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Abstract
BACKGROUND 
Preoperative knowledge of mutational status of gastrointestinal stromal tumors 
(GISTs) is essential to guide the individualized precision therapy.

AIM 
To develop a combined model that integrates clinical and contrast-enhanced 
computed tomography (CE-CT) features to predict gastric GISTs with specific 
genetic mutations, namely KIT exon 11 mutations or KIT exon 11 codons 557-558 
deletions.

METHODS 
A total of 231 GIST patients with definitive genetic phenotypes were divided into 
a training dataset and a validation dataset in a 7:3 ratio. The models were 
constructed using selected clinical features, conventional CT features, and 
radiomics features extracted from abdominal CE-CT images. Three models were 
developed: ModelCT sign, modelCT sign + rad, and model CTsign + rad + clinic. The diagnostic 
performance of these models was evaluated using receiver operating charac-
teristic (ROC) curve analysis and the Delong test.

RESULTS 
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The ROC analyses revealed that in the training cohort, the area under the curve (AUC) values for modelCT sign, 
modelCT sign + rad, and modelCT sign + rad + clinic for predicting KIT exon 11 mutation were 0.743, 0.818, and 0.915, respectively. 
In the validation cohort, the AUC values for the same models were 0.670, 0.781, and 0.811, respectively. For 
predicting KIT exon 11 codons 557-558 deletions, the AUC values in the training cohort were 0.667, 0.842, and 0.720 
for modelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic, respectively. In the validation cohort, the AUC values for the 
same models were 0.610, 0.782, and 0.795, respectively. Based on the decision curve analysis, it was determined 
that the modelCT sign + rad + clinic had clinical significance and utility.

CONCLUSION 
Our findings demonstrate that the combined modelCT sign + rad + clinic effectively distinguishes GISTs with KIT exon 11 
mutation and KIT exon 11 codons 557-558 deletions. This combined model has the potential to be valuable in 
assessing the genotype of GISTs.
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Core Tip: In this study, we developed and validated a radiomics model to predict the genotypes of gastric gastrointestinal 
stromal tumors (GISTs) using contrast-enhanced computed tomography images. Our findings demonstrated that the 
radiomics model exhibited a satisfactory performance in distinguishing gastric GISTs with KIT exon 11 mutations and 
GISTs with KIT exon 11 codons 557-558 deletions. Among the different models evaluated, the combined modelCT sign + rad + clinic 
demonstrated the highest predictive accuracy. This model holds promise as an effective and noninvasive approach to guide 
personalized treatment decisions prior to surgery.
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INTRODUCTION
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract, with an 
annual incidence ranging from 6 to 22 cases per million individuals[1,2]. The stomach is the primary site of GIST onset, 
accounting for 60%-65% of cases[3]. Prior to the year 2000, advanced GISTs had no effective medical therapy due to their 
poor response to chemotherapy and radiotherapy. However, the identification of activating KIT mutations in GISTs led to 
the rapid development of the first tyrosine kinase inhibitor (TKI), imatinib, which significantly improved clinical 
outcomes for GIST patients[4,5]. In addition to KIT mutations, mutations in other genes such as PDGFRA, NF-1, BRAF, 
KRAS, and PIK3CA, as well as SDH deficiency, have been discovered in GISTs[1,6]. The presence of specific driver 
oncogenic genes in GISTs has made it a paradigm for precision medicine treatment.

The majority of GISTs harbor KIT mutations (80%) or PDGFRA mutations (5%-10%)[7,8]. Testing for KIT and PDGFRA 
mutations is crucial for defining GIST pathological diagnosis, predicting tumor prognosis, and guiding TKI therapy. 
Studies have shown that patients with PDGFRA mutations have a better prognosis compared to those with KIT mutations
[9]. Among GIST patients with KIT exon 11 mutations, those with deletion or insertion-deletion mutations have a worse 
prognosis than those with point or repeat mutations. In addition, the presence of multiple codon deletion mutations or 
deletions affecting codons 557-558 on KIT exon 11 has been linked to an aggressive biological phenotype and an 
unfavorable prognosis[10,11]. It has been clinically observed that GISTs exhibit different response rates to imatinib 
depending on their mutation status. GISTs with KIT exon 11 mutations have a higher response rate and recurrence-free 
survival to standard imatinib therapy compared to exon 9 tumors. Most PDGFRA mutations respond to imatinib, with the 
exception of D842V. Therefore, predicting the mutation status of tumors is crucial for managing GISTs. However, 
currently, tumor mutation status can only be obtained after surgical resection or conventional invasive biopsy, making 
preoperative genotyping of GISTs more challenging.

Contrast-enhanced computed tomography (CE-CT) is routinely used in clinical practice for the detection and evalu-
ation of GISTs. Recent advancements in CT image acquisition have enabled the acquisition of high-quality isotropic 
images that provide rich data beyond general morphological information. Radiomics, an emerging quantitative imaging 
method, can convert high-throughput medical imaging features into quantitative data. It has been extensively applied for 
differential diagnosis, prognostic prediction, prediction of biological behavior, treatment outcomes, and tumor genetics
[12-15]. Previous studies have demonstrated that radiomics features can predict the malignant potential and prognosis of 
GIST[16-19]. Radiogenomics, a promising paradigm, integrates clinical imaging with molecular and genomic imaging. 
However, there have been limited studies on radiomics for predicting the mutational status of GISTs[20-22].

https://www.wjgnet.com/1948-5204/full/v16/i4/1296.htm
https://dx.doi.org/10.4251/wjgo.v16.i4.1296


Yin XN et al. CT radiogenomics predicts molecular subtypes of GIST

WJGO https://www.wjgnet.com 1298 April 15, 2024 Volume 16 Issue 4

In 2021, the primary outcomes of our research were published[21]. The study revealed associations between GISTs with 
KIT exon 11 mutations and CE-CT images. CT radiogenomics showed promising potential in predicting the KIT exon 11 
mutation status of GISTs. This study focuses specifically on gastric GISTs and aims to develop a prediction model for 
genotypes using CE-CT images.

MATERIALS AND METHODS
Patients
This retrospective study obtained ethical approval from the Research Ethics Board of West China Hospital, Sichuan 
University, China [Number: 2022(449)], and informed consent was waived due to the nature of the study. The inclusion 
criteria were as follows: (1) Patients who underwent CE-CT examination at our hospital within 30 d prior to surgery or 
biopsy; (2) patients diagnosed with primary gastric GISTs confirmed by pathological examination; and (3) patients with 
definitive genetic analysis results. The exclusion criteria were as follows: (1) Patients who received preoperative 
antitumoral treatment; (2) patients with tumor rupture; and (3) patients with inadequate CE-CT image quality, such as 
severe motion artifact or portal phase image thickness exceeding 5 mm. A total of 231 patients from May 2010 to 
December 2021 were included in the study (Figure 1). Mutation analysis was performed on the coding sequence of the 
KIT gene (exon 9, 11, 13, and 17) and the PDGFRA gene (exon 12, 14, and 18) using Sanger sequencing. Clinical 
information and pathology results were also collected.

CT imaging acquisition
All CT examinations were performed using three different CT scanners: A 64-slice CT scanner (Philips Medical system, 
Eindhoven, The Netherlands), a 128-slice CT scanner (SOMATOM Definition AS +, Siemens Healthcare, Germany), and a 
dual-source CT system (Somatom Definition Flash, Siemens Healthcare, Germany). Prior to the CT examination, patients 
were required to fast for at least 6 h and ingest 600-1000 mL of water. The CT scanning range encompassed the entire 
abdomen. The parameters for the CT examinations were as follows: Tube voltage of 120 kV, tube current ranging from 
145 to 200 mAs, slice thickness of 2-5 mm, slice interval of 2 mm, field of view ranging from 35 cm to 50 cm, matrix size of 
512 × 512, rotation time of 0.5 s, and pitch of 1.0. In all patients, an iodinated contrast agent (1.2-1.5 mL/kg) was 
intravenously injected using a syringe pump. Enhanced images were acquired during the arterial phase triggered at a 
threshold of 170 hounsfield units, and the portal venous phase was captured 30 s after the trigger.

CT imaging analysis
The CT images were independently reviewed by two radiologists who were blinded to the clinicopathological data. Dis-
crepancies between the two radiologists were resolved through consensus. The following CT features were evaluated 
using Syngo Imaging Workplaces (VersionVB35A, Siemens AG, Erlangen, Germany): Tumor location, size, shape (regular 
or irregular), margin (well-defined or ill-defined), growth pattern (exophytic, endophytic, or mixed), density (hypo-
density, isodensity, or hyperdensity), enhancement pattern and degree (mild, moderate, or marked), presence of internal 
low attenuation areas (necrosis, gas, or cystic degeneration), calcification, superficial ulceration, presence of intra-tumoral 
vessels, infiltration of adjacent mesangial fat, invasion of adjacent organs, distant metastasis, and lymphadenopathy. The 
CT attenuation value was measured by delineating the region of interest (ROI) along the tumor edge on each consecutive 
slice covering the entire lesion, excluding vessels, gas, and necrotic areas. Tumor necrosis was defined as an irregular area 
within the tumor with a CT attenuation value < 20 HU in each phase and an enhancement increase of less than 10 HU 
among the three phases. Cystic degeneration was characterized as a region with a smooth and well-defined border and a 
density similar to water (CT attenuation value of 0-20 HU).

Radiomic analysis
All CE-CT images were collected and exported to the ITK-SNAP software (version 3.6.0, http://www.itk-snap.org) for 
manual segmentation of the ROI. For each patient, the portal vein phase images were reviewed, and the two largest cross-
section slices were selected. ROIs were delineated over the solid portion of the entire lesion, excluding gas, calcification, 
vessels, and necrotic areas. The segmentation procedure was independently performed by two radiologists.

The Intelligence Foundry (Version 1.2, General Electric) was utilized to extract radiomics features from the lesions. A 
total of 554 features, comprising Original features, Co-occurrence of Local Anisotropic Gradient Orientations features, 
and Wavelet and local binary pattern (Wavelet-LBP) features, were extracted using PyRadiomic[23]. The reproducibility 
of the features was evaluated by calculating intra- and inter-class correlation coefficients (ICCs). Radiomics features that 
exhibited ICC values exceeding 0.75 in both intra- and inter-observer comparisons were selected for further feature 
analysis.

The entire dataset was randomly divided into training and internal validation datasets in a 7:3 ratio. The training 
dataset was exclusively used for feature selection and modeling. The feature preprocessing, feature selection, and model-
ing methods were as follows.

Based on the features identified through the ICC analysis, features with a variance less than 1.0 were excluded. Outlier 
values greater than the third quartile plus twice the interquartile range were converted to the 95th percentile, while values 
less than the first quartile minus twice the interquartile range were converted to the 10th percentile. To address the class 
imbalance in the training dataset, the synthetic minority oversampling technique was employed, with 200% oversampling 
and 150% undersampling[24]. Subsequently, all features were normalized and standardized using the Z-Score method. 

http://www.itk-snap.org
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Figure 1 Study workflow. GIST: Gastrointestinal stromal tumor; CT: Computed tomography.

The feature importance was evaluated using random forest (RF) based on the mean decrease of Gini calculated for all 
decision trees in the RF model. The top three important features were selected and used to construct the RF model[25,26].

Statistical analysis
Statistical analysis was conducted using SPSS software (Version 19, Chicago, IL, United States) and R software (Version 
3.6.3; http://www.Rproject.org). All statistical significance levels were two-sided, and a significance level of P < 0.05 was 
considered statistically significant. To compare the significant differences between different genotype groups in both the 
training and validation cohorts, the Mann-Whitney U test or independent sample t-test was employed. Fisher's exact test 
or chi-square test was utilized to identify significant differences between different groups of continuous variables. The 
discrimination performance of the models was evaluated using receiver operating characteristic (ROC) curves. The area 
under the ROC curve (AUC) was used as a comprehensive measure of performance. Specificity, sensitivity, and positive 
and negative predictive values were used to assess model performance at specific thresholds, which were determined by 
maximizing the Youden index. The Delong test was employed to compare the AUC of paired models. Internal validation 
was estimated by performing regular bootstrapping with 1000 bootstrap samples[27]. The goodness-of-fit of the model 
was assessed using the Hosmer-Lemeshow test, with a P-value greater than 0.05 indicating agreement between the 
observed and predicted values. Model calibration was visualized using calibration curve analysis, and the clinical net 
benefit of the model was evaluated using decision curve analysis (DCA).

http://www.Rproject.org
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Table 1 Clinicopathological characteristics of gastrointestinal stromal tumor patients included in this study, n (%)

Characteristics
KIT exon 11 
mutation (n = 
192)

Without KIT exon 
11 mutation (n = 
39)

P 
value

KIT exon 11 mutation with 
deletions involving codons 
557-558 (n = 56)

KIT exon 11 mutation without 
deletions involving codons 557-
558 (n = 136)

P 
value

Gender (male) 97 (50.5) 24 (61.5) 0.223 32 (57.1) 65 (47.8) 0.268

Age 55.7 ± 11.5 53.8 ± 13.4 0.360 53.9 ± 13.5 56.4 ± 10.6 0.222

Mitosis

≤ 5/50 HPF 91 (47.4) 24 (61.5) 0.117 11 (19.6) 80 (58.8) < 
0.010

> 5/50 HPF 101 (52.6) 15 (38.5) 45 (80.4) 56 (41.2)

Risk classi-
fication

Very low 2 (1.0) 0 (0) 0.851 0 (0) 2 (1.5) < 
0.010

Low 43 (22.4) 10 (25.7) 4 (7.1) 39 (28.7)

Intermediate 59 (30.8) 13 (33.3) 7 (12.5) 52 (38.2)

High 88 (45.8) 16 (41.0) 45 (80.4) 43 (31.6)

RESULTS
Clinicopathological characteristics
The clinicopathological characteristics of all 231 patients included in our study are listed in Table 1. Among the 231 cases 
of GISTs, 192 exhibited the KIT exon 11 mutation, while 39 were characterized as wild type (23 cases), PDGFRA exon 18 
mutation (12 cases), KIT exon 9 mutation (2 cases), KIT exon 17 mutation (1 case), or PDGFRA exon 14 mutation (1 case). 
Within the group of patients with the KIT exon 11 mutation, 56 individuals had exon 11 deletions involving codons 557-
558.

Based on the results of the univariate analysis, gender, age, mitotic count, and risk classification did not show 
significant differences between the group with the KIT exon 11 mutation and the group with other types of gene 
mutations (P > 0.05 for all). However, a significant difference was observed in the mitotic count and risk classification 
between the group with KIT exon 11 codons 557-558 deletion and the group without deletions in codons 557-558 (P < 
0.01).

CT features analysis
The primary analysis of the subjective CT features is presented in Table 2. In the univariate analysis, significant diffe-
rences were observed in tumor shape, enhancement degree, and cystic change between the group with the KIT exon 11 
mutation and the group with other types of gene mutations (P < 0.05). The CT features that showed statistical significance 
in the univariate analysis were included in the multivariate regression analysis. The results demonstrated that 
enhancement degree served as an independent predictor for the presence of the KIT exon 11 mutation. Moreover, notable 
disparities in CT features were observed between the group characterized by KIT exon 11 codons 557-558 deletion and the 
group lacking deletions in codons 557-558. Tumor size, tumor shape, margin, growth pattern, enhancement pattern, 
necrosis, intra-tumoral vessel presence, infiltration of adjacent mesangial fat, invasion of adjacent organs, and distant 
metastasis displayed significant differences between these two groups, as indicated by the univariate analysis. The 
multivariate regression analysis revealed that tumor size, tumor shape, and growth pattern were independent predictors 
for the presence of KIT exon 11 codons 557-558 deletion (P < 0.05).

Diagnostic performance of models
A set of 190 radiomic features, exhibiting ICC values exceeding 0.75 in intra- and inter-individual comparisons, was uti-
lized for constructing the diagnostic model.

For KIT exon 11 mutation: Three CT features (gas, growth pattern, and density in arterial phase), three radiomic features 
(original_firstorder_Median, original_firstorder_InterquartileRange, and original_firstorder), and six clinic features (age, 
size, CD34, Ki-67, mitoses, and tissue-type) were extracted to build three models: ModelCT sign, modelCT sign + rad, and 
modelCT sign + rad + clinic. The combined model was developed using logistic regression, incorporating the model scores 
generated by each independent model. In the modelCT sign + rad, the Radscore was calculated as (4.58) × rad + (1.565) × ctsign 
+ (-2.906). In the modelCT sign + rad + clinic, the Radscore was calculated as (4.364) × rad + (1.76) × ctsign + (5.207) × clinic + 
(-5.665). The training cohort exhibited AUC values of 0.743, 0.818, and 0.915 for the three models, while the validation 
cohort showed AUC values of 0.670, 0.781, and 0.811, respectively (Figure 2A and B). The corrected AUC values, obtained 
by subtracting the average optimism from the apparent AUC of the CE-CT and radiomics models, were 0.690 and 0.805, 
indicating relatively stable results. The diagnostic performance of the three models is presented in Table 3. Notable 
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Table 2 The computed tomography features of gastrointestinal stromal tumor patients included in this study, n (%)

Characteristics
KIT exon 11 
mutation (n = 
192)

Without KIT exon 
11 mutation (n = 
39)

P 
value

KIT exon 11 mutation with 
deletions involving codons 
557-558 (n = 56)

KIT exon 11 mutation without 
deletions involving codons 
557-558 (n = 136)

P 
value

Size (mm) 51 (11-224) 45 (10-201) 0.682 69 (31-224) 42.5 (11-188) < 
0.010

Shape

Regular 66 (34.4) 7 (17.9) 0.044 5 (8.9) 61 (44.9) < 
0.010

Irregular 126 (65.6) 32 (82.1) 51 (91.1) 75 (55.1)

Margin

Well-defined 168 (87.5) 23 (84.6) 0.625 44 (78.6) 124 (91.2) 0.016

Ill-defined 24 (12.5) 6 (15.4) 12 (21.4) 12 (8.8)

Growth pattern

Endophytic 64 (33.3) 6 (15.4) 0.083 12 (21.4) 52 (38.2) 0.010

Exophytic 87 (45.3) 22 (56.4) 25 (44.6) 62 (45.6)

Mixed 41 (21.4) 11 (28.2) 19 (33.9) 22 (16.2)

Density

Hypodensity 175 (91.1) 34 (87.2) 0.647 50 (89.3) 125 (91.9) 0.750

Isodensity 15 (7.8) 4 (10.3) 5 (8.9) 10 (7.4)

Hyperdensity 2 (1.0) 1 (2.6) 1 (1.8) 1 (0.7)

Pattern of enhancement

Homogeneous 48 (25.0) 5 (12.8) 0.099 5 (8.9) 43 (31.6) 0.001

Heterogeneous 144 (75.0) 34 (87.2) 51 (91.1) 93 (68.4)

Degree of enhancement

Mild 71 (37.0) 11 (28.2) 0.018 20 (35.7) 51 (37.5) 0.063

Moderate 75 (39.1) 10 (25.6) 28 (50.0) 47 (34.6)

Marked 46 (24.0) 18 (46.2) 8 (14.3) 38 (27.9)

Necrosis 121 (63.0) 28 (71.8) 0.296 43 (76.8) 78 (57.4) 0.011

Gas 33 (17.2) 4 (10.3) 0.282 14 (25.0) 19 (14.0) 0.066

Cystic change 6 (3.1) 4 (10.3) 0.046 0 (0) 6 (4.4) 0.110

Calcification 23 (12.0) 2 (5.1) 0.209 8 (14.3) 15 (11.0) 0.528

Superficial ulceration 55 (28.6) 10 (25.6) 0.704 19 (33.9) 36 (26.5) 0.299

Intra-tumoral vessel 86 (44.8) 14 (35.9) 0.307 34 (60.7) 52 (38.2) 0.004

Adjacent mesangial fat 
infiltration

40 (20.8) 9 (23.1) 0.755 20 (35.7) 20 (14.7) 0.001

Adjacent organ 
invasion

29 (15.1) 7 (17.9) 0.655 14 (25.0) 15 (11.0) 0.014

Lymphadenopathy 14 (7.3) 3 (7.7) 0.930 6 (10.7) 8 (5.9) 0.242

Distant metastasis 4 (2.1) 2 (5.1) 0.276 3 (5.4) 1 (0.7) 0.042

disparities were noted among all paired diagnostic metrics for the three models in both the training and validation 
cohorts. The diagnostic accuracy of modelCT sign + rad + clinic was significantly higher than that of modelCT sign and modelCT sign + rad. 
DCA demonstrated that modelCT sign + rad + clinic yielded the highest overall net benefit compared to modelCT sign or 
modelCT sign + rad in predicting the KIT exon 11 mutation in the training cohort across a wide range of threshold probabilities 
(Figure 2C). However, similar results were not observed in the validation set (Figure 2D).
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Table 3 Predictive performance of different model for KIT exon 11 mutation

Models ModelCT sign ModelCT sign + rad ModelCT sign + rad + clinic

Cohort Training Validation Training Validation Training Validation

AUC 0.743 0.670 0.818 0.781 0.915 0.811

Accuracy 0.673 0.643 0.753 0.714 0.833 0.794

Sensitivity 0.815 0.672 0.667 0.690 0.938 0.830

Specificity 0.531 0.500 0.840 0.833 0.728 0.600

NPV 0.741 0.240 0.716 0.357 0.922 0.400

PPV 0.635 0.867 0.806 0.952 0.776 0.917

CT: Computed tomography; AUC: Area under the curve; NPV: Negative predictive value; PPV: Positive predictive value.

Figure 2 The discrimination ability of the radiomics model and its decision curve analysis for prediction of KIT exon 11 mutation. A-D: The 
discrimination ability of three models in the training data (A) and the validation cohort (B). The decision curve analysis for the radiomics models in the training data (C) 
and the validation cohort (D). AUC: Area under the curve.
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For deletions in KIT exon 11 codons 557-558: One CT feature (shape), three radiomic features (wavelet_HLH_
lbp_3D_k_firstorder_TotalEnergy, original_firstorder_Energy, and original_girlm_RunVariance), and three clinic features 
(Ki-67, mitoses, and tumor-size) were extracted to build three models: ModelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic. 
In the modelCT sign + rad, the Radscore was calculated as (7.907) × rad + (4.535) × ctsign + (-3.937). In the modelCT sign + rad + clinic, 
the Radscore was calculated as (5.898) × rad + (2.636) × ctsign + (3.599) × clinic + (-4.11). The training cohort exhibited 
AUC values of 0.667, 0.842, and 0.872 for the three models, while the validation cohort showed AUC values of 0.61, 0.782, 
and 0.795, respectively (Figure 3A and B). The corrected AUC values, obtained by subtracting the average optimism from 
the apparent AUC of the CE-CT and radiomics models, were 0.773 and 0.751, indicating relatively stable results. The 
diagnostic performance of the three models is presented in Table 4. Notable variances were identified among all paired 
diagnostic metrics for the three models in both the training and validation cohorts. The diagnostic accuracy of 
modelCT sign + rad + clinic was significantly higher than that of modelCT sign and modelCT sign + rad. DCA demonstrated that 
modelCT sign + rad + clinic produced the highest overall net benefit compared to modelCT sign in predicting the deletions in KIT 
exon 11 codons 557-558 in both the training and validation cohorts across the entire risk threshold range (Figure 3A and 
B). However, DCA showed no significant differences between modelCT sign + rad + clinic and modelCT sign + rad in both the training 
and validation cohorts (Figure 3C and D).

DISCUSSION
Approximately 80% of GISTs harbor KIT mutations, while 5%-10% exhibit PDGFRA mutations. The presence and specific 
type of KIT and PDGFRA mutations are associated with the prognosis and clinical response to targeted therapy in GISTs
[9,28]. Currently, mutation testing is typically performed on surgically resected tissue samples. However, some GIST 
patients are unable to undergo surgical resection at the time of initial diagnosis. For these patients, fine-needle biopsy 
samples provide adequate material for pathological examination but are insufficient for genetic analysis. Moreover, 
genetic testing is not routinely conducted in all hospitals due to its high cost. Therefore, there is an urgent need to 
establish a noninvasive, accurate, and cost-effective preoperative method for identifying the mutation status of GISTs.

CT is extensively employed in the detection, postoperative surveillance, and evaluation of treatment effectiveness in 
GISTs. Recent studies have identified several CT features associated with the differential diagnosis and high-risk categor-
ization of GISTs, including tumor size, location, margin characteristics, hemorrhage, necrosis, heterogeneous 
enhancement, and adjacent organ invasion[29-31]. However, these conventional CT features rely on subjective analysis 
and the experience of radiologists, resulting in variability and lack of reproducibility. Radiomics, on the other hand, 
enables the extraction of high-throughput quantitative features from medical images using specific data characterization 
algorithms. This approach effectively reduces intra- and inter-observer variability. Importantly, radiomics has been 
widely applied in tumor diagnosis, prognosis prediction, and gene mutation analysis[32-36].

Several prior studies have reported the satisfactory performance of CT-based radiomics in the diagnosis and prediction 
of the malignant potential of GISTs[17,37-39]. Starmans et al[40] documented that the radiomics model achieved an AUC 
of 0.77 in distinguishing GISTs from non-GISTs, yielding results comparable to those of radiologists but with reduced 
observer dependence. Furthermore, radiomics studies in GISTs have primarily focused on predicting malignant potential 
and prognosis. These investigations have demonstrated the robust predictive effect and generalizability of radiomics in 
assessing the malignant potential of GISTs, thereby aiding clinicians in preoperative decision-making. However, there is a 
paucity of radiomics studies pertaining to genotype prediction. Xu et al[41] were the first to attempt differentiation of 
GISTs with and without KIT exon 11 mutations using CT texture analysis in a study cohort comprising 69 GISTs, with a 
validation group of 17 GISTs. They identified that the textural parameter standard deviation independently predicted 
GISTs without KIT exon 11 mutations, achieving AUC values of 0.726-0.750 in the study group and 0.904-0.962 in the 
validation group. Nonetheless, the relatively small sample sizes in this study may have impacted the accuracy of the 
findings. Starmans et al[40] also evaluated radiomics for predicting KIT mutational status in 123 patients with GISTs, 
reporting AUC values of 0.52 for KIT and 0.56 for KIT exon 11 mutation. These findings did not support the predictive 
value of the radiomics model in genetic features, likely due to study limitations. The remaining two studies both 
demonstrated the effective differentiation of GISTs with KIT exon 11 mutations using radiomics based on CT images[20,
21]. However, the patient populations in these studies encompassed GISTs throughout the entire gastrointestinal tract, 
including the stomach, intestine, and colorectum, potentially introducing certain biases. It is well-known that GISTs at 
different sites exhibit distinct recurrence risks, with intestinal GISTs carrying a worse prognosis than gastric GISTs. 
Furthermore, genotypes have been closely associated with specific tumor locations, with KIT exon 11 mutations being 
most common in GISTs at all sites, while KIT exon 9 mutations are prevalent in intestinal GISTs, and PDGFRA exon 18 
mutations are common in gastric GISTs[42].

Our study was derived from a large-scale imaging dataset and represents the first CT radiogenomics investigation 
specifically focused on gastric GISTs. The results revealed that the diagnostic accuracy of modelCT sign + rad + clinic for predicting 
KIT exon 11 mutation was significantly higher than that of modelCT sign and modelCT sign + rad, with AUC values of 0.915 in the 
training cohort and 0.811 in the validation cohorts. The DCA curves demonstrated that modelCT sign + rad + clinic exhibited 
superior predictive effectiveness compared to modelCT sign and modelCT sign + rad in the training cohorts, highlighting the 
clinical benefit of the combined model in distinguishing gastric GISTs with KIT exon 11 mutation.

Regarding deletions in KIT exon 11 codons 557-558 of gastric GISTs, the diagnostic accuracy of modelCT sign + rad + clinic was 
statistically higher than that of modelCT sign and modelCT sign + rad model, with AUC values of 0.872 in the training cohort and 
0.795 in the validation cohorts. The clinical benefits analysis revealed that the combined model outperformed modelCT sign 
and modelCT sign + rad in predicting the KIT exon 11 mutation. In the validation cohort, the sensitivity and specificity of 
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Table 4 Predictive performance of different model for KIT exon 11 codons 557-558 deletions

Models ModelCT sign ModelCT sign + rad ModelCT sign + rad + clinic

Cohort Training Validation Training Validation Training Validation

AUC 0.667 0.610 0.842 0.782 0.872 0.795

Accuracy 0.522 0.500 0.689 0.700 0.720 0.766

Sensitivity 0.949 0.824 0.974 0.824 0.923 0.667

Specificity 0.385 0.396 0.598 0.660 0.656 0.796

NPV 0.959 0.875 0.986 0.927 0.964 0.886

PPV 0.330 0.304 0.437 0.438 0.462 0.500

CT: Computed tomography; AUC: Area under the curve; NPV: Negative predictive value; PPV: Positive predictive value.

Figure 3 The discrimination ability of the radiomics model and its decision curve analysis for prediction of KIT exon 11 codons 557-558 
deletions. A-D: The discrimination ability of three models in the training data (A) and the validation cohort (B). The decision curve analysis for the radiomics models 
in the training data (C) and the validation cohort (D). AUC: Area under the curve.

modelCT sign + rad + clinic for predicting the KIT exon 11 mutation were 83.0% and 81.1%, respectively, surpassing the per-
formance of modelCT sign and modelCT sign + rad. The clinical benefit of the combined model was further confirmed by the DCA 
curves. These findings highlight the excellent predictive ability of modelCT sign + rad + clinic for determining the KIT mutation 
status of gastric GISTs, suggesting its potential value in guiding noninvasive clinical decision-making prior to surgery.
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However, it is important to acknowledge certain limitations in our study. Firstly, it was a retrospective study, and as 
such, potential selection bias could not be completely eliminated. Secondly, despite the large sample size, this study was 
conducted at a single center, and further validation through multicenter studies is warranted. Thirdly, due to the small 
sample size, we did not subdivide GISTs without KIT exon 11 mutation, which is crucial for clinicians to differentiate 
specific types of gene mutations before surgery, such as KIT exon 9 mutation and PDGFRA exon 18 mutation, as the 
treatment response varies.

CONCLUSION
In conclusion, our study demonstrated that the radiomics model based on CE-CT images exhibited satisfactory 
performance in distinguishing gastric GISTs with KIT exon 11 mutation and GISTs with KIT exon 11 codons 557-558 
deletions. The combined modelCT sign + rad + clinic demonstrated the highest predictive value, offering a potentially valuable and 
noninvasive approach to guide personalized treatment decisions prior to surgery.

ARTICLE HIGHLIGHTS
Research background
The assessment of KIT and PDGFRA mutations plays a vital role in establishing the pathological diagnosis of gastro-
intestinal stromal tumors (GISTs), predicting tumor prognosis, and guiding the administration of tyrosine kinase 
inhibitor therapy. For patients who are ineligible for genetic analysis, possessing information regarding the mutational 
status of GISTs is of paramount importance for the purpose of customizing personalized precision therapy.

Research motivation
Currently, tumor mutation status can only be obtained after surgical resection or conventional invasive biopsy, making 
preoperative genotyping of GISTs more challenging.

Research objectives
To develop and validate a radiomic model to predict the genotypes of gastric GISTs using contrast-enhanced computed 
tomography (CE-CT) images.

Research methods
The models for predicting GISTs with KIT exon 11 mutations or KIT exon 11 codons 557-558 deletions were constructed 
using selected clinical features, conventional CT features, and radiomics features extracted from abdominal CE-CT 
images. Three models were developed: ModelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic. The diagnostic performance of 
these models was evaluated using receiver operating characteristic (ROC) curve analysis and the Delong test.

Research results
The ROC analyses demonstrated the performance of different models in predicting KIT exon 11 mutation and KIT exon 11 
codons 557-558 deletions. In the training cohort, the modelsCT sign, modelCT sign + rad, and modelCT sign + rad + clinic achieved area 
under the curve (AUC) values of 0.743, 0.818, and 0.915, respectively, for predicting KIT exon 11 mutation. In the 
validation cohort, the corresponding AUC values were 0.670, 0.781, and 0.811. For predicting KIT exon 11 codons 557-558 
deletions, the AUC values in the training cohort were 0.667, 0.842, and 0.72 for modelCT sign, modelCT sign + rad, and 
modelCT sign + rad + clinic, respectively. In the validation cohort, the AUC values for the same models were 0.610, 0.782, and 
0.795. Furthermore, the decision curve analysis confirmed the clinical significance and utility of the CT sign + rad + clinic 
model.

Research conclusions
Our study demonstrated that the radiomics model based on CE-CT images exhibited satisfactory performance in distin-
guishing gastric GISTs with KIT exon 11 mutation and GISTs with KIT exon 11 codons 557-558 deletions.

Research perspectives
This study focuses specifically on gastric GISTs and aims to develop a prediction model for genotypes using CE-CT 
images.

FOOTNOTES
Co-first authors: Xiao-Nan Yin and Zi-Hao Wang.

Author contributions: Yin XN and Wang ZH equally contributed to this article; Yin XN, Wang ZH, Zou L, Yang CW, Shen CY, Liu BK, 
Yin Y, Liu XJ, and Zhang B participated in all stages of manuscript preparation, and read and approved the final version prior to 



Yin XN et al. CT radiogenomics predicts molecular subtypes of GIST

WJGO https://www.wjgnet.com 1306 April 15, 2024 Volume 16 Issue 4

submission.

Supported by the National Natural Science Foundation of China Program Grant, No. 82203108; China Postdoctoral Science Foundation, 
No. 2022M722275; Beijing Bethune Charitable Foundation, No. WCJZL202105; and Beijing Xisike Clinical Oncology Research 
Foundation, No. Y-zai2021/zd-0185.

Institutional review board statement: The study was reviewed and approved by the Research Ethics Board of West China Hospital, 
Sichuan University [approval No. 2022(449)].

Informed consent statement: The informed consent was waived by the Research Ethics Board of West China Hospital, Sichuan 
University.

Conflict-of-interest statement: The authors have declared that no competing interests exist.

Data sharing statement: All data analyzed during this study are included in this published article.

STROBE statement: The authors have read the STROBE Statement—checklist of items, and the manuscript was prepared and revised 
according to the STROBE Statement—checklist of items.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. 
It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to 
distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the 
original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Xiao-Nan Yin 0000-0003-4525-1877; Cai-Wei Yang 0000-0003-3335-3948; Chao-Yong Shen 0000-0002-8426-3611; Xi-Jiao Liu 
0000-0002-6900-0696; Bo Zhang 0000-0002-0254-5843.

S-Editor: Chen YL 
L-Editor: A 
P-Editor: Zheng XM

REFERENCES
1 Blay JY, Kang YK, Nishida T, von Mehren M. Gastrointestinal stromal tumours. Nat Rev Dis Primers 2021; 7: 22 [PMID: 33737510 DOI: 

10.1038/s41572-021-00254-5]
2 Søreide K, Sandvik OM, Søreide JA, Giljaca V, Jureckova A, Bulusu VR. Global epidemiology of gastrointestinal stromal tumours (GIST): A 

systematic review of population-based cohort studies. Cancer Epidemiol 2016; 40: 39-46 [PMID: 26618334 DOI: 
10.1016/j.canep.2015.10.031]

3 Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer 2011; 11: 865-878 
[PMID: 22089421 DOI: 10.1038/nrc3143]

4 Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin 
Oncol 2022; 19: 328-341 [PMID: 35217782 DOI: 10.1038/s41571-022-00606-4]

5 Pierotti MA, Tamborini E, Negri T, Pricl S, Pilotti S. Targeted therapy in GIST: in silico modeling for prediction of resistance. Nat Rev Clin 
Oncol 2011; 8: 161-170 [PMID: 21364689 DOI: 10.1038/nrclinonc.2011.3]

6 Dermawan JK, Rubin BP. Molecular Pathogenesis of Gastrointestinal Stromal Tumor: A Paradigm for Personalized Medicine. Annu Rev 
Pathol 2022; 17: 323-344 [PMID: 34736340 DOI: 10.1146/annurev-pathol-042220-021510]

7 Boikos SA, Pappo AS, Killian JK, LaQuaglia MP, Weldon CB, George S, Trent JC, von Mehren M, Wright JA, Schiffman JD, Raygada M, 
Pacak K, Meltzer PS, Miettinen MM, Stratakis C, Janeway KA, Helman LJ. Molecular Subtypes of KIT/PDGFRA Wild-Type Gastrointestinal 
Stromal Tumors: A Report From the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol 2016; 2: 922-928 
[PMID: 27011036 DOI: 10.1001/jamaoncol.2016.0256]

8 Corless CL, Schroeder A, Griffith D, Town A, McGreevey L, Harrell P, Shiraga S, Bainbridge T, Morich J, Heinrich MC. PDGFRA mutations 
in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 2005; 23: 5357-5364 [PMID: 
15928335 DOI: 10.1200/jco.2005.14.068]

9 Rossi S, Gasparotto D, Miceli R, Toffolatti L, Gallina G, Scaramel E, Marzotto A, Boscato E, Messerini L, Bearzi I, Mazzoleni G, Capella C, 
Arrigoni G, Sonzogni A, Sidoni A, Mariani L, Amore P, Gronchi A, Casali PG, Maestro R, Dei Tos AP. KIT, PDGFRA, and BRAF mutational 
spectrum impacts on the natural history of imatinib-naive localized GIST: a population-based study. Am J Surg Pathol 2015; 39: 922-930 
[PMID: 25970686 DOI: 10.1097/PAS.0000000000000418]

10 Joensuu H. Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Hum Pathol 2008; 39: 1411-1419 [PMID: 18774375 
DOI: 10.1016/j.humpath.2008.06.025]

11 Joensuu H, Rutkowski P, Nishida T, Steigen SE, Brabec P, Plank L, Nilsson B, Braconi C, Bordoni A, Magnusson MK, Sufliarsky J, Federico 
M, Jonasson JG, Hostein I, Bringuier PP, Emile JF. KIT and PDGFRA mutations and the risk of GI stromal tumor recurrence. J Clin Oncol 
2015; 33: 634-642 [PMID: 25605837 DOI: 10.1200/JCO.2014.57.4970]

12 Hong JH, Jung JY, Jo A, Nam Y, Pak S, Lee SY, Park H, Lee SE, Kim S. Development and Validation of a Radiomics Model for 
Differentiating Bone Islands and Osteoblastic Bone Metastases at Abdominal CT. Radiology 2021; 299: 626-632 [PMID: 33787335 DOI: 
10.1148/radiol.2021203783]

https://creativecommons.org/Licenses/by-nc/4.0/
http://orcid.org/0000-0003-4525-1877
http://orcid.org/0000-0003-4525-1877
http://orcid.org/0000-0003-3335-3948
http://orcid.org/0000-0003-3335-3948
http://orcid.org/0000-0002-8426-3611
http://orcid.org/0000-0002-8426-3611
http://orcid.org/0000-0002-6900-0696
http://orcid.org/0000-0002-6900-0696
http://orcid.org/0000-0002-0254-5843
http://orcid.org/0000-0002-0254-5843
http://www.ncbi.nlm.nih.gov/pubmed/33737510
https://dx.doi.org/10.1038/s41572-021-00254-5
http://www.ncbi.nlm.nih.gov/pubmed/26618334
https://dx.doi.org/10.1016/j.canep.2015.10.031
http://www.ncbi.nlm.nih.gov/pubmed/22089421
https://dx.doi.org/10.1038/nrc3143
http://www.ncbi.nlm.nih.gov/pubmed/35217782
https://dx.doi.org/10.1038/s41571-022-00606-4
http://www.ncbi.nlm.nih.gov/pubmed/21364689
https://dx.doi.org/10.1038/nrclinonc.2011.3
http://www.ncbi.nlm.nih.gov/pubmed/34736340
https://dx.doi.org/10.1146/annurev-pathol-042220-021510
http://www.ncbi.nlm.nih.gov/pubmed/27011036
https://dx.doi.org/10.1001/jamaoncol.2016.0256
http://www.ncbi.nlm.nih.gov/pubmed/15928335
https://dx.doi.org/10.1200/jco.2005.14.068
http://www.ncbi.nlm.nih.gov/pubmed/25970686
https://dx.doi.org/10.1097/PAS.0000000000000418
http://www.ncbi.nlm.nih.gov/pubmed/18774375
https://dx.doi.org/10.1016/j.humpath.2008.06.025
http://www.ncbi.nlm.nih.gov/pubmed/25605837
https://dx.doi.org/10.1200/JCO.2014.57.4970
http://www.ncbi.nlm.nih.gov/pubmed/33787335
https://dx.doi.org/10.1148/radiol.2021203783


Yin XN et al. CT radiogenomics predicts molecular subtypes of GIST

WJGO https://www.wjgnet.com 1307 April 15, 2024 Volume 16 Issue 4

13 Kirienko M, Sollini M, Corbetta M, Voulaz E, Gozzi N, Interlenghi M, Gallivanone F, Castiglioni I, Asselta R, Duga S, Soldà G, Chiti A. 
Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer. Eur J Nucl Med Mol 
Imaging 2021; 48: 3643-3655 [PMID: 33959797 DOI: 10.1007/s00259-021-05371-7]

14 Li L, Kan X, Zhao Y, Liang B, Ye T, Yang L, Zheng C. Radiomics Signature: A potential biomarker for the prediction of survival in Advanced 
Hepatocellular Carcinoma. Int J Med Sci 2021; 18: 2276-2284 [PMID: 33967603 DOI: 10.7150/ijms.55510]

15 Schniering J, Maciukiewicz M, Gabrys HS, Brunner M, Blüthgen C, Meier C, Braga-Lagache S, Uldry AC, Heller M, Guckenberger M, 
Fretheim H, Nakas CT, Hoffmann-Vold AM, Distler O, Frauenfelder T, Tanadini-Lang S, Maurer B. Computed tomography-based radiomics 
decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis. Eur Respir J 2022; 59 [PMID: 34649979 
DOI: 10.1183/13993003.04503-2020]

16 Chen T, Ning Z, Xu L, Feng X, Han S, Roth HR, Xiong W, Zhao X, Hu Y, Liu H, Yu J, Zhang Y, Li Y, Xu Y, Mori K, Li G. Radiomics 
nomogram for predicting the malignant potential of gastrointestinal stromal tumours preoperatively. Eur Radiol 2019; 29: 1074-1082 [PMID: 
30116959 DOI: 10.1007/s00330-018-5629-2]

17 Chen Z, Xu L, Zhang C, Huang C, Wang M, Feng Z, Xiong Y. CT Radiomics Model for Discriminating the Risk Stratification of 
Gastrointestinal Stromal Tumors: A Multi-Class Classification and Multi-Center Study. Front Oncol 2021; 11: 654114 [PMID: 34168985 DOI: 
10.3389/fonc.2021.654114]

18 Wang C, Li H, Jiaerken Y, Huang P, Sun L, Dong F, Huang Y, Dong D, Tian J, Zhang M. Building CT Radiomics-Based Models for 
Preoperatively Predicting Malignant Potential and Mitotic Count of Gastrointestinal Stromal Tumors. Transl Oncol 2019; 12: 1229-1236 
[PMID: 31280094 DOI: 10.1016/j.tranon.2019.06.005]

19 Zhao Y, Feng M, Wang M, Zhang L, Li M, Huang C. CT Radiomics for the Preoperative Prediction of Ki67 Index in Gastrointestinal Stromal 
Tumors: A Multi-Center Study. Front Oncol 2021; 11: 689136 [PMID: 34595107 DOI: 10.3389/fonc.2021.689136]

20 Liu B, Liu H, Zhang L, Song Y, Yang S, Zheng Z, Zhao J, Hou F, Zhang J. Value of contrast-enhanced CT based radiomic machine learning 
algorithm in differentiating gastrointestinal stromal tumors with KIT exon 11 mutation: a two-center study. Diagn Interv Radiol 2022; 28: 29-
38 [PMID: 35142612 DOI: 10.5152/dir.2021.21600]

21 Liu X, Yin Y, Wang X, Yang C, Wan S, Yin X, Wu T, Chen H, Xu Z, Li X, Song B, Zhang B. Gastrointestinal stromal tumors: associations 
between contrast-enhanced CT images and KIT exon 11 gene mutation. Ann Transl Med 2021; 9: 1496 [PMID: 34805358 DOI: 
10.21037/atm-21-3811]

22 Palatresi D, Fedeli F, Danti G, Pasqualini E, Castiglione F, Messerini L, Massi D, Bettarini S, Tortoli P, Busoni S, Pradella S, Miele V. 
Correlation of CT radiomic features for GISTs with pathological classification and molecular subtypes: preliminary and monocentric 
experience. Radiol Med 2022; 127: 117-128 [PMID: 35022956 DOI: 10.1007/s11547-021-01446-5]

23 van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. 
Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 2017; 77: e104-e107 [PMID: 29092951 DOI: 
10.1158/0008-5472.CAN-17-0339]

24 Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote: Synthetic minority over-sampling technique. J AI Res 2002; 16: 321-357 [DOI: 
10.48550/arXiv.1106.1813]

25 Breiman L. Random Forests. Machine Learning 2001; 45: 5-32 [DOI: 10.1023/A:1010933404324]
26 Rokach L. Decision Forest: Twenty years of research. Information Fusion 2016; 27: 111-125 [DOI: 10.1016/j.inffus.2015.06.005]
27 Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency 

of some procedures for logistic regression analysis. J Clin Epidemiol 2001; 54: 774-781 [PMID: 11470385 DOI: 
10.1016/s0895-4356(01)00341-9]

28 Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D, Town A, McKinley A, Ou WB, Fletcher JA, Fletcher CD, Huang 
X, Cohen DP, Baum CM, Demetri GD. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib 
in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 2008; 26: 5352-5359 [PMID: 18955458 DOI: 10.1200/JCO.2007.15.7461]

29 Chen Z, Yang J, Sun J, Wang P. Gastric gastrointestinal stromal tumours (2-5 cm): Correlation of CT features with malignancy and differential 
diagnosis. Eur J Radiol 2020; 123: 108783 [PMID: 31841880 DOI: 10.1016/j.ejrad.2019.108783]

30 Xu JX, Ding QL, Lu YF, Fan SF, Rao QP, Yu RS. A scoring model for radiologic diagnosis of gastric leiomyomas (GLMs) with contrast-
enhanced computed tomography (CE-CT): Differential diagnosis from gastrointestinal stromal tumors (GISTs). Eur J Radiol 2021; 134: 
109395 [PMID: 33310552 DOI: 10.1016/j.ejrad.2020.109395]

31 Zhou C, Duan X, Zhang X, Hu H, Wang D, Shen J. Predictive features of CT for risk stratifications in patients with primary gastrointestinal 
stromal tumour. Eur Radiol 2016; 26: 3086-3093 [PMID: 26699371 DOI: 10.1007/s00330-015-4172-7]

32 Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular 
Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13: 865171 [PMID: 35693015 DOI: 
10.3389/fneur.2022.865171]

33 Harding-Theobald E, Louissaint J, Maraj B, Cuaresma E, Townsend W, Mendiratta-Lala M, Singal AG, Su GL, Lok AS, Parikh ND. 
Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma. Aliment Pharmacol Ther 2021; 54: 890-901 [PMID: 
34390014 DOI: 10.1111/apt.16563]

34 Lu J, Li X, Li H. A radiomics feature-based nomogram to predict telomerase reverse transcriptase promoter mutation status and the prognosis 
of lower-grade gliomas. Clin Radiol 2022; 77: e560-e567 [PMID: 35595562 DOI: 10.1016/j.crad.2022.04.005]

35 Sohn B, An C, Kim D, Ahn SS, Han K, Kim SH, Kang SG, Chang JH, Lee SK. Radiomics-based prediction of multiple gene alteration 
incorporating mutual genetic information in glioblastoma and grade 4 astrocytoma, IDH-mutant. J Neurooncol 2021; 155: 267-276 [PMID: 
34648115 DOI: 10.1007/s11060-021-03870-z]

36 Staal FCR, van der Reijd DJ, Taghavi M, Lambregts DMJ, Beets-Tan RGH, Maas M. Radiomics for the Prediction of Treatment Outcome and 
Survival in Patients With Colorectal Cancer: A Systematic Review. Clin Colorectal Cancer 2021; 20: 52-71 [PMID: 33349519 DOI: 
10.1016/j.clcc.2020.11.001]

37 Shao M, Niu Z, He L, Fang Z, He J, Xie Z, Cheng G, Wang J. Building Radiomics Models Based on Triple-Phase CT Images Combining 
Clinical Features for Discriminating the Risk Rating in Gastrointestinal Stromal Tumors. Front Oncol 2021; 11: 737302 [PMID: 34950578 
DOI: 10.3389/fonc.2021.737302]

38 Wang M, Feng Z, Zhou L, Zhang L, Hao X, Zhai J. Computed-Tomography-Based Radiomics Model for Predicting the Malignant Potential of 
Gastrointestinal Stromal Tumors Preoperatively: A Multi-Classifier and Multicenter Study. Front Oncol 2021; 11: 582847 [PMID: 33968714 
DOI: 10.3389/fonc.2021.582847]

http://www.ncbi.nlm.nih.gov/pubmed/33959797
https://dx.doi.org/10.1007/s00259-021-05371-7
http://www.ncbi.nlm.nih.gov/pubmed/33967603
https://dx.doi.org/10.7150/ijms.55510
http://www.ncbi.nlm.nih.gov/pubmed/34649979
https://dx.doi.org/10.1183/13993003.04503-2020
http://www.ncbi.nlm.nih.gov/pubmed/30116959
https://dx.doi.org/10.1007/s00330-018-5629-2
http://www.ncbi.nlm.nih.gov/pubmed/34168985
https://dx.doi.org/10.3389/fonc.2021.654114
http://www.ncbi.nlm.nih.gov/pubmed/31280094
https://dx.doi.org/10.1016/j.tranon.2019.06.005
http://www.ncbi.nlm.nih.gov/pubmed/34595107
https://dx.doi.org/10.3389/fonc.2021.689136
http://www.ncbi.nlm.nih.gov/pubmed/35142612
https://dx.doi.org/10.5152/dir.2021.21600
http://www.ncbi.nlm.nih.gov/pubmed/34805358
https://dx.doi.org/10.21037/atm-21-3811
http://www.ncbi.nlm.nih.gov/pubmed/35022956
https://dx.doi.org/10.1007/s11547-021-01446-5
http://www.ncbi.nlm.nih.gov/pubmed/29092951
https://dx.doi.org/10.1158/0008-5472.CAN-17-0339
https://dx.doi.org/10.48550/arXiv.1106.1813
https://dx.doi.org/10.1023/A:1010933404324
https://dx.doi.org/10.1016/j.inffus.2015.06.005
http://www.ncbi.nlm.nih.gov/pubmed/11470385
https://dx.doi.org/10.1016/s0895-4356(01)00341-9
http://www.ncbi.nlm.nih.gov/pubmed/18955458
https://dx.doi.org/10.1200/JCO.2007.15.7461
http://www.ncbi.nlm.nih.gov/pubmed/31841880
https://dx.doi.org/10.1016/j.ejrad.2019.108783
http://www.ncbi.nlm.nih.gov/pubmed/33310552
https://dx.doi.org/10.1016/j.ejrad.2020.109395
http://www.ncbi.nlm.nih.gov/pubmed/26699371
https://dx.doi.org/10.1007/s00330-015-4172-7
http://www.ncbi.nlm.nih.gov/pubmed/35693015
https://dx.doi.org/10.3389/fneur.2022.865171
http://www.ncbi.nlm.nih.gov/pubmed/34390014
https://dx.doi.org/10.1111/apt.16563
http://www.ncbi.nlm.nih.gov/pubmed/35595562
https://dx.doi.org/10.1016/j.crad.2022.04.005
http://www.ncbi.nlm.nih.gov/pubmed/34648115
https://dx.doi.org/10.1007/s11060-021-03870-z
http://www.ncbi.nlm.nih.gov/pubmed/33349519
https://dx.doi.org/10.1016/j.clcc.2020.11.001
http://www.ncbi.nlm.nih.gov/pubmed/34950578
https://dx.doi.org/10.3389/fonc.2021.737302
http://www.ncbi.nlm.nih.gov/pubmed/33968714
https://dx.doi.org/10.3389/fonc.2021.582847


Yin XN et al. CT radiogenomics predicts molecular subtypes of GIST

WJGO https://www.wjgnet.com 1308 April 15, 2024 Volume 16 Issue 4

39 Zhang QW, Zhou XX, Zhang RY, Chen SL, Liu Q, Wang J, Zhang Y, Lin J, Xu JR, Gao YJ, Ge ZZ. Comparison of malignancy-prediction 
efficiency between contrast and non-contract CT-based radiomics features in gastrointestinal stromal tumors: A multicenter study. Clin Transl 
Med 2020; 10: e291 [PMID: 32634272 DOI: 10.1002/ctm2.91]

40 Starmans MPA, Timbergen MJM, Vos M, Renckens M, Grünhagen DJ, van Leenders GJLH, Dwarkasing RS, Willemssen FEJA, Niessen 
WJ, Verhoef C, Sleijfer S, Visser JJ, Klein S. Differential Diagnosis and Molecular Stratification of Gastrointestinal Stromal Tumors on CT 
Images Using a Radiomics Approach. J Digit Imaging 2022; 35: 127-136 [PMID: 35088185 DOI: 10.1007/s10278-022-00590-2]

41 Xu F, Ma X, Wang Y, Tian Y, Tang W, Wang M, Wei R, Zhao X. CT texture analysis can be a potential tool to differentiate gastrointestinal 
stromal tumors without KIT exon 11 mutation. Eur J Radiol 2018; 107: 90-97 [PMID: 30292279 DOI: 10.1016/j.ejrad.2018.07.025]

42 Lasota J, Miettinen M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology 
2008; 53: 245-266 [PMID: 18312355 DOI: 10.1111/j.1365-2559.2008.02977.x]

http://www.ncbi.nlm.nih.gov/pubmed/32634272
https://dx.doi.org/10.1002/ctm2.91
http://www.ncbi.nlm.nih.gov/pubmed/35088185
https://dx.doi.org/10.1007/s10278-022-00590-2
http://www.ncbi.nlm.nih.gov/pubmed/30292279
https://dx.doi.org/10.1016/j.ejrad.2018.07.025
http://www.ncbi.nlm.nih.gov/pubmed/18312355
https://dx.doi.org/10.1111/j.1365-2559.2008.02977.x


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: office@baishideng.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2024 Baishideng Publishing Group Inc. All rights reserved.

mailto:office@baishideng.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com

	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Patients
	CT imaging acquisition
	CT imaging analysis
	Radiomic analysis
	Statistical analysis

	RESULTS
	Clinicopathological characteristics
	CT features analysis
	Diagnostic performance of models

	DISCUSSION
	CONCLUSION
	ARTICLE HIGHLIGHTS
	Research background
	Research motivation
	Research objectives
	Research methods
	Research results
	Research conclusions
	Research perspectives

	FOOTNOTES
	REFERENCES

