodulator to promote memory 
acquisition and retention. In contrast, high levels of IL-1β produced by astrocytes or 
resident microglial cells lead to failure of memory acquisition or recall[3]. IL-6 is often 
regarded as a neurotrophic factor[4,5], which. contributes to the normal function of the 
brain, including learning and memory[6], while elevated IL-6 promotes astrogliosis 
and microgliosis, which are signs of neuroinflammation[7]. Chronic, uncontrolled 
inflammation is characterized by increased production of cytokines (IL-1β and TNF-α), 
reactive oxygen species, and other inflammatory mediators. Monocyte and macro-
phage recruitment to the brain causes anxiety and depression[2]. A low-level and 
chronic inflammatory response driven by IL-1β and IL-6 is caused by aging and leads 
to reduced neuronal plasticity and cognitive impairments. A special term “inflam-
maging” has been introduced to define a critical relation of inflammatory and aging 
processes[8]. A higher degree of chronic inflammation is greatly damaging to the 
nervous system and is characteristic of age-related neurodegenerative disorders like 
Alzheimer disease (AD) and Parkinson disease[9-11]. In experimental models, 
inducing neuroinflammation by injecting mice with bacterial lipopolysaccharide (LPS) 
results in impairment of episodic memory followed by accumulation of pathogenic 
fragments of amyloid-β in the brain, which is characteristic of the early form of AD
[12]. Apart from the aging and neurodegenerative diseases, neuroinflammation 
accompanies numerous neurological disorders like migraine[13], neuropathic pain
[14], stroke[15], and multiple sclerosis[16].

An established contribution of neuroinflammation to multiple brain pathologies has 
raised the requirement of therapeutic strategies to overcome it in order to prevent age- 
and disease-dependent cognitive decline. Traditional targets for neuroinflammation 
include purinergic receptors P2X4 and P2X7, kynurenine pathway metabolizing 
enzymes indole 2,3-dioxygenase and kynurenine aminotransferase, toll-like receptors 
(TLR) 4 and TLR9, and the fractalkine receptor CX3CR1 (reviewed by Hopper et al[17]
), while general therapeutics are mainly limited to non-steroid anti-inflammatory 
drugs[18]. In our experiments, anti-inflammatory and membrane-stabilizing lipid N-
stearoylethanolamine was an efficient drug to prevent and cure neuroinflammation-
related cognitive impairment[19].

https://www.wjgnet.com/1948-0210/full/v13/i8/1072.htm
https://dx.doi.org/10.4252/wjsc.v13.i8.1072
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NICOTINIC ACETYLCHOLINE RECEPTORS OF α7 SUBTYPE: ROLE IN 
COGNITION/MEMORY AND INFLAMMATION
Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) play a substantial role in 
controlling neuroinflammation. These receptors are abundantly expressed within the 
brain in neurons, astrocytes, and microglia[20-22]. In addition to the cell plasma 
membrane, they are found in the outer membrane of mitochondria where they 
regulate the release of pro-apoptotic factors like cytochrome c and, therefore, control 
the mitochondrial pathway of apoptosis[23]. The α7 nAChRs are involved in the 
cholinergic anti-inflammatory pathway by attenuating the production of pro-inflam-
matory cytokines IL-1β, IL-6, or TNF-α[24,25]. They are shown to regulate inflam-
matory reactions in the brain[26], support the viability of brain neurons[27], and 
directly interact with amyloid β (Aβ)–the main pathogenic factor upon Alzheimer 
disease[28]. Many experimental data demonstrate that α7 nAChRs are involved in 
essential cognitive functions such as memory, thinking, comprehension, learning 
capacity, calculation, orientation, and language[29-31]. Experiments from our 
laboratory demonstrated that neuroinflammation induced by intraperitoneal injections 
of bacterial LPS in mice caused down-regulation of α7 nAChRs, accumulation of Aβ 
within the brain, and episodic memory impairment. A similar effect could be achieved 
with the antibody against extracellular domain of α7 nAChR subunit[12]. Mutant mice 
lacking α7 nAChRs possessed elevated IL-1β in the blood and demonstrated worse 
episodic memory compared to their wild-type counterparts[32]. Neuroinflammation 
decreased the level of α7 nAChRs and stimulated accumulation of Aβ1-42 in the brain 
mitochondria resulting in increased sensitivity of mitochondria to apoptogenic stimuli
[33]. Taken together, these data demonstrate a critical role of α7 nAChR in neuroin-
flammation and relative cognitive impairment[31]. Correspondingly, one of the 
strategies to overcome the negative consequences of neuroinflammation is either 
activating or up-regulating α7 nAChRs. The former is achieved with selective agonists 
or positive allosteric modulators[34,35], while the latter was discovered by our 
laboratory with N-stearoylethanolamine[19] or mesenchymal stem cells (MSCs)[36] 
(Figure 1).

THERAPEUTIC POTENTIAL OF MSCs UPON NEUROINFLAMMATION 
General information
MSCs are multipotent cells capable of differentiating into various cell types (mainly 
adipo-, chondro- and osteocytes, but also neurons) and producing multiple growth 
and neurotrophic factors necessary for neurogenesis, neuroprotection, neovascular-
ization, and induction of axonal sprouting[37,38]. They can be isolated from many 
tissues, including bone marrow, adipose tissue, skeletal muscle, heart, umbilical cord, 
and placenta. Due to low expression of major histocompatibility complex class I 
molecules, MSCs seem to avoid immune rejection; therefore, allogenic and even 
xenogeneic MSCs have been widely used in experiments and clinical trials of 
regenerative medicine to restore the damaged tissues, including the brain[39,40].

MSCs use upon neuroinflammation and in AD models 
MSCs were shown to attenuate neuroinflammation[41]. Pre-clinical and clinical trials 
have indicated that intravenous injection of MSCs following stroke and spinal cord 
injury may significantly improve clinical outcomes[42]. Also, the beneficial role of 
transplanted MSCs in neurodegenerative diseases has been documented[37,43,44]. 
Using MSCs in experimental AD models show their capacity to protect brain cells 
from the Aβ cytotoxicity, attenuate neuroinflammation, and improve cognitive 
functions of mice and rats. Intracerebral transplantation of the syngeneic bone 
marrow-derived MSCs into Aβ -injected mice or transgenic amyloid precursor protein 
(APP)/presenilin 1 (PS1) mice resulted in the reduction of Aβ deposits, decreased 
inflammation, improved cognitive functions[45-47], and decreased cell damage in the 
hippocampus[48]. Positive effects were also observed if bone marrow MSCs were 
injected intravenously[49] or even delivered intranasally[50]. MSCs derived from 
adipose tissue were also found to decrease Aβ accumulation, improve memory[51,52], 
and stimulate neurogenesis[53] in transgenic APP/PS1 or Tg2576 mice. Human 
umbilical cord-derived MSCs decreased inflammation and improved memory in 
APP/PS1 mice[40] and in bulbectomized mice[54]; when induced to differentiate into 
neuron-like phenotype, they attenuated neuroinflammation and improved cognitive 
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Figure 1 Scheme demonstrating the nicotinic acetylcholine receptors of α7 subtype involvement in the development of cognitive 
impairment upon neuroinflammation and positive effects of nicotinic acetylcholine receptors of α7 subtype-specific agonist PNU282987, 
N-stearoylethanolamine and mesenchymal stem cells. α7 nAChR: Nicotinic acetylcholine receptors of α7 subtype; LPS: Lipopolysaccharide; MSCs: 
Mesenchymal stem cells; NSE: N-stearoylethanolamine.

functions in APP/PS1 mice[41]. Placenta-derived MSCs attenuated Aβ accumulation 
and cognitive impairment and decreased the production of inflammatory cytokines 
and cell death in mice intracerebroventrically injected with Aβ1-42[55]. Human amniotic 
MSCs transplantation into the hippocampus dramatically reduced Aβ deposition and 
rescued spatial learning and memory deficits in APP/PS1 mice[56]. MSCs inhibited 
the inflammatory response, microglia activation, neuronal damage, blood-brain barrier 
destruction, and viral load in mice infected with Japanese encephalitis virus[57]. These 
data indicate that both local and systemic infusions of MSCs of various origin had a 
stable therapeutic effect.

The use of MSCs in regenerative medicine is a rapidly developing field with dozens 
of new papers appearing each month. Further, I will summarize the data that were 
published during the last 2 years (2019-2020) and analyze the trends and perspectives 
of this research with regard to neuroinflammation and related disorders.

MSCs targets and treatment consequences
Experiments were performed in order to identify the main targets and mechanisms of 
MSC-mediated effects in the brain. Specific attention was paid to microglia, which 
control brain inflammatory reactions. Microglia, similarly to peripheral macrophages, 
can be represented by either M1 (pro-inflammatory) or M2 (anti-inflammatory) 
phenotypes. MSCs promoted M2 polarization and inhibited M1 polarization both in 
vivo and in vitro[58,59]. Activated microglia-mediated neuroinflammation involved in 
the pathogenesis of subarachnoid hemorrhage-induced brain injury could be 
alleviated by treatment with bone marrow MSCs[60]. MSCs also prevented astro-
gliosis, reduced messenger RNA expression of inflammatory cytokines, and promoted 
the acquisition of progenitor traits by astrocytes in experimental autoimmune enceph-
alomyelitis mice, an animal model of multiple sclerosis[61]. The bone marrow MSCs 
regulated neuroinflammation in mice with postoperative inflammatory syndrome by 
affecting transforming growth factor-β levels[62]. MSCs reduced stress-induced 
circulating proinflammatory cytokines, monocytes, neuroinflammation, and 
depressive and anxiety-like behaviors such as major depressive disorder[63]. Neuroin-
flammation along with peripheral TNF-α elevation is associated with schizophrenia-
relevant behaviors. Human umbilical cord MSCs inhibited schizophrenia-relevant and 
neuroinflammatory changes in amphetamine-sensitized mice, the main mechanism 
being associated with the induction of regulatory T cells and production of the anti-
inflammatory cytokine IL-10 in the periphery[64].
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In models of neurodegenerative diseases, it was also shown that a major mechanism 
for the efficacy of MSC-based therapy is immunoregulation, which modulates the 
activity state of microglia or astrocytes[65]. It was shown that MSC treatment resulted 
in the reduction of neuroinflammation, elimination of amyloid-β and neurofibrillary 
tangles, recovery of the blood-brain barrier and mitochondrial functions, up-regulation 
of acetylcholine levels, and improved cognition in AD models (reviewed in Kim et al
[66]). The use of in vitro cell line model for AD, where bone marrow-derived MSCs 
were co-cultured with Aβ-treated neural cells, led to the identification of signaling 
pathways triggered by MSC-derived factors. It was found that MSC co-culture 
significantly changed the gene and protein expression of mammalian target of 
rapamycin, adenosine monophosphate-activated protein kinase, glycogen synthase 
kinase-3β, and Wnt3/β-catenin signaling pathways components in nerve cells[67]. The 
mechanisms of MSCs in Parkinson's disease, including growth factor secretion, 
exocytosis, and attenuation of neuroinflammation, have been reviewed in Chen et al
[68]. Adipose tissue-derived MSCs were able to correct the imbalance between pro-
inflammatory Th17 and regulatory T cells in the blood of Parkinson's disease patients
[69]. MSCs restored microglia in the striatum and downregulated gene expression of 
inflammatory modulators in the brain of mice with experimental Huntington disease
[70]. The main targets of MSCs related to neuroinflammation and studies during the 
last 2 years are summarized in Table 1.

Optimization of MSCs use for therapeutic purposes
MSCs isolated from tissues are usually maintained in culture for several passages 
before transplantation. It was found that long passaging may result in age-dependent 
decline in their function (reviewed in Fathi and Farahzadi[71]). For example, human 
adipose tissue-derived and bone marrow-derived MSCs show senescence signs after 
the eighth and seventh passage in vitro, respectively[72,73]. Senescence is usually 
accompanied by reduction of MSC proliferation potential that may be due to telomere 
shortening[74]. Therefore, the MSC aging status should be considered while using 
MSCs for therapeutic purposes. For example, we observed the increase of nAChR 
expression in cultured human umbilical cord-derived MSCs between the second and 
ninth passages in vitro that could reflect the loss of their stem cell properties 
(unpublished observation). Therefore, in our experiments, MSCs after the second 
passage in vitro have been used[32,36]. Aged MSCs may be used after reducing their 
senescence, for example, by retroviral transduction of the telomerase gene or culturing 
with growth factors in vitro[75]. One of the trends of recent studies is the use of “pre-
conditioned” MSCs, which were pre-incubated with various physical, chemical, or 
biological factors before infusion into the host[76,77]. The popular idea is to use 
hypoxic conditions, because hypoxic micro-environment is physiologically normal for 
MSCs in vivo[58], while culturing in a normoxic atmosphere (21% O2) promotes the 
generation of reactive oxygen species and premature senescence[73]. Previous studies 
demonstrated that culturing human MSCs under hypoxic condition was accompanied 
by increased telomerase activity, increased lifespan, and maintained stem cell 
properties of MSCs[73,75]. Hypoxia preconditioning stimulated the migration of 
transplanted MSCs into the brain and promoted neurogenesis and neurological 
functional recovery upon intracerebral hemorrhagic stroke[78]. In a recent paper, 
soluble factors derived from human adipose MSCs, preconditioned with either 
hypoxia-mimetic deferoxamine or pro-inflammatory cytokines (TNF-α + interferon-γ), 
reversed asphyxia-induced oxidative stress in the hippocampus and reduced neuroin-
flammation, resulting in improvement of locomotor and cognitive activity[79].

Another study used tanshinone IIA, an active compound from the root of Salvia 
plant, which possesses acetylcholinesterase inhibitory activity. It was found that 
tanshinone IIA-treated MSCs had greater neuroprotective effects than non-treated 
MSCs against neurotoxicity in the rat hippocampus by suppressing Aβ25-35-induced 
neuroinflammation[80]. This result is in line with the role of nicotinic acetylcholine 
receptors (activated by acetylcholine) in neuroinflammation discussed above; it 
indicates that acetylcholine produced by MSCs may be one important factor of their 
regenerative capacity.

Another approach to improve the effects of MSCs is to use genetically modified 
MSCs, in which anti-inflammatory cytokines like IL-10 are overexpressed. It was 
found that transplantation of IL-10-expressing MSCs significantly reduced the number 
of dead cells in the cortex and hippocampus of rats after traumatic brain injury 
compared to non-modified MSCs. Rats transplanted with MSCs-IL-10 demonstrated 
increased autophagy, mitophagy, and cell survival markers, along with decreased 
markers for cell death and neuroinflammation[81].



Skok M. MSCs at neuroinflammation

WJSC https://www.wjgnet.com 1077 August 26, 2021 Volume 13 Issue 8

Table 1 Neuroinflammation-related cognitive disorders treated with mesenchymal stem cells

Neurological pathology Ref.

Chang et al[42], 2014Hemorrhage-induced brain injury (stroke)

Liu et al[60], 2019

Traumatic brain injury Tsai et al[75], 2011

Post-operative inflammatory syndrome Sun et al[62], 2020

Experimental autoimmune encephalomyelitis Vigo et al[61], 2021

Major depressive disorder Gallagher et al[63], 2019

Schizophrenia-relevant behavior You et al[64], 2020

Sakthiswary and Raymond[37], 2012

Kim et al[43], 2013 

Fan et al[44], 2014

Neurodegenerative diseases

Zhang et al[65], 2020

Lee et al[39], 2012

Yang et al[41], 2013

Lee et al[45], 2009

Lee et al[46], 2010

Bae et al[47], 2013

Zhang et al[48], 2012

Salem et al[49], 2018

Danielyan et al[50], 2014

Ma et al[51], 2013

Chang et al[52], 2014

Yan et al[53], 2014

Bobkova et al[54], 2013

Yun et al[55], 2013

Zheng et al[56], 2017

Bian et al[57], 2017

Kim et al[66], 2020

Farahzadi et al[67], 2020

AD models

Dando et al[82], 2014

Chen et al[68], 2020PD models

Bi et al[69], 2020

Huntington disease Yu-Taeger et al[70], 2019

AD: Alzheimer diseases; PD: Parkinson diseases.

An important role is played by the route of MSC infusion. A targeted intracranial 
transplantation is efficient but quite traumatic, while a routine intravenous injection 
does not always result in efficient homing of injected MSCs to the brain. Several 
studies showed that MSCs injected intravenously are accumulated in the periphery, 
mainly in lung[63]. In our experiments, fluorescently-labeled MSCs, injected 
intravenously, were found in the brain parenchyma of LPS-treated mice[36], and α7+ 
MSCs obtained from either human umbilical cord or mouse placenta were found in the 
hippocampus of α7-/- mice on days 7 and 14 after intravenous injection[32], probably, 
due to impairment of the blood-brain barrier caused by inflammation. Currently, one 
of the perspective routes is intranasal administration of MSCs. This procedure is non-
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invasive and, most importantly, facilitates efficient MSCs trafficking into the brain 
through the olfactory system, which bypasses the cellular barriers of the central 
nervous system and provides a direct portal from the nasal cavity to the olfactory bulb 
within the brain[82]. It was found that MSCs reached the hypoxia-ischemic lesion site 
in the brain within just 2 h after intranasal administration, reaching peak accumulation 
at 12 h. The MSC-treatment resulted not only in the decrease of reactive astrocytes and 
microglia, and polarization of microglia towards the M2 phenotype, but also induced a 
cascade of events leading to tissue repair including the attraction and maturation of 
neuroblasts[83].

Mediators of MSCs stimulating activity
One of the crucial questions arising from the application of MSCs is whether their 
therapeutic effect is solely due to humoral secreted factors or if MSCs realize their 
multipotent potential and substitute the damaged brain cells of the host. In our 
experiments, xenogeneic (human) MSCs were almost as efficient as allogeneic (mouse) 
cells and injections of human MSC-conditioned medium also produced a positive 
effect in LPS-treated mice. Either human MSCs or their supernatants up-regulated α4, 
α7, α9, β2, and β4 nAChR subunits and decreased the level of Aβ1-42 in their brains[36]. 
However, in contrast to cells that supported memory of LPS-treated mice for months, 
the effect of a single injection of conditioned medium was transient and disappeared 
after 2 wk. Either intravenously injected MSCs or intraperitoneally injected human 
MSCs-conditioned medium transiently improved episodic memory of α7-/- mice[32]. 
In other experiments, conditioned medium of adipose tissue-derived MSCs improved 
memory deficit, decreased beta amyloids formation, increased neuron survival, and 
attenuated inflammation by reducing the expression of TLRs in rats AD model[84]. 
These data indicate that the positive effect observed is due to soluble factors produced 
by MSCs, and this effect is prolonged when injected MSCs home to the host’s brain. 
We also identified that either MSCs or their conditioned medium stimulated an IL-6 
increase in the brain, which coincided with the improvement of episodic memory; 
injections of recombinant IL-6 also improved episodic memory of α7-/- mice 
accompanied by the up-regulation of α3, α4, β2, and β4 nAChR subunits in the brain
[32]. Therefore, IL-6 (in physiological concentrations) can be regarded as one of pro-
cognitive factors either directly produced or stimulated by MSCs.

MSCs extracellular vesicles
The idea of using MSC conditioned medium instead of cells is attractive because it 
simplifies the therapeutic procedure and eliminates the potential for an immune 
reaction if using allogenic MSCs. The results of multiple studies published during the 
last 2 years demonstrate that soluble factors produced by MSCs are stored and 
released in the form of extracellular vesicles (EVs) or exosomes, the membrane 
nanostructures containing proteins, lipids, and nucleic acids, which possess properties 
similar to the cells from which they are derived but have lower immunogenicity and 
are capable of crossing the blood-brain barrier. Experimental studies showed that EVs 
have immunomodulatory and neuroprotective properties; they can stimulate 
neurogenesis and angiogenesis[85]. Exosomes derived from umbilical cord MSCs 
dampened the LPS-induced inflammation in microglial cells. When intranasally 
administered, they reached the brain and reduced microglia-mediated neuroinflam-
mation in rats with perinatal brain injury[86]. Exosomes originating from hypoxic 
preconditioned MSCs repaired traumatic spinal cord injury[58]. MSC-derived 
exosomes inhibited early neuroinflammation after traumatic brain injury in mice[87] 
and reduced neuroinflammation in aged rhesus monkeys with cortical injury[88]. 
Intranasally administered MSC-derived EVs reached the brain, dampened the 
activation of microglia cells, and increased dendritic spine density in AD transgenic 
mice[89]. Many studies using MSC-derived EVs showed that they polarized in vitro 
microglia/macrophages toward an anti-inflammatory phenotype, suggesting that the 
neuroprotective effects could result from a modulation of the inflammatory status[58,
87,88]. Exosomes interfered with the TLR4 signaling in microglia prevented the 
degradation of the nuclear factor-kappa B inhibitor IκB-α and phosphorylation of 
molecules of the mitogen-activated protein kinase family in response to LPS 
stimulation[86]. Exosomes from hypoxia-pre-conditioned MSCs were shown to 
contain microRNA miR-216a-5p, which could modulate microglial polarization 
through TLR4/nuclear factor-kappa B/phosphoinositol-3-kinase/AKT signaling 
cascade[58]. In addition, MSC-exosomes inhibited the expression of pro-apoptosis 
protein Bax and pro-inflammatory cytokines, TNF-α and IL-1β, while enhancing the 
expression of the anti-apoptosis protein Bcl-2[87] and, therefore, supported brain cell 
viability.
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CONCLUSION
Taken together, the data reviewed demonstrate that MSCs have a significant 
therapeutic potential in treating neuroinflammation-related disfunctions including 
cognitive and age-related neurodegenerative diseases. Although MSCs of various 
origin were found to be efficient in alleviating neuroinflammation, the use of 
autologous blood- or adipose tissue-derived MSCs seems mostly preferable, because 
these cells can be isolated from the patient at any time and with reasonable traumatic 
interventions. In contrast, placenta- or umbilical cord-derived MSCs should be 
collected and stored for potential future use. The low immunogenicity of MSCs may 
allow using allogenic cells from general cell banks. The therapeutic effect of MSCs is 
mainly mediated by soluble growth, neurotrophic, and survival factors, which are 
secreted in the form of nanovesicles (EVs). However, maximal therapeutic effect is 
being achieved when MSCs penetrate the brain and produce their stimulating factors 
in situ. MSCs accumulated in the brain not only dampen neuroinflammation but 
attract host neuronal cell progenitors to the lesion site and stimulate their differen-
tiation. Optimization of MSCs use for therapeutic purposes should include measures 
to facilitate their homing to the brain, support the survival in the brain microenvir-
onment, and stimulate the production of neurotrophic and anti-inflammatory factors. 
The intranasal route of infusion seems to be advantageous, because it is the least 
traumatic and ensures fast MSCs transportation to the brain.
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