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Abstract
Immune system is a complex network that clears pathogens, toxic substrates, and 
cancer cells. Distinguishing self-antigens from non-self-antigens is critical for the 
immune cell-mediated response against foreign antigens. The innate immune 
system elicits an early-phase response to various stimuli, whereas the adaptive 
immune response is tailored to previously encountered antigens. During immune 
responses, B cells differentiate into antibody-secreting cells, while naïve T cells 
differentiate into functionally specific effector cells [T helper 1 (Th1), Th2, Th17, 
and regulatory T cells]. However, enhanced or prolonged immune responses can 
result in autoimmune disorders, which are characterized by lymphocyte-
mediated immune responses against self-antigens. Signal transduction of 
cytokines, which regulate the inflammatory cascades, is dependent on the 
members of the Janus family of protein kinases. Tyrosine kinase 2 (Tyk2) is 
associated with receptor subunits of immune-related cytokines, such as type I 
interferon, interleukin (IL)-6, IL-10, IL-12, and IL-23. Clinical studies on the 
therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in 
autoimmune or chronic inflammatory diseases are currently ongoing. This review 
summarizes the findings of studies examining the role of Tyk2 in immune and/or 
inflammatory responses using Tyk2-deficient cells and mice.
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Core Tip: Studies on murine tyrosine kinase 2 (Tyk2)-deficient models were reviewed 
to examine the role of Tyk2 dysregulation in human diseases. Tyk2-deficient mice 
exhibit reduced responses in several interleukin-12 (IL-12)/Th1- and IL-23/Th17-
mediated models of diseases, including rheumatoid arthritis, multiple sclerosis, inflam-
matory bowel diseases, psoriasis, sarcoidosis, and delayed-type hypersensitivity. These 
findings demonstrate a broad contribution of Tyk2 to immune responses. Tyk2 
represents a candidate for drug development by targeting both the IL-12/Th1 and IL-
23/Th17 axes.
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INTRODUCTION
Cytokines function as effectors and regulate the proliferation, differentiation, and 
functions of immune cells and consequently aid in the clearance of invading 
pathogens. However, cytokines are also involved in the onset and development of 
autoimmune diseases[1]. Cytokine-specific cell surface receptors exhibit conforma-
tional changes upon activation, which result in activation of the Janus family of protein 
tyrosine kinases (Jaks). Activated Jaks promote the recruitment and phosphorylation 
of the transcription factor signal transducer and activator of transcription (STAT). 
Nuclear translocation of activated STATs induces the expression of cytokine-
responsive genes. Thus, the Jak-STAT pathway transduces signals from various 
cytokine receptor superfamily members[2-4].

The Jak family comprises Jak1, Jak2, Jak3, and tyrosine kinase 2 (Tyk2), which are 
activated by distinct cytokines[2-4]. Jak1 binds to interferon (IFN), interleukin (IL)-6, 
and IL-10 receptors that contain a common 𝛾 chain and gp130 subunit, while Jak2 
binds to IL-3 and erythropoietin, growth hormone, and prolactin hormone-like 
receptors. Tyk2 binds to IFN, IL-12, and IL-23 receptors. Jak3, whose expression is 
localized to hematopoietic cells, binds exclusively to receptors that contain common 𝛾 
chains along with Jak1. Moreover, Jak1 deficiency in mice results in perinatal lethality 
and impaired lymphocyte development[5]. The embryonic lethality in Jak2-deficient 
mice is attributed to insufficient definitive erythropoiesis[6]. Jak3 deficiency results in 
dysfunctional mature T and B lymphocytes and leads to severe combined immunode-
ficiency[7,8]. Although Tyk2-deficient mice are viable, they are susceptible to viral 
infections[9,10].

Previous studies using experimental models, such as Tyk2-deficient mice have 
demonstrated that Tyk2 primarily functions in the IL-12 and IFN-α/β signaling 
pathways[9,10]. In humans, a mutation in TYK2, which causes an autosomal recessive 
form of hyper IgE syndrome (AR-HIES), affects the IL-23, IL-10, and IL-6 signal 
transduction pathways (Figure 1)[11]. Tyk2 is involved in both innate and acquired 
immunity. Here, the current knowledge on the involvement of Tyk2 in immune 
responses has been reviewed, and the potential clinical applications of Tyk2 inhibitors 
have been discussed.

ROLE OF TYK2 IN INFLAMMATORY RESPONSES
IFN system
Tyk2 was originally identified as a protein kinase that can compensate for the loss of 
IFN response in mutant fibroblasts[12]. IFN-α specifically activates Tyk2 and Jak1, 
which leads to the phosphorylation of STAT1 and STAT2 and the dimerization of 
activated STATs. The nuclear translocation of dimerized STATs induces the expression 
of target genes[3,13].

Type I IFNs are constitutively expressed in various cells, including macrophages. 
Although the constitutive expression of type I IFNs is low, they can regulate 
physiological cellular functions in an autocrine or a paracrine manner[14,15]. Tyk2 
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Figure 1 Schematic representation of the tyrosine kinase 2-related cytokine receptors. The IL-6 receptor, which comprises IL6RA (gp80) and IL6RB 
(gp130) subunits, activates signal transducer and activator of transcription (STAT)1 and STAT3 through interactions with Tyrosine kinase 2 (Tyk2), Janus family of 
protein tyrosine kinases 1 (Jak1), and Jak2. The IL-10 receptor, which comprises IL-10R1 and IL10-R2 subunits, activates STAT1, STAT3, and STAT5 through 
interactions with Tyk2 and Jak1. IL-12 is a heterodimeric cytokine comprising the IL-12p35 and IL-12p40 subunits. The IL-12 receptor, which comprises IL-12Rβ1 and 
IL-12Rβ2, mainly activates STAT4 through interactions with Tyk2 and Jak2. The IL-12p40 component of IL-23 can dimerize with IL-23p19 to form IL-23. The IL-23 
receptor, which comprises IL-12Rβ1 and IL-23R subunits, activates STAT1, STAT3, and STAT4 through interactions with Tyk2 and Jak2. The type I IFN receptor, 
which comprises IFNAR1 and IFNAR2 subunits, activates STAT1 and STAT2 through interactions with Tyk2 and Jak1. STAT: Signal transducer and activator of 
transcription; Tyk2: Tyrosine kinase 2; Jak1: Janus family of protein tyrosine kinases 1.

promotes the constitutive production of type I IFNs in macrophages under steady-
state conditions, as well as during the innate immune responses against bacterial 
components. The basal and lipopolysaccharide (LPS)-induced expression levels of type 
I IFN are dysregulated in Tyk2-deficient macrophages[16]. Moreover, Tyk2-deficient 
and Ifnb-deficient mice are resistant to high-dose LPS-induced lethal septic shock[16,
17]. Additionally, the expression of type I IFN-responsive genes, especially under 
steady-state conditions, was downregulated in Tyk2-deficient macrophages[18]. 
Therefore, Tyk2 is partially involved in macrophage activation by regulating autocrine 
and/or exogenous IFN production in the neighboring immune cells.

IL-12 and IL-23 systems
Helper T cells can be classified into the following two subsets based on their cytokine 
profiles: T helper 1 (Th1) and Th2 cells[19]. IL-12 and IL-4 promote the differentiation 
of naïve CD4+ T cells into Th1 cells and Th2 cells, respectively. Heterodimeric IL-12 
comprises covalently linked p35 and p40 subunits. Both IL-12 and IL-23 comprise the 
p40 subunit[20]. IL-23 (comprising p40 and unique p19 subunits) promotes the differ-
entiation of Th17 cells, which secrete the effector cytokines IL-17, IL-21, and IL-22[21,
22]. Th17 cells can promote enhanced inflammatory responses to eliminate microbial 
pathogens. However, Th17 cells are considered highly pathogenic as excessive and 
prolonged activation of Th17 cells can result in autoimmune and inflammatory 
disorders, including inflammatory bowel diseases (IBD) and rheumatoid arthritis 
(RA), in humans (Figure 2)[21,22].

The activation of IL-12 receptor, which is associated with Tyk2 and Jak2, activates 
STAT4[23,24]. Phosphorylated Stat4 along with signals from the activated T cell 
receptor induces the expression of T-bet, which is a master transcriptional factor for 
Th1 differentiation[25]. IL-23, whose receptor is associated with Tyk2, induces the 
proliferation, survival, and functional maturation of Th17 cells[22,26] although Th17 
cell differentiation is dependent on signals from TGF-β and IL-6 (Figure 3)[22]. STAT3, 
a major downstream effector of the Th17-related cytokine pathway, is critical for 
commitment to the Th17 Lineage, whereas STAT4 and STAT6 are essential for 
commitment to the Th1 and Th2 Lineages, respectively[27,28]. Additionally, Tyk2-
deficient macrophages do not produce nitric oxide in response to LPS stimulation[16]. 
Tyk2-deficient dendritic cells do not produce IL-12 and IL-23 upon stimulation with 
CpG oligodeoxynucleotides and consequently cannot induce Th1 cell differentiation
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Figure 2 Schematic representation of naïve T cell differentiation into T helper 1, T helper 2, or T helper 17 cells depending on the cytokine 
profile. IL-12 promotes the differentiation of naïve T cells into Th1 cells. Th1 cells promote the clearance of intracellular pathogens and induce autoimmunity through 
the production of IFN-γ, IL-2, and TNF-α. Th1 differentiation is regulated by transcription factors such as signal transducer and activator of transcription (STAT)1, 
STAT4, and T-bet. IL-4 promotes the differentiation of naïve T cells into Th2 cells. Th2 cells promote the clearance of extracellular pathogens and induce allergic 
responses through the production of IL-4, IL-5, IL-6, and IL-13. Th2 differentiation is regulated by transcription factors such as STAT6 and GATA3. TGF-β, IL-6, and 
IL1 promote the differentiation of naïve T cells into Th17 cells, while IL-23 can maintain the Th17 phenotype. Th17 cells promote the clearance of extracellular 
pathogens and induce autoimmunity through the production of IL-17, IL-21, and IL-22. Th2 differentiation is regulated by transcription factors, such as STAT3, RORγt 
and RORα.

[29]. Therefore, Tyk2 is involved in the host defense response by regulating the 
production and function of both Th1 and Th17 cells.

Inhibitory effects of type I IFNs on B lymphopoiesis are mediated through the TYK2-
DAXX axis
Interactions between IFN-α and its receptor promote potent antiviral and antiprolif-
erative activities against the target cells[3,4]. IFN-α stimulation specifically activates 
Tyk2 and Jak1, which leads to the phosphorylation of STAT1 and STAT2. Nuclear 
translocation of phosphorylated STATs (in the form of homodimers or heterodimers) 
promotes target gene expression[3,4]. Jak1-deficient cells are not responsive to IFN-α 
stimulation[30], whereas Tyk2-deficient cells cannot inhibit lymphocyte growth[31]. 
Additionally, Stat1-deficient mice do not respond to IFN-α simulation[32,33], while 
Stat2-deficient mice are highly susceptible to viral infections[34].

Analysis of the colony forming unit (CFU) of bone marrow cells in the presence of 
IL-7 is a powerful tool to evaluate the growth capacity of B lymphocyte progenitors
[35]. The CFU values of bone marrow cells in the presence of IL-7 were not markedly 
different between wild-type (WT) and Tyk2-deficient mice, which indicated that Tyk2 
did not affect the number of IL-7-responsive B lymphocyte progenitors under steady-
state conditions[31]. IFN-α, which is a potent inhibitor of IL-7-dependent growth of B 
lymphocyte progenitors, effectively inhibits B lymphocyte differentiation at the pro-B 
cell stage[36]. The CFU values of WT bone marrow cells in the presence of IL-7 
markedly decreased upon stimulation with IFN-α. In contrast, the CFU values of Tyk2-
deficient bone marrow cells in the presence of IL-7 did not decrease upon stimulation 
with IFN-α[31]. The knockout of Tyk2 completely inhibited the IFN-α -induced 
elevation and nuclear accumulation of death-associated protein (Daxx)[31]. Daxx was 
originally identified as a Fas-binding protein[37] and it plays crucial roles in the type I 
IFN-induced growth suppression of B lymphocyte progenitors[38]. One study used the 
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Figure 3 Illustration of interleukin-12 and interleukin-23, as well as their receptors and downstream signaling pathways. IL-12 and IL-23 
share the p40 subunit, while their receptors share the IL-12Rβ1 subunit. The binding of IL-12 to its receptor induces the activation of Jak2 and Tyrosine kinase 2 
(Tyk2), which results in signal transducer and activator of transcription (STAT)4 phosphorylation. Activated STAT4 promotes the differentiation of naïve Th cells into 
Th1 cells, which subsequently produce IFN-γ that is required for the development of Th1 immune response. The binding of IL-23 to its receptor induces the activation 
of Jak2 and Tyk2, which results in STAT3 phosphorylation. IL-23 induces the expression of IL-17A, IL-17F, and/or IL-22 and stabilizes Th17 cells. STAT: Signal 
transducer and activator of transcription.

sumoylation-defective Daxx KA mutant (Daxx K630/631A) to investigate the in-
volvement of Daxx in decreasing the growth of Ba/F3 pro-B cells in the presence of IL-
7 through IFN-α. The study demonstrated that Daxx KA is localized to the cytoplasm, 
whereas Daxx WT is localized to the nucleus[39]. Moreover, overexpression of Daxx 
KA conferred resistance to IFN-α -induced growth inhibition in a murine pro-B cell 
line Ba/F3. Treating Daxx KA-expressing Ba/F3 cells with leptomycin B, an exportin 
inhibitor, enhanced the nuclear localization of Daxx KA, and the growth of the cells 
was suppressed upon stimulation with IFN-α. Additionally, Daxx KA binds only 
weakly to promyelocytic leukemia protein (PML), which aids in the nuclear loca-
lization of Daxx. Conversely, overexpression of PML promotes the recruitment of 
Daxx to the PML nuclear bodies. A fusion protein comprising Daxx and a small 
ubiquitin-related modifier enhances the nuclear localization of Daxx and inhibits 
Ba/F3 cell growth. This indicates that IFN-α -induced inhibition of B lymphocyte 
progenitor growth requires nuclear localization of Daxx, which is dependent on 
sumoylation and interactions with PML. Therefore, the Tyk2-Daxx axis plays an 
essential role in IFN-α -induced growth inhibition of B lymphocyte progenitors.

PATHOLOGICAL SIGNIFICANCE OF TYK2 IN IMMUNE AND  
INFLAMMATORY DISEASES: DATA FROM MURINE EXPERIMENTAL  
MODELS
RA
RA is associated with joint inflammation and pain owing to a runaway immune 
system that elicits immune responses against the synovium of the joints of the hands, 
knees, or ankles. Murine experimental models for arthritis have provided useful 
information on various cellular and molecular mechanisms associated with RA[40].

Collagen-induced arthritis (CIA) mice are widely utilized as an experimental model 
for human RA[41]. Development of arthritis involves the production of autoantibodies 
in response to collagen and the subsequent inflammatory response against joints. Mice 
harboring Tyk2 polymorphisms exhibit differential susceptibility to CIA[42,43]. 
B10.Q/Ai mice are highly susceptible to CIA, whereas B10.D1 mice are resistant. This 
suggests that Tyk2 deficiency results in the defined clinical RA.
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Monitoring of the inflammatory response in the anti-type II collagen (CII) antibody-
induced arthritis (CAIA) experimental model provides useful information on the 
mechanisms of RA[44]. Tyk2-deficient mice are highly resistant to the development of 
CAIA. Histological analysis has revealed that Tyk2 deficiency downregulated the 
inflammatory cell infiltration into the synovium[45]. Additionally, the production of 
IFN-𝛾, tumor necrosis factor (TNF)-α, IL-6, and matrix metalloproteinases (MMPs) was 
severely impaired in Tyk2-deficient mice[45]. TNF-α and IL-6, which are secreted by 
macrophages, function as pro-inflammatory cytokines in the CAIA model. MMPs, 
which are expressed in chondrocytes, synoviocytes, and macrophages, are reported to 
be involved in the degradation and damage of articular cartilage[46,47]. Tyk2-deficient 
macrophages cannot produce nitric oxide in response to LPS stimulation. Meanwhile, 
Tyk2-deficient dendritic cells cannot produce IL-12 and IL-23 in response to CpG 
oligodeoxynucleotides[29].  The potential mechanisms were analyzed using the anti-
CII monoclonal antibody, which induced the phosphorylation of STAT3 and STAT4 in 
the draining lymph node cells. Phosphorylated STAT3 and STAT4 were detected in 
WT but not in Tyk2-deficient mice[45]. This suggests that Tyk2 promotes the 
production and downstream signaling of Th1/Th17-related cytokines, which are 
activated through STAT3 and STAT4.

Tyk2 deficiency markedly decreased the susceptibility to arthritis development in 
both CIA and CAIA murine models, which indicated that Tyk2 plays an important 
role in adaptive autoimmunity and inflammatory responses. Therefore, Tyk2 regulates 
multiple steps involved in the onset and development of RA.

Multiple sclerosis
Multiple sclerosis (MS) is characterized by the lack of myelin, a protective sheath 
covering nerve fibers, which leads to disruption of the communication between the 
brain and other tissues[48]. Patients with MS exhibit various symptoms, such as 
difficulty in walking and balancing, muscle weakness and spasticity, and loss of 
concentration and memory. The murine experimental autoimmune encephalomyelitis 
(EAE) model, which is an animal model for human MS, is triggered by immunization 
with myelin antigens or by the adoptive transfer of myelin-specific CD4+ effector cells
[49]. Tyk2-deficient mice exhibit decreased clinical scores and limited lymphocyte 
infiltration into the inflamed central nervous system[50]. The involvement of Tyk2 in 
EAE was confirmed using mice harboring different Tyk2 polymorphisms. B10.D1 mice, 
which harbor the Tyk2A allele, are resistant to EAE development. The insufficient 
responses can be compensated by one copy of the Tyk2G allele from B10.Q/Ai mice
[51].

IBD
Crohn's disease is characterized by inflammation of the digestive tract. Patients with 
Crohn’s disease exhibit severe diarrhea, abdominal pain, fatigue, weight loss, and 
malnutrition[52]. Dextran sulfate sodium (DSS)-induced colitis, a mouse model for 
human Crohn’s disease, is generated by supplementing mice with DSS through 
drinking water. The disease activity index and histological score were assessed using 
the combined scores of weight loss, consistency, and bleeding and acute clinical 
symptoms with diarrhea and/or extremely bloody stools[53]. Compared with that in 
WT DSS-induced colitis mice, disease development was delayed in Tyk2-deficient DSS-
induced colitis mice[45]. Oral supplementation of DSS activates intestinal macro-
phages, which leads to enhanced production of inflammatory cytokines and che-
mokines. Subsequently, lymphocytes are recruited to the inflammatory sites and elicit 
Th1 and/or Th17 responses. During this inflammatory process, Tyk2 can regulate the 
functions of macrophages and dendritic cells, as well as the Th1 and Th17 responses. 
Indeed, the mRNA levels of DSS-induced Th1 cell-related or Th17 cell-related 
cytokines were significantly downregulated in the colon tissues of Tyk2-deficient mice
[45]. A genome-wide association study identified Tyk2 as a Crohn’s disease suscept-
ibility locus[54].

Ulcerative colitis is characterized by inflammation and ulcers in the large intestine 
and rectum. Patients with ulcerative colitis exhibit diarrhea with bloody stool, 
abdominal pain, fever, and body weight loss[55]. To model human ulcerative colitis in 
mice, 2,4,6-trinitrobenzene sulfonic acid (TNBS) is used[45]. WT mice treated with 
TNBS die within 3 days due to the induction of massive colitis. However, approx-
imately 50% of Tyk2-deficient mice survive after treatment with TNBS. Additionally, 
the bodyweight of the surviving mice returned to the physiological range after 
recovery from diarrhea[45].



Muromoto R et al. Tyk2 in immune responses

WJBC https://www.wjgnet.com 7 January 27, 2022 Volume 13 Issue 1

Therefore, Tyk2 is a key molecule for the development of IBD.

Psoriasis
Psoriasis is characterized by scaly erythematous lesions in the skin, epidermal 
hyperplasia, parakeratosis, and accumulation of inflammatory cells[56]. The inflam-
matory response is mediated by several cytokines, such as TNF-α, IL-17, and IL-23. 
The mouse model for human psoriasis was developed by treatment with imiquimod 
(IMQ), a ligand for TLR7[57]. Il23p19-deficient and Il17a–deficient mice exhibit 
decreased scores for erythema, scaling, and thickness upon treatment with IMQ, which 
suggests that the IL-23/Th17 axis and the Th17 cell-produced cytokines are essential 
for the development of skin abnormalities[57]. A genome-wide association study 
identified Tyk2 as a psoriasis susceptibility locus[54]. Tyk2 deficiency mitigates IMQ-
induced enhanced ear thickness, which results from epidermal hyperplasia and 
inflammatory cell infiltration[45]. Tyk2-deficient mice exhibit markedly decreased 
numbers of CD4+IL-17+ or CD4+IFN-𝛾+ T cells in the draining lymph nodes and 
downregulated mRNA levels of Th17 cell-related cytokines upon treatment with IMQ
[45].

The IL-23-induced skin inflammation mouse model is another promising model for 
human psoriasis[58]. In this IL-23-induced model, Tyk2-deficient mice exhibited 
reduced ear skin swelling, epidermal hyperplasia, Th17 and IL-22-producing Th22 cell 
infiltration compared with wild-type mice[45]. Tyk2 deficiency downregulates the 
production of pro-inflammatory cytokines and psoriasis-related anti-microbial 
peptides.

IL-23 and IL-22 coordinate to promote skin inflammation[58,59]. Tyk2-mediated 
signals are essential for the induction of enhanced leukocyte infiltration and inflam-
matory cytokine production. Enhanced keratinocyte proliferation and differentiation 
are highly dependent on IL-17 and IL-22. Previous studies have reported that Tyk2 
directly regulates IL-22-dependent processes as evidenced by the downregulation of 
STAT3 phosphorylation in Tyk2 knockdown human keratinocyte HaCaT cells after IL-
22 stimulation[45]. Therefore, Tyk2 has a critical role in the IL-22 signaling cascade that 
is involved in inducing epidermal hyperplasia.

IκB-ζ, an IL-17-induced protein encoded by NFKBIZ[60], is upregulated in the 
epidermal keratinocytes of psoriatic lesions[61]. NFKBIZ is located in the psoriasis 
susceptibility locus at 3q12.3[62]. IκB-ζ, a nuclear IκB family protein, positively or 
negatively modulates NF-κB-dependent and/or STAT3-dependent transcription[63-
65]. Tyk2 is involved in IL-17–induced IκB-ζ expression in keratinocytes[66]. Tyk2-
deficient mice exhibited only slight inflammation and downregulated mRNA levels of 
Nfkbiz upon treatment with IMQ. The catalytic activities of Tyk2 and STAT3 are 
required for IκB-ζ promoter activity in the HaCaT cells. The signaling pathways 
activated by IL-17 regulate mRNA stability[66-70]. ZC3H12A, which exhibits endo-
ribonuclease activity, functions as a negative feedback regulator for inflammatory 
signaling[71-74]. The ubiquitin-proteasome pathway rapidly degrades ZC3H12A in IL-
17-treated, IL-1β-treated, or IL-36–treated keratinocytes[72,74], which suggests that the 
stimulus-induced ZC3H12A downregulation can markedly suppress the inhibitory 
effects on mRNA expression.

Therefore, Tyk2 promotes the development of psoriasis by transducing IL-22 and 
IL-23 signals and regulating NFKBIZ along with the IL-17/ZC3H12A axis.

Sarcoidosis
Sarcoidosis is characterized by the aberrant accumulation of inflammatory cells, which 
typically form granulomas. Sarcoidosis usually begins in the lungs, skin, lymph nodes, 
eyes, heart, or other organs[75]. The murine model for human sarcoidosis is developed 
by intraperitoneally administering mice with heat-killed Propionibacterium acnes (P. 
acnes), which induces dense granulomas in the liver[76]. IL-12-IFN-𝛾 axis is required 
for the induction since neither Ifngr-deficient nor Il12p40-deficient mice form hepatic 
granulomas after P. acnes injection[76]. Tyk2-deficient mice injected with P. acnes 
exhibit reduced serum IFN-𝛾 level and decreased formation of hepatic granulomas 
compared with wild-type mice[45], indicating that Tyk2 has a role in P. acnes-induced 
granuloma formation.

Delayed-type hypersensitivity
Delayed-type hypersensitivity (DTH), which protects against various pathogens, such 
as mycobacteria, fungi, and parasites, contributes to transplant rejection and tumor 
immunity[77]. DTH is mainly dependent on T cells and develops 24–72 h after 
exposure to a foreign antigen. The DTH response analysis is based on a Th1/Th17 type 
model as the hypersensitivity response is defective in Il12p40-deficient and Il23p19-
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deficient mice[78]. The sensitization phase is triggered by immunizing mice with a 
specific protein antigen (methylated BSA). The elicitation phase, which is initiated by 
the second injection of methylated BSA into the rear footpad of the pre-immunized 
mice, results in footpad swelling. Footpad swelling was significantly alleviated in Tyk2
-deficient mice, which indicated the role of Tyk2 in DTH responses[45].

HIES
Tyk2 AR-HIES is a hereditary (autosomal recessive) disease involving a Tyk2 mutation
[79]. Patients with Tyk2 AR-HIES are characterized by repeated viral and mycobac-
terial infections, atopic dermatitis, and enhanced levels of IgE[11]. Therefore, Tyk2 
may have a broader and more important role in immunological responses than 
expected from studies conducted using Tyk2-deficient mice.

POTENTIAL CLINICAL APPLICATIONS OF TYK2 INHIBITORS
The first in vivo evidence for the roles of Jaks in cytokine signaling originated from a 
human case study of severe combined immunodeficiency. Mutations in Jak3 or its 
receptor (a common g cytokine receptor chain) were detected in this case[80,81]. 
Another example is a somatic Jak2 valine-to-phenylalanine mutation (V617F), which is 
detected in more than 90% of the patients with polycythemia and some patients with 
essential thrombocythemia and primary myelofibrosis[82]. Activating point mutations 
in Jak1 are detected in DNA samples from patients with acute lymphoblastic leukemia 
and are rarely observed in patients with acute myeloid leukemia[83]. Thus, dysregu-
lation of the Jak-mediated signaling pathway is associated with the pathogenesis of 
different diseases, including hematological malignancies, autoimmune diseases, and 
immune-disrupted conditions. Studies on Tyk2-deficient mice or human patients with 
mutated Tyk2 alleles have revealed that Tyk2 is a key player in the pathogenesis of 
autoimmune and/or inflammatory diseases.

Imatinib, a Bcr-Abl kinase inhibitor, exerts potent therapeutic effects in patients 
with chronic myelocytic leukemia[84]. Hence, various kinase inhibitors with strict 
selectivity and potency have been developed[85]. Jak inhibitors exert potent thera-
peutic effects by mitigating high levels of circulating immune/inflammatory cy-
tokines. These results strongly suggest that Tyk2 is a potential therapeutic target for 
patients with immune and/or inflammatory diseases.

First-generation Jak inhibitors typically target two or three Jak types. Therefore, 
first-generation Jak inhibitors are associated with broader effects and more adverse 
events than the new-generation drugs, which specifically target one Jak type. 
Currently, several Jak inhibitors are used to treat various human diseases[86]. For 
example, ruxolitinib, an inhibitor of Jak1 and Jak2, has been approved to treat patients 
with myelofibrosis and polycythemia vera[87]. Tofacitinib, an inhibitor of Jak1, Jak2, 
and Jak3, has been approved to treat patients with RA, psoriatic arthritis, and 
ulcerative colitis[88]. Baricitinib, an inhibitor of Jak1 and Jak2, is used to treat patients 
with RA[89]. In methotrexate-inadequate responders, both tofacitinib and baricitinib 
provided enhanced therapeutic responses in patients with RA when compared with 
placebo[90]. In a phase 2 trial involving patients with psoriasis, the response rate to 
deucravacitinib (BMS-986165), a Tyk2 selective inhibitor[91], was significantly higher 
than that to placebo after 12 wk of administration. Treatment with BMS-986165 did not 
affect the blood cell counts or the serum levels of liver enzymes, lipids, and creatinine. 
However, BMS-986165 was associated with some severe adverse effects, such as 
malignant melanoma. Theoretically, therapeutic strategies targeting the immune 
system may increase the risk of infections from various pathogens, such as herpes 
zoster virus, cytomegalovirus, and Epstein–Barr virus. Therefore, further studies are 
needed to determine the long-term efficacy and safety of Tyk2 inhibitors. Additionally, 
clinical trials on Tyk2 inhibitors will aid in devising better therapeutic strategies for 
immune/inflammatory diseases than the currently marketed therapeutics.

CONCLUSION
This review summarized the involvement of Tyk2 in the immune system and its 
possible potential roles in the onset and development of immune and inflammatory 
diseases (Figure 4).
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Figure 4 Schematic representation of the involvement of tyrosine kinase 2 in immune and inflammatory responses and its pathological 
significance. IBD: Inflammatory bowel diseases; RA: Rheumatoid arthritis; DTH: Delayed-type hypersensitivity; HIES: Hyper IgE syndrome; EAE: Experimental 
autoimmune encephalomyelitis; MS: Multiple sclerosis.

Studies on the Tyk2-deficient cells have revealed the involvement of the IFN system 
and IL-12/IL-23 axis. Constitutive production of a small amount of type I IFNs elicits a 
pro-inflammatory response against the invading pathogens and mitigates aberrant 
inflammation by promoting the expression of IL-10, a potent anti-inflammatory 
cytokine. Tyk2 is critical for maintaining the basal levels of IFNs. The IFN-α-induced 
decreased CFUs of bone marrow cells in the presence of IL-7 were also dependent on 
Tyk2. Tyk2 contributes to IFN-α signaling by promoting the nuclear translocation of 
Daxx and the formation of the Daxx/PML complex, which leads to growth inhibition. 
Additionally, Tyk2 interacts with the receptors for type I IFN, IL-6, IL-10, IL-12, and 
IL-23 (Figure 1). Moreover, Tyk2 is essential for IL-12-induced differentiation into Th1 
cells, as well as IL-23-induced proliferation, survival, and functional maturation of 
Th17 cells. Additionally, Tyk2 mediates the production of nitric oxide in macrophages 
and IL-12 and IL-23 in dendritic cells after the invasion of pathogens.

Studies using Tyk2-deficient mice have revealed the potential involvement of Tyk2 
in the onset and development of various immune and/or inflammatory disorders, 
such as RA, MS, IBD, psoriasis, sarcoidosis, and DTH. The development of most 
phenotypes in these models was mediated by Th1 and Th17 cells, whose differen-
tiation and functions are highly dependent on Tyk2. Additionally, Tyk2 contributes to 
IL-17-induced IκB-ζ expression in IMQ-induced skin inflammation.

The experimental data summarized in this review along with the known clinical 
success of the novel Jak inhibitors indicate the therapeutic potential of Tyk2 inhibitors 
in the clinical setting. Further clinical trials are needed to examine the safety and 
efficacy profiles of Tyk2 inhibitors for treating psoriasis. Additionally, Tyk2 inhibitors 
are likely to be widely approved for various Th1/Th17-related immune/inflammatory 
diseases.
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