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Abstract
Clinically, it is highly challenging to promote recovery in patients with acute liver 
failure (ALF) and acute-on-chronic liver failure (ACLF). Despite recent advances 
in understanding the underlying mechanisms of ALF and ACLF, standard 
medical therapy remains the primary therapeutic approach. Liver transplantation 
(LT) is considered the last option, and in several cases, it is the only intervention 
that can be lifesaving. Unfortunately, this intervention is limited by organ 
donation shortage or exclusion criteria such that not all patients in need can 
receive a transplant. Another option is to restore impaired liver function with 
artificial extracorporeal blood purification systems. The first such systems were 
developed at the end of the 20th century, providing solutions as bridging therapy, 
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either for liver recovery or LT. They enhance the elimination of metabolites and substances that 
accumulate due to compromised liver function. In addition, they aid in clearance of molecules 
released during acute liver decompensation, which can initiate an excessive inflammatory 
response in these patients causing hepatic encephalopathy, multiple-organ failure, and other 
complications of liver failure. As compared to renal replacement therapies, we have been 
unsuccessful in using artificial extracorporeal blood purification systems to completely replace 
liver function despite the outstanding technological evolution of these systems. Extracting middle 
to high-molecular-weight and hydrophobic/protein-bound molecules remains extremely 
challenging. The majority of the currently available systems include a combination of methods that 
cleanse different ranges and types of molecules and toxins. Furthermore, conventional methods 
such as plasma exchange are being re-evaluated, and novel adsorption filters are increasingly 
being used for liver indications. These strategies are very promising for the treatment of liver 
failure. Nevertheless, the best method, system, or device has not been developed yet, and its 
probability of getting developed in the near future is also low. Furthermore, little is known about 
the effects of liver support systems on the overall and transplant-free survival of these patients, 
and further investigation using randomized controlled trials and meta-analyses is needed. This 
review presents the most popular extracorporeal blood purification techniques for liver re-
placement therapy. It focuses on general principles of their function, and on evidence regarding 
their effectiveness in detoxification and in supporting patients with ALF and ACLF. In addition, 
we have outlined the basic advantages and disadvantages of each system.

Key Words: Liver failure; Transplantation; Blood purification; Liver replacement therapy; Artificial 
extracorporeal systems; Transplant-free survival
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Core Tip: Elimination of liver toxins during liver failure is a highly difficult and complex process and 
demands a combination of multiple methods. Although the evolution of artificial extracorporeal systems is 
remarkable, it is still insufficient to meet the current therapeutic demands. Several methods and circuits are 
available, each one with different features, advantages, and disadvantages. There is an urgent need for 
more research, randomized controlled trials, and evidence. Implementation of protocols combining the 
available techniques in response to each patient’s special needs is probably the key to personalized 
treatment, as bridging therapy either to recovery or to liver transplantation.
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INTRODUCTION
Artificial extracorporeal blood purification techniques offer the possibility of liver replacement therapy 
(LRT) in patients with acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). Artificial liver 
support systems (LSSs) can efficiently remove cytokines and a wide variety of hepatotoxic metabolites, 
including ammonia, fatty acids, bilirubin, bile acids, and amino acids[1]. The removal of cytokines using 
LSSs has been shown to intervene in the immunologic processes occurring during ALF and ACLF. Thus, 
these system-based therapies are considered immunomodulatory interventions, with their widespread 
implementation in treating both septic patients and those with liver failure. An increasing number of 
studies are being conducted to evaluate the role of the immune system in the pathophysiology of liver 
failure, which presents certain features that differentiate ACLF from ALF. More specifically, ACLF is a 
clinical syndrome that is characterized by the acute decompensation of chronic, pre-existing liver 
disease, usually led by a precipitating event, such as an underlying infection and is often accompanied 
by multiorgan failure (MOF) and high mortality. The basis of the pathophysiological mechanisms in 
ACLF is the hyperinflammatory state, which is triggered by factors called pathogen- and damage-
associated molecular patterns (PAMPs and DAMPs)[2]. On the other hand, ALF represents a life-
threatening condition that is usually the result of an offending agent, such as medications or viral 
infections in patients without pre-existing liver disease. It is characterized by an overwhelming systemic 
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inflammatory response, hepatocyte necrosis and accumulation of bile acids and ammonia, which can 
lead to permanent liver damage, encephalopathy and cerebral edema[3,4].

The production of toxins and vasoactive agents by intestinal bacteria and the accumulation of these 
molecules due to the diminished liver detoxification capacity play a significant role in the patho-
physiology of liver failure[5]. The accumulation of these toxins induces complications of liver failure, 
such as increased intracranial pressure (ammonia) and hepatic encephalopathy (HE) (ammonia and 
amino acids). Furthermore, it is associated with increased mortality, especially in patients with high 
levels of bilirubin[6]. Therefore, the removal of all these deleterious molecules can protect patients from 
a wide variety of complications and dangers, thereby exerting beneficial effects.

Although progress has made these modalities very effective in removing their target molecules, 
whether this improves overall survival (OS), transplant-free survival (TFS) or even short-term survival, 
as bridging to liver transplantation (LT) is a question that remains to be answered. Nevertheless, except 
for plasma exchange (PE) therapy, none of these systems has resulted in favorable outcomes such as 
those mentioned in randomized controlled studies (RCTs), and only a few studies have systematically 
investigated these issues. This is largely attributed to complex liver physiology. Because each method 
individually has a narrow spectrum of toxin removal, a combination of methods is used in the majority 
of cases. The clinical condition of patients with ALF and ACLF is highly complex and is constantly 
changing, demanding adaptation to the modality applied; thus, only a combination that fits the specific 
clinical condition can be used. In addition, concerns exist about the loss of antibiotics and functional 
molecules such as albumin during these therapies, whereas cytokine removal is non-selective for most 
of these systems, leading to an imbalance between the levels of pro- and anti-inflammatory mediators, 
with unpredictable clinical effects.

The present review outlines the principles of function and the applications of the most popular and 
widely available artificial extracorporeal systems for LRT (Figure 1). It describes their methods of 
detoxification, major advantages and disadvantages, their practice in patients with liver failure, and 
their effect on patients’ survival.

RENAL REPLACEMENT MODALITIES (CONVECTION/DIFFUSION THERAPIES)
Continuous renal replacement therapy
Apart from liver dysfunction, patients with ALF and ACLF often present with decompensation of 
functions of other organs, including the kidneys, with relative rates reaching up to 70%[7]. Renal 
replacement therapy (RRT) is often necessary in these patients either due to concomitant renal failure or 
due to a liver indication, in most cases hyperammonemia. Hyperammonemia is a common metabolic 
disorder, which is associated with cerebral edema and elevated intracranial pressure, especially in 
patients with ALF and rarely in those with ACLF. In fact, due to the serious complications associated 
with hyperammonemia, mainly regarding HE and cerebral edema[8], prompt initiation of RRT is 
indicated even in the absence of renal failure, when this serious metabolic derangement is present at 
these patients[8,9]. Although no specific cut-off for the initiation of RRT exists based solely on this 
indication, the majority of the studies suggest it’s initiation when the value of ammonia is thrice greater 
than the upper limit of normal, or greater than 200 µmoles/L or when the patient shows severe enceph-
alopathy[9].

Nowadays, continuous RRT (CRRT) is preferred over intermittent hemofiltration or peritoneal 
dialysis in ALF and ACLF due to its well-documented advantages in critically ill patients, mostly 
related to hemodynamic stability[10,11]. In addition, it can be used in complicated cases of refractory to 
medical treatment hepatorenal syndrome (HRS)[12]. It presents a more favorable and safe profile 
regarding changes in osmolality and their effect on intracranial pressure/brain edema, contributing to 
the maintenance of cerebral homeostasis[10]. CRRT aids in maintaining a circulatory, acid-base, and 
electrolyte balance during the pro-, peri-, and post-LT periods[10,13]. It exerts beneficial effects on other 
complications of liver failure, such as HE[14]. Moreover, it facilitates the control of fluid balance, 
avoidance of volume overload, and deterioration of peripheral edemas-ascites due to third-space fluid 
loss[12,15]. In several cases, especially in pediatric patients, it is combined with PE therapy and has 
produced good results[16,17].

It can remove water-soluble, small- and medium-sized molecules (mostly urea, creatinine, 
phosphorus, and ammonia). Furthermore, it extracts cytokines non-selectively and, in the majority of 
cases, to a lower degree compared to hemoperfusion[18,19]. However, it is unable to remove albumin-
bound molecules.

It is inexpensive and widely available almost in every intensive care unit (ICU) or high-dependency 
unit (HDU), whereas its side effects are few and primarily catheter-related.

Although the effect of CRRT therapy on survival has been randomly studied, there exist a few reports 
on its beneficial short-term effects[14,20] thus improving the possibility for LT.

High-volume hemofiltration
High-volume hemofiltration (HVHF) therapy is characterized by high effluent rates and is performed 
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Figure 1 Most popular available blood purification methods with artificial extracorporeal systems for liver replacement therapy.

either continuously or intermittently. Although its limits differ significantly among studies, relative 
rates can be as high as 50 mL/kg/h to 70 mL/kg/h (continuous treatment) and 100 mL/kg/h to 120 
mL/kg/h (intermittent treatment)[21,22]. It represents an interesting alternative to conventional RRT 
because it can more effectively remove medium-sized and water-soluble molecules and cytokines with a 
wide range of molecular weights, from 5 kDa to 60 kDa using convection for removing solutes. 
Increased ultrafiltration rates also enhance the elimination of ammonia[23,24], which is of utmost 
importance for patients with ALF and ACLF. Furthermore, high ultrafiltration rates allow the filters to 
perform some degree of adsorption, targeting molecules with molecular weight above the threshold of 
the filter membrane and thereby expanding the range of cytokines and substance removal[25].

This last feature has an associated disadvantage, which is the undesirable loss of molecules and 
substances with functional or beneficial properties, including albumin[26,27], nutrients, and antibiotics
[25]. However, the technique can be used to remove a small degree of albumin-bound metabolites, 
primarily uremic toxins[28].

The method has been used primarily for inborn urea cycle disorders[29], in combination with PE, for 
children[30,31] and for adults with liver failure and hyperammonemia[23,24]. Further research is 
warranted to explore the possibility of more widespread applications, as it is inexpensive and effective, 
can be performed in every ICU or HDU, and requires no special equipment. Only prescription dosing 
and familiarization with the modality are sufficient to allow the proper use of HVHF in patients with 
ALF and ACLF[30].

High cut-off membranes
High cut-off (HCO) membranes represent an evolution in RRT in clearing middle molecular weight 
substances and cytokines. Their median pore radius is approximately 0.01 µm, providing a cut-off of 60 
KDa, which is close to that of normally functioning glomeruli[32]. This property enhances the removal 
of uremic toxins that are either protein-bound or of middle molecular weight but also results in loss of 
albumin when these membranes are used. Cytokine removal is also augmented with HCO membranes. 
Examples of cytokines removed by these membranes include interleukin (IL)-8, IL-6, and tumor necrosis 
factor-alpha (TNF-α)[33].

These membranes present interesting prospects for treating patients with ALF and ACLF due to the 
extent and quality of cytokines and toxin removal that they offer[34,35]; however, this hypothesis must 
be further tested and evaluated.

ADSORPION MODALITIES
Adsorption therapies are administered either by direct hemoperfusion or by plasma separation and 
subsequent plasma perfusion[19]. In addition, these therapies can be applied either as stand-alone or in 
combination with other extracorporeal modalities such as a CRRT circuit[36] or an extracorporeal 
membrane oxygenation (ECMO) device[37], which further improve their utility. They can successfully 
eliminate albumin-bound toxins and cytokines[19,37] with less complexity and more cost-effectiveness 
as compared to the Molecular adsorbent recirculating system (MARS) and the Fractionated plasma 
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separation and Adsorption (FPSA)-Prometheus. These characteristics enhance their attractiveness for 
further research as promising options for patients with liver failure.

Hemadsorption
Direct hemoperfusion (Cytosorb): Small-scale studies have been conducted on Cytosorb hemoperfusion. 
It consists of a synthetic membrane with biocompatible polystyrene beads that have a large surface area 
and can remove molecules up to 55 kDa[38-40]. It was initially used for cytokine adsorption in sepsis 
and other hyperinflammatory conditions such as burns, pancreatitis, and hemophagocytic lymphohisti-
ocytosis, where it is known to produce a beneficial effect by alleviating the excessive inflammatory 
response. IL-6 has been identified as a potential target of Cytosorb treatment[19,39,40].

Acute liver dysfunction presents with similar immunologic disorders, which forms the basis for the 
introduction of hemoadsorption in liver diseases. In cases of liver failure, drug-induced cholestasis, and 
acute alcoholic hepatitis, Cytosorb has been reported to be effective in reducing the levels of plasma 
bilirubin, ammonia, bile acids, and C-reactive protein (CRP) by altering the immune response in 
patients with high levels of proinflammatory cytokines[3,19,39,40].

Cytosorb is often paired with other extracorporeal therapies, such as continuous venovenous 
hemofiltration or ECMO, particularly in the ICU setting[39]. The literature reports several case series on 
patients with coronavirus disease-19 on ECMO, where encouraging results were obtained following the 
use of Cytosorb. In contrast, other trials have not reported any benefits in terms of mortality, 
vasopressor requirement, and organ dysfunction[1,19].

The advantages of Cytosorb include its high safety profile and ease of use. Cytosorb is mostly 
effective at around 12 h of use, with a blood flow rate of 150 mL/min to 500 mL/min, with the effect 
continuing up to 24 h[19]. Its adverse effects include the removal of beneficial substances, such as anti-
inflammatory cytokines or medications, and thrombocytopenia[3,41].

Although Cytosorb appears to be a promising therapeutic method and serves as a bridge to 
transplantation in patients with ALF or ACLF, the literature reports limited evidence; large prospective 
data or results of RCTs are still missing[39-41]. In addition, conflicting results have been reported in 
several existing trials. For instance, a study by Scharf et al[42] demonstrated that the reduction in IL-6 in 
seriously ill patients was insignificantly different in patients treated with and without Cytosorb. The 
indications and endpoints of Cytosorb treatment, the effect on mortality, and risk stratification in terms 
of which patients would benefit from its use remain to be elucidated in large controlled, and adequately 
powered studies[19,42].

Plasma-perfusion after plasma separation
Double plasma molecular absorption system (DPMAS)-(BS 330 + HA 330-II): Another artificial LSS is 
double plasma molecular absorption system (DPMAS), which uses a neutral macroporous resin (HA 
330-II) and an anion-exchange resin (BS 330). Toxic plasma is separated and cleansed by perfusion over 
the two hemoperfusion columns and subsequently recirculated to the body[43]. This combination 
efficiently removes macromolecules, medium-sized molecules, and toxins bound to plasma proteins, 
bilirubin, bile acids, ammonia, phenol, mercaptan, and inflammatory molecules. Thus, it potentially 
improves prognosis in patients with liver failure. In addition, the system requires no plasma or fluid 
replacement during treatment. It has been reported that DPMAS can reduce the levels of total bilirubin 
to more than 40%[43-45].

The advantages of this method include reduced risk for anaphylactic reactions, which are common in 
PE therapy, as it is a well-tolerated treatment. A major disadvantage of DPMAS is its inability to 
supplement for albumin and coagulation factors, correlating with the non-selective adsorption of the 
columns. This results in a significant loss of these molecules, coagulation disorders, and bleeding 
complications. To overcome these issues, DPMAS has been used in combination with PE; studies have 
reported that combined techniques substantially improved survival rates[43,44]. Because DPMAS is a 
new achievement, there are limited data on the effectiveness of DPMAS, derived from studies with 
small sample size. Larger, prospective trials are required to assess the exact efficacy, risk benefits, and 
outcomes[43,45,46].

COMPINATION MODALITIES
MARS
Another artificial liver replacement system for albumin dialysis is MARS. It can remove albumin-bound 
molecules and decrease the plasma concentrations of bilirubin, ammonia, creatinine, urea, and cytokines 
in patients with liver failure[47-49].

The system comprises a blood compartment, an albumin compartment, and a “renal” compartment. 
Its circuit allows the passage of molecules < 50 kDa and the extraction of albumin-bound toxins. Blood is 
passed through an albumin-high-flux dialysis membrane with adsorbent columns, and the albumin-
bound molecules are released[47,49] and are then removed through the diffusion process[5]. The 
requirement for continuous albumin infusion is mitigated by the recirculation of albumin dialysate[47,
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49]. Afterward, traditional dialysis is performed to remove the toxins from the dialysate.
Moreover, MARS can modify the inflammatory response related to liver failure and its consequences, 

such as the development of systemic inflammatory response syndrome and MOF. It can efficiently 
remove certain proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β, as well as certain anti-
inflammatory cytokines, such as IL-10. In addition, treatment with MARS is associated with 
hemodynamic and clinical improvement in cases of portal hypertension, HE, refractory pruritus, 
Wilson’s disease, and drug-induced liver injury[47-49].

The majority of patients with liver failure develop bleeding disorders and have impaired hemostasis, 
leading to hemorrhagic complications. Therefore, anticoagulation regimens in MARS are highly 
significant. The most widely used anticoagulant is unfractionated heparin. In addition, no anticoagu-
lation vs regional anticoagulation with citrate has been studied. Another significant aspect of MARS is 
that it eliminates certain antibiotics, particularly the low protein-bound antibiotics, such as quinolones 
and meropenem. Such cases require careful dose adjustments and therapeutic drug monitoring[47,49].

Limited data exist on the clinical outcomes of MARS in retrospective, uncontrolled trials with 
conflicting results. The benefits mostly include the treatment of HE and improved hemodynamics[47,
49]. In addition, it has been reported to be beneficial in ALF in severely ill patients[49]. Although direct 
cost from its use is high, and it is performed exclusively in special reference centers, when combined 
with standard medical therapy it was found even more cost-effective than standard medical therapy 
alone, highlighting the need for more precise and holistic estimation of total cost and benefit drawn by 
these therapies[50]. Further RCTs are required to elucidate the potential effects on mortality and any 
added benefits of MARS on disease outcomes and define the clinical and laboratory profiles of patients 
who would benefit from such intervention. Currently, MARS remains another appealing option for 
bridging to transplantation in patients with liver failure.

FPSA-Prometheus
Prometheus is a kind of LSS introduced at the end of the 20th century[51]. Its functioning is based on an 
integration of plasma separation, albumin dialysis, adsorption, and high-flux hemodialysis. The system 
consists of a 250-kDa albumin-permeable filter, a neutral resin adsorber, an anion-exchange column, and 
a high-flux hemofilter. Patient’s albumin passes through the 250-kDa filter, thus leading to reduction of 
the plasma concentration of albumin. The blood subsequently is detoxified as it passes through the 
adsorber, the column, and the hemofilter, following which the purified blood is returned to the patient.

This combination allows the elimination of both water-soluble and albumin-bound toxins and drugs. 
Prometheus significantly reduces the levels of bilirubin, with studies reporting a better performance 
than MARS in removing highly albumin-bound substances such as unconjugated bilirubin[52-55]. 
Although a recent, well-designed meta-analysis reported lack of efficient clearance of ammonia and 
creatinine by the Prometheus system[2], other studies support reverse findings[52,53,55,56]. Moreover, 
Prometheus effectively eliminates bile acids[52,55], even better than MARS[53,54]. Urea[2,56] and amino 
acids[57], implicated in the pathogenesis of HE, have been found to be adequately removed. This has 
been shown to result in significant improvement in HE[57] in these patients, and several case reports 
have found the same[58].

The results regarding the clearance of cytokines have been conflicting, with certain studies reporting 
reduced levels of cytokines[59], whereas others do not[2,60].

Other indications, including refractory pruritus and HRS, have been studied with encouraging results 
for Prometheus[61,62].

Prometheus has a good safety profile and good hemodynamic tolerance, although no improvement in 
the hemodynamic parameters was observed as compared to MARS[54]. Moreover, it has been used to 
treat severely ill patients. No major adverse effects have been recorded after decades of use, apart from a 
few reports regarding catheter-related, primarily septic complications[63], technical issues such as 
clotting of the circuit[64], and others such as thrombocytopenia[65].

The impact of Prometheus on OS and TFS is unclear because of lack of available data, whereas results 
regarding the survival rate of patients with HRS as a whole are conflicting[12,66]. However, these 
therapies can simultaneously improve patient’s compromised renal and liver function by removing 
cytokines implicated in the worsening of renal function and HRS[12,62].

Although several research groups have been unable to demonstrate the OS benefits of using 
Prometheus[2,67], subgroup analyses have revealed a favorable effect on patients with more severe liver 
disease [Model for End-Stage Liver Disease (MELD) score > 30] and in patients with type 1 HRS[67]. 
Novel, well-designed, preferably RCTs are required to reach reliable conclusions regarding the use of 
these systems.

Single-pass albumin dialysis system
Single-pass albumin dialysis (SPAD) is an alternative to MARS and Prometheus modality of LRT for 
albumin dialysis. It is an inexpensive, widely available, simple technique that requires only a simple 
CRRT machine and exogenous albumin. Although an HCO filter has been reported to be used[68]; in 
most cases, a high-flux hemofilter is used as a dialyzer. The albumin-containing dialysate flows opposite 
to the blood in the filter, extracting the hydrophobic substances from the saturated albumin of the blood 
to the dialysate, which is subsequently disposed. Although this technique efficiently eliminates 
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albumin-bound toxins, it causes a significant loss of albumin, which is a major disadvantage of the 
method.

Another important issue that needs attention is that dialysate’s ideal albumin concentration and flow 
rate are not standardized. Different values have been proposed by various studies, whereas commercial 
albumin-containing CRRT fluids are not provided by companies and should be prepared before use, 
thereby increasing the workload on nurses. Recent suggestions to improve these issues include using a 
3% albumin solution at the dialysate, 700 mL/h to 1000 mL/h dialysate flow rate, and constructing 
instructions for easy preparation of bags containing 3% albumin[24].

SPAD can effectively remove bilirubin, bile acids, and other albumin-bound toxins, and the 
hemofilter simultaneously removes small-sized, water-soluble toxins.

Metabolic disarrangements (elevated lactate/low calcium levels) and loss of antibiotics have been 
reported. Therefore, close monitoring of patients is highly essential for early detection and treatment[24,
69].

The SPAD method has been reported to effectively remove bilirubin[69-71], bile acids (although less 
effectively than MARS)[69], urea, and creatinine (although less effectively than MARS)[69-71]. It has 
been used in ALF patients with Wilson’s disease[72], for elevated bilirubin levels following acute 
hepatitis A[73], liver failure, and HE in pediatric patients[74], and HRS[75]. Because the majority of 
these studies are either case reports or case series, more research, preferably RCTs, is warranted to 
describe the effect of SPAD on OS and TFS and other liver-related outcomes.

Coupled plasma filtration adsorption
Coupled plasma filtration adsorption (CPFA) was developed during the 1990s. It uses a combination of 
adsorption (resin cartridge) and convection (CRRT) in the same circuit. Thus, it is different from other 
adsorption therapies (Cytosorb and DPMAS), where CRRT is an alternative option and not a 
prerequisite. Another characteristic of the method is plasma separation, performed by a plasma filter. It 
is the first step of the procedure before adsorption. Plasma is subsequently cleared from albumin-bound 
substances and mediators through the cartridge. Finally, the passage through a hemofilter removes 
water-soluble substances. Thus, the method has several advantages. Slow plasma passage from the resin 
allows better interaction and adsorption of substances, whereas the absence of blood cells, especially 
platelets, prevents clotting during the passage of the separated plasma through the cartridge[76]. 
Moreover, it incurs minimal or no loss of significant molecules such as albumin and coagulation factors 
and does not require the replacement of the patient’s plasma. Compared to other methods of removal of 
albumin-bound toxins (MARS, Prometheus, Cytosorb, PE), CPFA is less expensive. However, CPFA 
cannot be performed in patients with septic shock due to associated potential harm[19,77].

The available literature reports that CPFA can effectively remove bilirubin, tryptophan, phenols[78,
79], bile acids[79], and cytokines[80]. It has been used for liver indications such as ALF and ACLF[81,
82], after LT[83], in hypoxic hepatitis[84], and combined with PE therapy for ALF due to Wilson’s 
disease[85]. Future studies are required to elucidate its role as an LRT.

OTHER MODALITIES
Plasma exchange
Plasma exchange (PE) is the LRT with the highest proven beneficial effects on patient outcomes. Recent 
meta-analyses[2], guidelines and RCTs[11,86] have reported beneficial outcomes for 3-mo OS and TFS, 
respectively, especially for patients with early initiation of the treatment and not undergoing LT and 
same results come from well-designed reviews, regarding 1- and 3-mo survival in nontransplanted 
patients[87]. The effect is more pronounced when high-volume PE (the replacement of thrice the 
patient’s estimated plasma volume) is performed[86-88], whereas standard-volume PE has demon-
strated good results in certain sub-groups of patients with liver failure[89,90].

The circuit consists of a plasma filter, with pore sizes approximately 0.2 µm (far larger than those of 
hemofilter[32], thus allowing the extraction of larger molecular weight proteins, including antibodies, 
immune complexes, paraproteins, and lipoproteins[91,92]). In addition, it consists of a replacement 
solution containing plasma and/or albumin. The process separates plasma substances from whole 
blood and replacement with plasma and/or albumin follows, thereby exchanging the patient’s plasma 
with that of healthy donors. The method allows the removal of cytokines, albumin-bound and water-
soluble toxins, and the replacement of plasma proteins, including clotting factors that are severely 
diminished in patients with liver failure[93]. However, it cannot effectively eliminate small and medium 
molecular weight water-soluble molecules. Simultaneous CRRT could be necessary for patients with 
concomitant renal failure[31,94]. The immunomodulatory effects of PE therapy have been outstanding, 
as evident from its benefits reported for other indications such as chronic inflammatory demyelinating 
polyneuropathy, myasthenia gravis, multiple myeloma, Guillain-Barre syndrome, and thrombotic 
thrombocytopenic purpura. These advantages make PE treatment of choice for suppressing the inflam-
matory cascade of liver failure, whereas substitution of clotting factors offers the advantage of 
correcting coagulation disorders often observed in these patients. In addition, it has been shown that PE 
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reduces vasopressor requirements and ammonia levels and improves HE. It exerts no effect on 
intracranial pressure elevation[93]. However, it is an expensive method, primarily due to the use of 
significant quantities of fresh frozen plasma (the circuit for PE does not have a significant cost). 
Furthermore, it could induce the side effects associated with the use of blood products, such as allergic 
reactions, transfusion-related acute lung injury, the transmission of infectious diseases and 
hypocalcemia. Apart from CRRT, it is frequently combined with other modalities, such as DPMAS[43-
45].

NEW SYSTEMS AND METHODS UNDER RESEARCH
Carbalive and Dialive
Bacterial translocation remains one of the major causes for disease-related morbidity and mortality in 
patients with ACLF. An established method of prevention is the use of oral antibiotics, which are poorly 
absorbed by the gastrointestinal tract, however this approach comes with increased resistance and cost. 
CARBALIVE is a novel, non-antibiotic related intervention, which is under investigation. It consists of a 
microporous carbon absorbent, which is orally administered and removes bacterial endotoxins from the 
bowel, thus preventing the harmful consequences of inflammation, which usually accompanies bacterial 
translocation. Recent trials revealed positive preliminary results in patients with decompensated 
cirrhosis, while CARBALIVE seems to be safe and well tolerated. Another novel option for endotoxin 
removal and bridging to transplant in patients with ACLF is DIALIVE. It represents a dual filtration 
system. One filter removes toxin products from bloodstream and the other one removes and replaces 
albumin. Preliminary results are promising in terms of safety and tolerability. Data for both of these two 
modalities still need to be validated in larger randomized clinical trials[95].

DISCUSSION
Pathophysiologically, liver failure is regulated by immune-mediated reactions, mainly consisting of 
overproduction of proinflammatory cytokines, that results in a cascade of excessive inflammatory 
response[2]. As most of LRT systems were found to perform cytokine clearance, their application has 
been studied as to how it affects the dysregulation of the immune system by reducing cytokine levels 
and alleviating the catastrophic consequences of immune system over-activation. There are two main 
issues that must be further elucidated: (1) Studies regarding the effectiveness of the LRT systems to 
reduce cytokine levels have given conflicting results[42,60]. This can be attributed to the heterogeneity 
of the amount and type of pro- and anti-inflammatory cytokines produced in patients with liver failure. 
In several cases, the overproduction of cytokines has been reported to overcome the elimination 
capacity of the LSS[60]; and (2) LRT systems eliminate both pro- and anti-inflammatory cytokines[42], 
resulting in non-predictable and simultaneous suppression and activation of the immune system 
respectively. The clinical impact of the effect of LRT systems on the imbalance between pro- and anti-
inflammatory mediators in liver failure remains unclear, and further studies are warranted in this field.

Table 1 lists the different characteristics of all modalities discussed in this review, including costs, 
complexity, applicability, and methods of toxin clearance. The attempted comparison of costs and 
complexity of these modalities is preliminary and arbitrary and could differ between different centers 
and countries. Their extent of applicability is based on whether these methods can be performed in any 
ICU or HDU (broad), or in ICUs and HDUs with particular experience, knowledge, and equipment 
(medium), or, finally, in special reference centers for LRT (limited).

Costs included in Table 1 mainly regard direct costs from the use of each method, not including the 
expenses that emerge from the rest of the support that these patients require. However, indirect costs 
from ICU/HDU hospitalization that represent a significant burden worldwide[96], including albumin 
supplementation, antibiotic administration for hospital-acquired infections (a very frequent 
complication for these patients) and maintenance of the above-mentioned expensive health-care 
facilities, are not included. On the other hand, keeping these patients alive until LT is available while 
reducing their morbidity and mortality is another parameter that must be taken into consideration. Of 
note, there are studies that find these therapies cost-effectively superior to standard medical therapy 
alone[50]. Thus, the exact balance between cost and effectiveness of application of these methods 
remains to be elucidated.

A key point to this approach is to detect patients that may benefit at a significant degree from LRT 
and apply these methods accordingly. Use of appropriate biomarkers, in the context of compatible 
clinical picture, could serve as a tool for distinguishing those patients and identify the most appropriate 
method for them, offering a personalized approach to the treatment of ALF and ACLF. Such biomarkers 
are under intense study in sepsis and COVID-19. The measurement of endotoxin levels with an 
endotoxin activity assay for initiation of polymyxin B hemoperfusion and measurements of CRP, IL-6 or 
ferritin for initiation of Cytosorb therapy are relative examples[97,98]. However, such biomarkers have 
not been identified for ALF and ACLF yet, and their identification presents a challenging target for 
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Table 1 Comparison of basic characteristics of artificial liver support systems

System Detoxification 
methods Cost Complexity Applicability Detoxification 

capacity/range
Impaction 
OS/TFS Main characteristics

Continuous renal 
replacement 
therapy

Diffusion, 
convection

Low Low Broad (all 
ICUs, HDUs)

Restricted (water-
soluble, low and 
medium molecular 
weight substances, 
mainly ammonia, 
cytokines)

Few data, 
no RCTs

Simple, no removal of 
albumin-bound toxins

High-volume 
hemofiltration

Convection Low Low Broad (all 
ICUs, HDUs)

Restricted (water-
soluble, low and 
medium molecular 
weight substances, 
mainly ammonia, 
cytokines), but more 
effectively than CRRT

Few data, 
no RCTs

Simple, better removal of 
low and medium sized 
molecules and cytokines 
than low-volume. No 
significant removal of 
albumin-bound toxins, 
loss of albumin, nutrients

High cut-off 
membranes

Diffusion, 
convection

Low Low Broad (all 
ICUs, HDUs)

Middle molecules up to 
60 kDa, protein-bound 
uremic toxins, cytokines 
(IL-8, IL-6, and TNF-α)

Few data, 
no RCTs

Simple, removal of 
protein-bound-medium 
sized uremic toxins 
cytokines. No removal of 
other albumin bound 
toxins, loss of albumin

Direct hemoper-
fusion (Cytosorb)

Adsorption Medium 
to high

Medium Medium (ICUs, 
HDUs with 
experience)

Molecules up to 55 kDa, 
bilirubin, ammonia, bile 
acids, IL-6, CRP

Few data, 
no RCTs

Simple, removal of 
albumin bound toxins, 
bilirubin, bile acids, 
cytokines. Needs more 
literature

Double plasma 
molecular 
absorption system

Plasma separation, 
adsorption

Medium Medium Medium (ICUs, 
HDUs with 
experience)

Macromolecules, 
medium-sized plasma 
protein bound 
molecules and toxins, 
bilirubin, inflammatory 
molecules

Few data, 
no RCTs

Simple, removal of 
albumin bound toxins, 
bilirubin, bile acids, 
cytokines; needs more 
literature

Molecular 
adsorbent recircu-
lating system

Albumin dialysis-
diffusion, 
adsorption, 
convection

High High Limited 
(special 
centers)

Albumin-bound 
molecules < 50 kDa, 
water-soluble 
substances, Cytokines 
(TNF-α, IL-6, IL-1β, and 
IL-10)

Not 
found/not 
found

With available literature, 
removal of albumin-
bound toxins; complex, 
expensive, limited access, 
uses exogenous albumin

Fractionated 
plasma separation 
and Adsorption-
PROMETHE-US

Plasma separation, 
albumin dialysis-
diffusion, 
adsorption, 
convection

High High Limited 
(special 
centres)

Broad (albumin-bound 
toxins, water-soluble 
substances of a wide 
range of molecular 
weight, cytokines)

Not 
found/not 
found

With available literature, 
removal of albumin-
bound toxin; complex, 
expensive, limited access

Single-pass 
albumin dialysis

Albumin dialysis-
diffusion, 
convection

Medium Low Broad (all 
ICUs, HDUs)

Albumin-bound 
substances (bilirubin, 
bile acids), small-sized 
(< 500 Da) water-soluble 
toxins

Few data, 
no RCTs

Simple, removal of 
albumin-bound 
substances, water soluble 
toxins; high cost of 
exogenous albumin, 
metabolic 
disarrangements

Coupled plasma 
filtration 
adsorption

Plasma separation, 
adsorption, 
convection

Medium Medium Medium (ICUs, 
HDUs with 
experience)

Albumin-bound 
molecules and toxins 
(bilirubin, tryptophan, 
phenols, bile acids), 
cytokines, water soluble 
toxins

Few data, 
no RCTs

Simple, removal of 
albumin-bound toxins, 
bilirubin, bile acids, 
cytokines; needs more 
literature

Plasma exchange Separation of 
plasma substances, 
replacement with 
FFP

Medium 
to high, 
mainly 
due to the 
FFP

Medium Medium (ICUs, 
HDUs with 
experience)

Broad (removal of 
cytokines, albumin-
bound and water-
soluble toxins, 
antibodies, immune 
complexes, lipoproteins)

Beneficial 
(RCTs and 
guidelines)

Effective with available 
literature from RCTs, 
replaces plasma proteins, 
clotting factors; expensive, 
need, cost and complic-
ations of blood products

OS: Overall survival; TFS: Transplant-free survival; ICUs: Intensive care units; HDUs: High dependency units; RCTs: Randomized controlled trials; FFP: 
Fresh frozen plasma; TNF-α: Tumor necrosis factor-alpha; IL: Interleukin; kDa: Kilodalton; CRP: C-reactive protein.
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future research. Alternatively, certain sub-groups of patients, such as those that are more severely ill
[49], those with more severe liver disease (MELD score > 30) or with type 1 HRS[67], and those with 
early initiation of treatment, that will not undergo LT[11] have been found to receive more favorable 
effect from LRT, and treating these sub-groups preferably is a reasonable approach for achieving cost-
effective use of the LRT systems. Nevertheless, proper validation of indications and application of 
suitable tools for identifying these patients represent fields for thorough future research.

Table 2 summarizes in tabular form data from a selection of the studies that were included in this 
review, with the main key points that were drawn by each study, while Table 3 (adapted with modific-
ations from a recent study regarding expert consensus recommendations for the majority of currently 
available LSSs[99]) highlights advantages, disadvantages, side effects, complications and contraindic-
ations of LSSs.

It is worth noting that the impact from the application of LSSs on OS and TFS remains unclear 
because of the lack of data, especially from RCTs. The majority of the studies have limited sample sizes 
and present methodological issues, especially the risk of bias. Properly designed, double-blind, RCTs 
with efficient statistical analysis and adequate sample size to achieve statistical power must be 
performed by experienced researchers. In order to draw reliable conclusions, enrollment should be done 
on the basis of discrete inclusion criteria, comparing groups of equal severity and comparable 
comorbidities, with separate study of patients with ALF and those with ACLF, as these entities have 
differences in pathophysiology, clinical presentation and prognosis.

Choice of study outcomes is also challenging. The most commonly used include OS, TFS, all-cause 
mortality, liver-related mortality, improvement of HE, HRS or other complications of liver failure[2,
100]. Nevertheless, the majority of patients with ALF and ACLF are severely ill and present MOF, with 
high rates of mortality, making it difficult to prove the beneficial effects of any of these interventions. In 
order to overcome this obstacle, other endpoints, such as short-term survival as bridging to LT, have 
been proposed[66], however LT is not offered as an immediate or future option to most of these 
patients. Thus, proper identification of other suitable endpoints is demanded. Simple to use and 
interesting endpoints to consider could be the reduction of ACLF-grades, the reduction of MELD score 
and estimators of patients’ quality of life; the latter is increasingly being used in other circumstances, 
such as at patients after LT and could present an interesting alternative for assessing the impact of LRT 
on patients’ health status.

At this point of time artificial LRT systems mostly serve as bridging therapies towards LT. Factors 
including cost, lack of available evidence and complexity restrict their applicability. However, the 
introduction of new systems like DIALIVE, CARBALIVE, and new methods like adsorption therapies 
(their cost is lower compared to previous systems and gets lower over time, they are simple in use and 
can be widely available, they have a wide range of clearance of molecules and toxins) and the evolution 
of technology along with the evidence acquired regarding already available systems and techniques 
(MARS, prometheus, and PE therapy) give the perspective for more widespread use of LRT. The goal 
for LRT should be its application at every patient with ALF or ACLF that will benefit from it, regardless 
of the presence or absence of exclusion criteria for LT, and regardless of any anticipated delay for LT. 
Ideally, the experience from RRT should be adapted, where technological progress and cost deteri-
oration from widespread use have made RRT widely available, practically for every patient that needs 
it.

CONCLUSION
LRT is a constantly evolving and widely offered therapeutic approach for patients with ALF and ACLF. 
Different systems and methods described in this review can efficiently detoxify all toxins and molecules 
implicated in the pathophysiology of ALF and ACLF and responsible for the associated complications. 
Amongst the available LRT systems, certain modalities are neither expensive nor highly sophisticated 
and can be applied almost in every ICU or HDU supporting this category of extremely complicated 
patients. Although these systems have not yet gained a strong position among treatment guidelines 
regarding patients with liver failure, this is probably due to the poor quality of available evidence. 
Recent meta-analyses have reported promising results[100,101], indicating the need for further research 
and more RCTs. Another challenge for clinicians treating these patients is to decide the appropriate 
method, correct initiation time, and parameters of the prescribed therapy for these patients. In addition, 
the majority of them are critically ill, with coagulation disorders and liver complications (HE, HRS, 
ascites, hyperammonemia, and elevated intracranial pressure). Considering the restricted available 
literature on these systems, these decisions need to be made prudently and more research is warranted 
in this field. Nevertheless, standard medical therapy for liver failure has probably reached its peak; LT is 
lifesaving but not easily accessible and demands lifelong immunosuppression. Thus, LRT represents a 
highly promising alternative offering new potentials for treating ALF and ACLF in the future, 
improving the survival of these patients either toward recovery of liver function or as support for 
impaired liver function until LT becomes available. Options, including the use of combinations of 
different methods, application of multiple methods in a patient according to the phase of the disease 
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Table 2 Selected data from available guidelines, systematic reviews, meta-analyses or clinical studies included in this review

Ref. Type of study Modality-ies 
studied Summary of key points of each study

LRT systems Liver failure pathophysiology involves immune system over-activation and overproduction of 
proinflammatory cytokines, resulting in multiple-organ failure; reducing cytokine levels and thus 
correcting the dysregulation of the immune system is the pathophysiologic base of the application of 
LRT systems

[2] Systematic 
review/meta-
analysis

Plasma exchange The best currently available LRT system in ACLF regarding 3-mo OS

[9] Review Continuous renal 
replacement therapy

It has indication for initiation of when ammonia is more than × 3 the uln, or more than 200 µmoles/L or 
when severe encephalopathy occurs

[10] Review Continuous renal 
replacement therapy

It has a role in the maintenance of circulatory, acid-base, and electrolyte balance during the pro-, peri-, 
and post-LT periods. It facilitates control of fluid balance and avoidance of volume overload/of 
peripheral edemas-ascites in patients with ALF and ACLF

[11] Guidelines Plasma exchange It improves transplant-free survival in ALF, and modulates immune dysregulation; patients with early 
treatment initiation that will not undergo LT may benefit most

Adsorption therapies They are delivered either by direct hemoperfusion or by plasma separation and subsequent plasma 
perfusion

[19] Review

Direct hemoperfusion 
(Cytosorb)

It reduces levels of plasma bilirubin, ammonia, bile acids, and C-reactive protein and alters the immune 
response by absorbing proinflammatory cytokines; IL-6 has been identified as one of its main 
therapeutic targets; it presents high safety profile and easy application; indications, endpoints, effect on 
mortality and detection of which patients receive benefit from its use remain to be elucidated

[24] Review Single-pass albumin 
dialysis

Dialysate’s ideal albumin concentration and flow rate are not standardized while there are no commer-
cially available albumin-containing Continuous renal replacement therapy fluids. Metabolic 
disarrangements and loss of antibiotics have been observed

[30] Clinical study High-volume 
hemofiltration

An inexpensive and effective method that can be performed in every ICU or HDU, requiring no special 
equipment. Increased ultrafiltration rates enhance the elimination of ammonia

[35] Clinical study High Cut-off 
membranes

Cytokine and toxin removal by these membranes may represent a promising intervention in ALF and 
ACLF

[36] Review Adsorption therapies They are delivered either as stand-alone or in combination with other extracorporeal modalities; the 
evidence to support their routine use is still conflicting and insufficient. May be of utmost benefit when 
applied early in the course, for an adequate duration, and frequently repeated until hemodynamic 
stability is achieved; they require carefully monitoring of drug levels, supplemented with additional 
doses as needed

Adsorption therapies They have been used with positive effects in chronic dialysis and chronic liver disease[38] Review

Direct hemoperfusion 
(Cytosorb)

Ιt removes molecules up to 55 kDa

[43] Systematic 
review/meta-
analysis

Double plasma 
molecular absorption 
system

It combines two resins that remove macromolecules, medium-sized molecules, and toxins bound to 
plasma proteins, bilirubin, bile acids, ammonia, phenol, mercaptan, and inflammatory molecules

[44] Clinical study Double plasma 
molecular absorption 
system

It is frequently combined with Plasma exchange therapy, to overcome loss of for albumin and 
coagulation factors, with promising results on survival rates

[48] Randomized 
controlled study

Molecular adsorbent 
recirculating system

It removes albumin-bound molecules and decreases the plasma concentrations of bilirubin, ammonia, 
creatinine, urea, and cytokines. It has good safety profile

[49] Review Molecular adsorbent 
recirculating system

Recirculation of albumin dialysate restricts albumin loss; under certain circumstances and indications, it 
has been associated with hemodynamic and clinical improvement at patients with liver disease; dose 
adjustments and therapeutic drug monitoring, especially for low protein-bound antibiotics, is required

[50] Clinical study Molecular adsorbent 
recirculating system

Expensive method, application in selected centers, but when compared to standard medical therapy 
alone it was found more cost-effective 

[52,
57]

Review, Clinical 
study

PROMETHEUS It performs albumin dialysis. It removes bilirubin, ammonia, creatinine, bile acids, amino acids, 
cytokines and is associated with a small reduction in plasma concentration of albumin; it was 
associated with improvement in HE

[54] Randomized 
controlled study

PROMETHEUS It presents good safety profile and good hemodynamic tolerance

[67] Randomized 
controlled study

PROMETHEUS Favorable effect on patients’ subgroups such as those with more severe liver disease (MELD score > 30) 
and with type 1 HRS

[69] Randomized 
controlled study

Single-pass albumin 
dialysis

It is inexpensive, apart from the cost of albumin, and requires no special center for its application; it 
performs albumin dialysis and removes bilirubin, bile acids, urea and creatinine

Coupled plasma It combines plasma separation, adsorption and convection, with no loss of albumin or coagulation [76] Review
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filtration adsorption factors; it can effectively remove bilirubin, tryptophan, phenols, bile acids, cytokines

[77] Randomized 
controlled study

Coupled plasma 
filtration adsorption

It cannot be performed in patients with septic shock

[87] Review Plasma exchange It improves 1- and 3-mo survival in nontransplanted patients. More pronounced effect and high level of 
evidence for high volume plasma exchange

[93] Review Plasma exchange It removes cytokines and albumin-bound toxins, and replaces plasma proteins; it effectively suppresses 
the inflammatory cascade of liver failure, while substituting clotting factors and correcting coagulation 
disorders; relatively expensive, it presents transfusion related side effects and cost

LRT: Liver replacement therapy; OS: Overall survival; ALF: Acute liver failure; ACLF: Acute-on-chronic liver failure; uln: Upper limit of normal; LT: Liver 
transplantation; IL: interleukin; ICU: Intensive care unit; HDU: High Dependency Unit; kDa: Kilodalton; MELD: Model for end-stage liver disease; HRS: 
Hepatorenal syndrome; HE: Hepatic encephalopathy.

Table 3 Advantages, disadvantages, side effects, complications and contraindications, with intended population to treat, for each liver 
support system (adapted with modifications from[99])

Method Advantages Disadvantages-side effects- 
complications-contraindications Intended population

Plasma exchange Easy operation, broad-spectrum rapid, 
and efficient removal of various toxins, 
supplementation of fresh frozen 
plasma, shorter treatment time, 
acceptable patient tolerance

Higher treatment cost, poor clearance of water-
soluble toxins, aggravation of hepatic enceph-
alopathy, plasma allergy, risk of infection 
associated with blood products, water and 
sodium retention after treatment

Patients with hepatic failure, hyperbi-
lirubinemia, cryoglobulinemia, 
Guillain-Barré syndrome, thrombotic 
thrombocytopenic purpura, 
myasthenia gravis

Continuous renal 
replacement therapy

Hemodynamic stability in critically ill 
patients, maintenance of cerebral 
homeostasis, inexpensive and widely 
available

Unable to remove albumin-bound molecules Critically ill patients, patients with 
refractory hepatorenal syndrome

High-volume 
hemofiltration

More effective removal of medium-
sized and water-soluble molecules and 
cytokines; enhances the elimination of 
ammonia

Undesirable loss of molecules and substances 
with functional or beneficial properties, 
including albumin, nutrients, and antibiotics

Patients with ALF and ACLF, inborn 
urea cycle disorders, in children and 
adults with liver failure and hyperam-
monemia

High cut-off 
membranes

Removal of uremic toxins Loss of albumin Patients with ALF and ACLF

Direct hemoperfusion 
(Cytosorb)

Reduces the levels of plasma bilirubin, 
ammonia, bile acids, and C-reactive 
protein, high safety profile and ease of 
use

Higher treatment cost Removal of beneficial 
substances, such as anti-inflammatory 
cytokines or medications, and thrombocyt-
openia

Patients with liver failure, drug-
induced cholestasis, and acute 
alcoholic hepatitis; bridge to 
transplantation in patients with ALF or 
ACLF

Double plasma 
molecular absorption 
system

Rapid removal of bilirubin, inflam-
matory mediators without requiring 
exogenous plasma

Inability to replenish coagulation factors; 
hypotension is likely to occur during the initial 
treatment period

Patients with liver failure, hyperbiliru-
binemia, hepatic encephalopathy, 
perioperative treatment of liver 
transplantation

Molecular adsorbent 
recirculating system

Effective removal of protein-bound 
and water-soluble toxins, excellent 
biocompatibility, relatively safe

Markedly expensive and complex, cannot 
supplement coagulation factors

Patients with acute severe liver injury 
or liver failure

Fractionated plasma 
separation and 
Adsorption-
PROMETHEUS

Elimination of both water-soluble and 
albumin-bound toxins and drugs, good 
safety profile and good hemodynamic 
tolerance

Markedly expensive and complex, lack of 
efficient clearance of ammonia and creatinine

Patients with hepatic encephalopathy, 
hepatorenal syndrome

Single-pass albumin 
dialysis

Inexpensive, widely available, simple 
technique, effectively removes 
bilirubin, bile acids, and other 
albumin-bound toxins

Significant loss of albumin, metabolic 
disarrangements and loss of antibiotics

Patients with ALF, Wilson’s disease, 
acute hepatitis A, liver failure, hepatic 
encephalopathy, hepatorenal 
syndrome

Coupled plasma 
filtration adsorption

Removes medium and small molecular 
weight water-soluble toxins and is 
capable of volume regulation and renal 
support

Higher equipment requirements, higher 
treatment cost

Patients with liver failure, renal 
insufficiency, hyperammonemia, 
rhabdomyolysis, burns, severe 
autoimmune diseases, poisoning

LSS: Liver support system; ALF: Acute liver failure; ACLF: Acute-on-chronic liver failure.

and the toxins to be removed, and adoption by centers of LRT protocols have already been described[24,
102]. Such options could probably be ideal for treating these highly complicated patients. We believe 
that as technology and knowledge evolve, the future of these systems will witness major advancements.
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