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Abstract
BACKGROUND 
The prognosis of gastric cancer is extremely poor. Metabolic reprogramming 
involving lipids has been associated with cancer occurrence and progression.

AIM 
To illustrate fatty acid metabolic mechanisms in gastric cancer, detect core genes, 
develop a prognostic model, and provide treatment options.

METHODS 
Raw data from The Cancer Genome Atlas and Gene Expression Omnibus 
databases were collected and analyzed. Differentially expressed fatty acid 
metabolism genes were identified and incorporated into a risk model based on 
least absolute shrinkage and selection operator regression analysis. Then, patients 
from The Cancer Genome Atlas were assigned to high- and low-risk cohorts 
according to the mean value of the risk score as the threshold, which was verified 
in the Gene Expression Omnibus database. Relationships between chemothera-
peutic sensitivity and tumor microenvironment features were assessed.

RESULTS 
An integrated evaluation was performed in this study. Fatty acid metabolism-
related genes were used to construct the risk model. Patients classified into the 
high-risk cohort were considered to be resistant to chemotherapy based on results 
of the “pRRophetic” R package. Patients in the high-risk cohort were associated 
with type I/II interferon activation, increased inflammation level, immune cell 
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infiltration, and tumor immune dysfunction based on the exclusion algorithm, indicating the potential benefit of 
immunotherapy in these patients.

CONCLUSION 
We constructed a fatty acid-related risk score model to assess the comprehensive fatty acid features in gastric 
cancer and validated its vital role in prognosis, chemotherapy sensitivity, and immunotherapy.
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Core Tip: We established a prognostic risk model using data collected from The Cancer Genome Atlas database, explored the 
function of the risk model, and identified the relationship between the risk model and clinical features. The findings of our 
study provide innovative therapeutic options in clinical practice.
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INTRODUCTION
Gastric cancer (GC) is associated with poor overall survival and is one of the most common types of fatal cancer 
worldwide[1,2]. Regional differences in the incidence of GC have been reported. Globally, the 5-year overall survival rate 
is reported to be less than 25%, given the late-stage presentation, metastasis, tumor heterogeneity, and the intrinsic 
therapeutic resistance of GC[3]. Joshi et al[3] investigated GC biology and found that, compared with cases in Western 
countries, GC cases in eastern Asia were characterized by lower proportions of signet ring cell histology. However, the 5-
year overall survival rates remain low. Identifying the novel mechanisms underlying GC is of critical importance to 
develop treatment strategies that can be used in clinical practice.In general, cancer is characterized by the interactions 
between solitary metabolic features and the surrounding complex tumor environment[4]. Carbohydrates, lipids, and 
amino acids are the main nutrients in cancer cells, among which lipids are crucial mediators in energy metabolism and 
signal transduction. Importantly, fatty acids are the basic components of diverse types of lipids[5,6]. Furthermore, 
metabolic reprogramming has been identified as a critical hallmark of tumor cell proliferation and differentiation. Ma et al
[7] described various transcription factors controlling gene expression programs including fatty acid metabolism (FAM)-
related genes. Khan et al[8] confirmed that SIRT6 could regulate fatty acid transport by suppressing PPAR signaling, 
thereby promoting tumor progression. Luo et al[9] demonstrated that the critical role of fatty acid oxidation in CD8+ T 
cell memory formation, which is crucial in the tumor microenvironment. Garcia et al[10] found that elevated levels of 
fatty acid may accelerate cancer progression through endoplasmic reticulum stress by modulating the forkhead box 
(FOX)O3-FOXM1 axis. In addition, Zhang et al[11] demonstrated that fatty acid-induced CD36 expression promoted the 
progression of GC by activating the nuclear factor-κB pathway and direct binding of CD36 at S468 and T470. Adenosine 
triphosphate citrate lyase, acetyl-CoA synthases, acetyl-CoA carboxylase, and fatty acid synthase are crucial enzymes in 
fatty acid synthesis[12]. Although various molecules have been identified in GC metastasis, uncovering novel links 
between fatty acids and the tumor environment are necessary for a comprehensive understanding of GC and will 
contribute to accurate diagnosis, prognosis prediction, and recurrence risk and metastasis assessments in patients with 
GC. In this study, we constructed a novel prognostic risk model for GC based on FAM-related genes. We examined the 
mechanisms underlying FAM in GC, the relationship between the risk of GC and tumor microenvironment character-
istics, and treatment strategies for GC.

MATERIALS AND METHODS
Data download and analysis
Raw data for GC were downloaded from The Cancer Genome Atlas (TCGA) project (https://portal.gdc.cancer.gov/) and 
the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Transcription profiling data from 
TCGA-stomach adenocarcinoma project were collected in the stomach carcinoma-counts workflow type. Simple 
nucleotide variation data were also retrieved as masked somatic mutation data from TCGA-GDC portal. Clinical 
information of patients with GC including age, sex, tumor stage, tumor grade, T/N/M (tumor, node, metastasis) stages, 
and survival information was also obtained. The microarray data from the GSE84437 dataset in the GEO GPL6947 
platform were also acquired. The annotation platform was implemented to convert the Entrez Gene identifiers (IDs) of 
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each case to gene symbols.

Detection of differentially expressed genes and functional enrichment analysis between normal and cancer samples
Generally, FAM-related genes were acquired, as previously described. Differentially expressed genes (DEGs) in normal 
and tumor cases were identified using the “limma” statistical package in R (version 4.1.3; R Foundation for Statistical 
Computing, Vienna, Austria). A false discovery rate (FDR) < 0.05 was considered the cutoff value. Conversion from 
Entrez Gene IDs to gene symbols was processed using the “org.Hs.eg.db” R package. Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to detect the biological characteristics 
using the “clusterProfiler” R package. Finally, enrichment analysis results were visualized using the “enrich plot” and 
“ggplot2” packages. A P value less than 0.05 (P < 0.05) was considered statistically significant.

Establishment and validation of prognostic risk model
Clinical samples from TCGA database were defined as the training cohort, and the GSE84437 dataset from the GEO 
database was defined as the validation cohort. We combined the expression level of FAM-related genes with clinical 
information using the patient IDs. Genes related to survival were based on DEGs and analyzed using univariable cox 
regression, in line with the validation cohort. Then, genes with statistically significant values (< 0.05) were selected for 
further analysis. Prognostic genes were generated through least absolute shrinkage and selection operator (LASSO) cox 
regression analysis using the “glmnet” package, and a prognostic model was constructed. The risk score was calculated 
as described previously. All samples were segmented into high-risk and low-risk cohorts based on the median value of 
the risk scores. Kaplan–Meier analysis and the log-rank test were applied to determine the survival difference between 
low- and high-risk score groups. Finally, the “survivalROC” package was used to assess the predictive accuracy of the 
prognostic risk model. All data were verified in the validation group.

Principal component analysis and gene set variation analysis
The Ggplot2 and limma R packages were utilized to conduct principal component analysis (PCA) of gene expression 
profiles to construct a risk model from TCGA database. Accordingly, PCA was performed on FAM-related gene 
expression. Two-dimensional diagrams were then visualized to present the results.In addition, gene set variation analysis 
(GSVA), a non-parametric method implementing gene sets from the molecular signature (https://www.gsea-msi
gdb.org/gsea/msigdb) database was applied to identify the biological function and pathways between high- and low-
risk groups. An FDR < 0.05 was considered statistically significant.

Construction of protein-protein interaction network
The expression profiles of DEGs between high- and low-risk models were analyzed. The gene symbols were merged into 
an online STRING database (https://cn.string-db.org/) to establish the protein-protein interaction (PPI) network with 
interaction scores > 0.7. The PPI network was then presented using Cytoscape software (version: 3.9.2, The Cytoscape 
Consortium, San Diego, CA, United States). Next, CytoHubba (version 0.1) was applied to generate hub genes from all 
the DEGs. Based on the previous genes, GO and KEGG enrichment analyses were used to illustrate the biological 
functions of the identified hub genes. Finally, the differences in the degree of immune cell infiltration based on the 
expression of hub genes were determined.

Statistical analysis
R packages including “pRRophetic” and “rms” were applied to demonstrate the predictive value of the clinical features. 
The Wilcoxon rank sum and Kruskall–Wallis tests were used to perform group comparisons. Kaplan–Meier analysis was 
used to assess survival. Univariable and multivariable regression models were applied to identify independent factors 
related to overall survival in GC. Receiver operating characteristic (ROC) curves were drawn to verify the value of the 
risk model. All analyses were performed using R (version 4.1.3). Statistical significance was defined as P < 0.05.

RESULTS
Functional analysis of FAM-related genes between normal and cancer samples from TCGA database
We conducted differential expression analysis of FAM-related genes using the limma R package. In total, 113 DEGs with 
|logFC|= 1.5 and FDR ≤ 0.05 were identified in TCGA cohort, of which, 60 genes were upregulated, and 53 genes were 
downregulated, as shown in Supplementary Figure 1A. Thereafter, functional analysis was conducted for the DEGs. 
FAM-related genes were enriched in fatty acid metabolic, acyl-CoA metabolic, and fatty acid biosynthetic processes in 
GO as well as KEGG analyses (Supplementary Figure 1B-C).

Construction and validation of the prognostic risk model in GC
Clinical cases from TCGA database cohort were included in the training set. Univariable cox regression analysis was 
conducted among the 113 DEGs related to FAM. Overall, statistically significant links to GC prognosis were detected in 
17 genes (P < 0.05; Figure 1A). Next, the relationship among the 17 FAM-related genes was calculated using a correlation 
test (Figure 1B). In total, FAM-related gene mutations occurred in 65 patients, equating to a frequency of 16.5% 
(Figure 1C). The cyclooxygenase 1 (PTGS1) gene had the highest mutation frequency among patients with GC. 
Furthermore, a co-occurrence mutation was demonstrated between PTGS1 and other FAM-related genes. LASSO 
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Figure 1 Risk model construction. A: Seventeen fatty acid metabolism -related genes were visualized by Forrest plotting; B: Correlation test was applied to 
determine the co-occurrence; C: Mutation frequency were identified of aforementioned genes; D-E: Lasso regression model was established on account of 6 genes; 
F: High- and low-risk cohorts were generated by all fatty acid genes; G: High- and low-risk cohorts were grouped using principal component analysis. PC: Principal 
component.

regression analysis was applied to generate the risk score model. Collectively, six genes [monoamine oxidase A, CD36, 
fatty acid elongase 2, alcohol dehydrogenase 4, gamma-glutamyltransferase 5, ELOVL4] were included in the risk model 
(Figure 1D-E). The risk score for each patient was calculated based on the model and the patients were categorized into 
high- and low-risk groups (Figure 1F-G).

Correlation between risk model score and clinical features
We defined TCGA-GC cases as the training cohort and GEO cases as the validation cohort. In total, 339 patients with GC 
were recruited from TCGA database. Of these, 169 were considered to have high risk and 170 were considered to have 
low risk using the median risk score value. The relationship between clinical characteristics and risk model score was 
investigated, including age, sex, tumor grade, and T/M/N stages. No significant differences between groups were 
detected according to sex, M stage, and tumor grade (Figure 2A-C). Nonetheless, higher risk scores were associated with 
higher T (tumor invasion) and N (lymphoid metastasis) stages and with older age (Figure 2D-F). Furthermore, patients 
with higher risk scores had lower survival rates (Figure 2G), which was validated in the validation group based on 
patient data derived from the GEO database (GSE84437) (Figure 2H), including 231 patients classified as high-risk cohort 
and 202 patients classified as low-risk cohort. Moreover, time- and variable-dependent ROC analysis was performed to 
verify the results (Figure 2I-J). Univariable and multivariable regression models were constructed according to age, sex, 
tumor grade, tumor stage, and risk score. The risk score was an independent prognostic predictor of overall survival 
(Figure 2K-L).

Establishment of predictive nomogram in patients with GC
We constructed a nomogram involving tumor grade, T/N/M stages, sex, tumor stage, and risk score to predict overall 
survival in patients with GC (Figure 3A). The calibration curves at 1-, 3-, and 5 years demonstrated that the nomogram 
was relevant to overall survival in patients with GC (Figure 3B). Multivariable regression analysis revealed nomogram 
score as an independent index (Figure 3C), which may be a superior indicator than other clinical features used in clinical 
practice (Figure 3D).

A FAM-related model predicting response to chemotherapy and GSVA in high- and low-risk groups
The FAM-related risk score is associated with overall survival in patients with GC; therefore, demonstrating the 
association between risk score and chemotherapy response is important. The “pRRophetic” R package was used to 
calculate the half maximal inhibitory concentration, which was applied to evaluate the sensitivity of the risk score and 
response to 5-Fluorouracil (5-FU). As shown in Figure 4A-B, the high-risk group was more sensitive to 5-FU in TCGA 
cohort. Furthermore, a negative relationship was noted between risk score and progression-free survival, indicating that 
the high-risk group may be more sensitive to chemotherapy (Figure 4C). However, its exclusive molecular type and 
tumor mutation burden facilitated the progression of tumor by activation of focal adhesion pathways, transformation of 
growth factor-beta signaling, and contraction of vascular smooth muscle (Figure 4D), ultimately shortening survival. 
These findings are consistent with previously reported results[12,13]. In line with previous studies, GSVA was performed 
to investigate the biological features between high- and low-risk groups by implementing “c2.cp.kegg.v7.2” in R Studio 
acquired from the Molecular Signature Database. As shown in Figure 4D, DNA replication, mismatch repair, and steroid 
biosynthesis were highly enriched in the low-risk group. Some molecules incorporating the transcription activator BRG1 
(SMARCA4) and ataxia telangiectasia mutated (ATM) proteins are reportedly correlated with immune activation 
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Figure 2 Prognostic correlation of fatty acid metabolism -related genes risk score model and clinical features as well as overall survival in 
gastric cancer patients. A-F: Correlation between risk score model and clinical characteristics comprising Age, Gender, Grade, M, N, T; G-H: Differences of 
overall survival between high- and low-risk cohorts from TCGA-cohort and GEO-cohort were detected; I: ROC curves were performed to identify the forecast value; J: 
Predictive correlation of the risk score as well as clinical features in TCGA-cohort; K-L: Univariate and multivariate cox regression models were proceeded to illustrate 
the prognostic value of the risk model.

Figure 3 verification of the risk model in gastric cancer patients. A. nomogram was plotted based on the Cancer Genome Atlas -cohort; B: Calibration of 
nomogram was calculated; C: Cox regression analysis of the nomogram; D: Receiver operating characteristic curves were drawn to identify the forecast value of 
nomogram.
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Figure 4 Correlation of risk score and therapeutic strategies. A: Relationship between risk score and 5-fluorouracil sensitivity; B: Correlation of risk score 
and evaluated IC50 of 5-fluorouracil; C: Progression free survival between high- and low- risk cohorts; D: Gene set variation analysis enrichment analysis in high- and 
low-risk cohorts; E-F: Differences of immune activity related genes consisting of ataxia telangiectasia mutated and SMARCA4.
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Figure 5 Activity of fatty acid metabolism related risk model in the context of tumor immune infiltration. A: Immune cell function in high- and 
low-risk cohorts; B: Immune cell infiltration in high- and low-risk cohorts; C: Relationship between risk score and immune subtypes using clustering analysis; D: 
Correlation between risk score and Tumor Immune Dysfunction and Exclusion. aP < 0.05, bP < 0.01, cP < 0.001.

(Figure 4E-F). Our results indicate that ATM mutation is associated with a positive response to immunotherapy.

Immune differences between high- and low-risk groups
Regarding immune cell infiltration, distinctive enrichment of macrophage M2 was detected in the high-risk group, in line 
with the previous survival analysis (Figure 5A). Additionally, para-inflammation, T cell co-inhibition, T cell co-
stimulation, type I interferon (IFN) response, and type II IFN response were activated in the high-risk group (Figure 5B). 
Different immune subtypes were identified (Figure 5C) and validated using the TIDE (Tumor Immune Dysfunction and 
Exclusion) algorithm.

Functional enrichment analysis of FAM-related DEGs in the low- and high-risk score groups based on PPI
The expression profiles of DEGs were collected and analyzed to establish a PPI network using a STRING online database, 
which was then visualized using Cytoscape. As shown in Figure 6A, upregulated genes in the high-risk group are labeled 
in red, and those in the low-risk group are labeled in blue. Thereafter, the CytoHubba plug-in package was applied to 
generate the hub genes of FAM-related DEGs. In general, 10 genes (integrin beta (ITGB)-3, integrin alpha (ITGA)-1, 
fibronectin (FN)-1, fibroblast growth factor (FGF)-2, von Willebrand factor (VWF), ITGA5, ITGA4, ITGA8, 
thrombospondin (THBS)-1, ITGA9) were selected (Figure 6B). Functional enrichment analysis was performed using the 
“GOplot” R package, and these genes were involved in the integrin-mediated signaling pathway, cell-substrate adhesion, 
cell-matrix adhesion (Figure 6C), extracellular matrix-receptor, phosphoinositide 3-kinase-Akt signaling pathway, focal 
adhesion, and regulation of actin cytoskeleton (Figure 6D). Finally, survival and correlation analyses were conducted to 
determine the key regulators including FGF2 and THBS1, which were verified to be negatively associated with survival, 
consistent with previous studies (Figure 6E-F).
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Figure 6 Construction of protein-protein interaction network. A: Protein network established by String online database; B: Protein-protein network 
visualized by Cytoscape; C-D: Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed containing top 10 genes; E-F: 
Survival analysis for patients layered by expression of fatty acid binding protein 4 and THBS1 mRNA expression.

DISCUSSION
Cancer proliferation and progression are associated with metabolic reprogramming[14-17]. The metabolism alteration 
theory was first proposed by Otto Warburg in the 1920s and is known as the “Warburg phenomenon,” characterized by 
increased glycolysis in the context of an environment lacking oxygen[18,19]. Lactic acids generated from glycolysis 
favored tumor evasion and metastasis and restrained the antitumor immune effect[7,8,20]. In addition, glucose was 
converted into nicotinamide adenine dinucleotide phosphate by cancer cells to cope with the complex tumor 
environment thereby promoting fatty acid synthesis[21-23]. Meanwhile, the medium pyruvate generated from glycolysis 
was manipulated by the cancer cells to enter a truncated tricarboxylic acid cycle, thereby creating acetyl-CoA that was 
utilized for long-chain fatty acid synthesis. Collectively, this process highlights the involvement of FAM in cancer 
development and metastasis.Few studies have identified the role of FAM in GC. Cui et al concluded that abnormal FAM 
had discernible effects on GC growth[24,25]. Aberrant expression of FAM-related genes was associated with chemothera-
peutic drug resistance and recurrence. Sterol O-acyltransferase (SOAT)1 was highly expressed in GC tissues and 
negatively related to GC prognosis via regulation of sterol regulatory element-binding protein (SREBP)-1 and SREBP2 
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expression, which propelled lymph-angiogenesis through increased expression of vascular endothelial growth factor C
[26]. However, other innovative mechanisms of FAM in GC warrant further investigation. In this study, we explored and 
elaborated on the relationship between FAM-related genes and GC using TCGA and GEO databases. FAM-related genes 
incorporated into the present study were obtained as previously described. We conducted a differential analysis to 
identify DEGs. A total of 113 FAM-related genes were screened to detect genes involved in GC progression, tumor 
microenvironment involvement, and prognosis. In total, 17 genes were included to establish a predictive/prognostic risk 
model using cox regression and then verified using LASSO regression analysis. TCGA cohort was considered as the 
training set and the GEO cohort as the validation set. The overall survival prediction of the risk score (each sample from 
TCGA cohort had a risk score, which was used to classify patients into high-risk and low-risk cohorts) was constructed in 
TCGA database and verified in the GEO database. The risk score generated from this model was confirmed as an 
independent and accurate prognostic index.

Chemotherapeutic sensitivity between high-risk and low-risk groups was analyzed to evaluate the predictive value of 
the risk model in drugs screen in GC treatment. The increased risk score was positively associated with 5-FU resistance, 
consistent with previous studies[27]. In parallel, patients in the high-risk score group had reduced survival rates, 
suggesting that the risk model based on FAM-related genes may be applied to determine the optimal treatment 
(chemotherapy vs radiation therapy) for patients with GC. Moreover, patients from the high-risk score group were 
enriched in stroma immune activation, indicating cytol-toxic drug resistance, consistent with previously reported studies
[28-30]. Furthermore, high-risk score patients exhibited activation of the type I IFN response, T cell co-inhibition, type II 
IFN response, and para-inflammation function, demonstrating that patients with high-risk scores may benefit from 
immunotherapy, on account of the TIDE analysis. Altogether, the predictive/prognostic risk model established in this 
study may be valuable in clinical practice.

Significant differences in gene expression were detected between the high-risk and low-risk core cohorts. Therefore, we 
further evaluated FAM-related genes from the risk model. Expression of fatty acid binding protein 4 (FABP4), THBS1, 
and other marker levels were significantly different between the two cohorts. Various studies have suggested that pro- or 
antitumor manifestation of FABP4 was associated with various cancer types[31-33]. Further, FABP4 reportedly promotes 
breast cancer cell invasion by regulating the interleukin-6/signal transducer and activator of the transcription-3 axes. 
Moreover, its inhibition by BMS309403 (inhibitory molecule of FABP4) can prevent the proliferation and metastasis of 
ovarian cancer. Additionally, increased expression of FABP4 has been associated with a worse prognosis in GC, although 
Chen et al[34] came to a contrary conclusion. On the contrary, increased FABP4 expression prohibited tumor progression 
and metastasis in hepatocellular carcinoma. Accordingly, THBS1 was identified as a hub gene that can serve as an 
indicator for GC diagnosis. However, its predictive and prognostic role in patients with GC remains elusive. 
Consequently, demonstrating the role of FABP4 and THBS1 in GC in future studies is important and requires urgent 
attention.

CONCLUSION
We constructed a fatty acid risk score model to assess the intact fatty acid features in GC. This risk model combined with 
clinicopathological characteristics, prognosis, chemotherapy sensitivity, and immune cell function, can be used to develop 
personalized treatment strategies for patients with GC. This study may sharpen and enrich the rationale used in 
prediction models to optimize the care of patients with GC.

ARTICLE HIGHLIGHTS
Research background
the interactions between solitary metabolic features and the surrounding complex tumor environment characterize 
cancer. fatty acids are the essential components of diverse types of lipids, which are crucial mediators in energy 
metabolism and signal transduction. Although various molecules have been identified in gastric cancer (GC) metastasis, 
uncovering novel links between fatty acids and the tumor environment is necessary to comprehensively understand 
gastric cancer.

Research motivation
we constructed a novel prognostic risk model for GC based on fatty acid metastasis (FAM) -related genes. We examined 
the mechanisms underlying FAM in GC, the relationship between the risk of GC and tumor microenvironment character-
istics, and treatment strategies for GC.

Research objectives
we want to construct novel links between fatty acids and the tumor environment to contribute to accurate diagnosis, 
prognosis prediction, and recurrence risk and metastasis assessments in patients with GC.

Research methods
Data download and analysis; Detection of differentially expressed genes and functional enrichment analysis between 
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normal and cancer samples; Establishment and validation of prognostic risk model; Principal component analysis and 
gene set variation analysis; Construction of protein-protein interaction network

Research results
Functional analysis of FAM-related genes between normal and cancer samples from TCGA database; Construction and 
validation of the prognostic risk model in GC; Correlation between risk model score and clinical features; Establishment 
of predictive nomogram in patients with GC; A FAM-related model predicting response to chemotherapy and GSVA in 
high- and low-risk groups; Immune differences between high- and low-risk groups; Functional enrichment analysis of 
FAM-related DEGs in the low- and high-risk score groups based on protein-protein interaction.

Research conclusions
A fatty acid risk score model to assess the intact fatty acid features in GC was constructed. This risk model combined with 
clinicopathological characteristics, prognosis, chemotherapy sensitivity, and immune cell function.

Research perspectives
We established a prognostic risk model using data collected from The Cancer Genome Atlas database, explored the 
function of the risk model, and identified the relationship between the risk model and clinical features.
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