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Abstract
Non-alcoholic fatty liver disease affects approximately 
one-third of the population worldwide, and its incidence 
continues to increase with the increasing prevalence of 
other metabolic disorders such as type 2 diabetes. As 
non-alcoholic fatty liver disease can progress to liver 
cirrhosis, its treatment is attracting greater attention. 
The pathogenesis of non-alcoholic fatty liver disease is 
closely associated with insulin resistance and dyslipid-
emia, especially hypertriglyceridemia. Increased serum 
levels of free fatty acid and glucose can cause oxida-
tive stress in the liver and peripheral tissue, leading 
to ectopic fat accumulation, especially in the liver. In 
this review, we summarize the mechanism underlying 
the progression of hepatic steatosis to steatohepatitis 
and cirrhosis. We also discuss established drugs that 
are already being used to treat non-alcoholic fatty liver 
disease, in addition to newly discovered agents, with 
respect to their mechanisms of drug action, focusing 
mainly on hepatic insulin resistance. As well, we review 
clinical data that demonstrate the efficacy of these 
drugs, together with improvements in biochemical or 
histological parameters.
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Core tip: In this review, we summarize the pathogen-
esis underlying the progression of hepatic steatosis to 
steatohepatitis and cirrhosis. We also discuss estab-
lished drugs that are already being used to treat non-
alcoholic fatty liver disease, in addition to newly discov-
ered agents, with respect to their mechanisms of drug 
action, focusing mainly on hepatic insulin resistance. 
As well, we review clinical data that demonstrate the 
efficacy of these drugs, together with improvements in 
biochemical or histological parameters. Furthermore, 
we introduced future treatment option for non-alcoholic 
fatty liver disease.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD), the accumula-
tion of  lipid within hepatocytes, is a common disease[1]. 
The worldwide prevalence of  NAFLD is estimated to 
be 20%-30%[2], although increasing to 57%-74% among 
obese patients[3]. NAFLD refers to a wide spectrum of  
fatty degenerative disorders of  the liver in the absence of  
alcohol intake, ranging from simple steatosis to steatohepa-
titis and cirrhosis[4]. Nonalcoholic steatohepatitis (NASH) 
is histologically characterized by inflammatory cell recruit-
ment. NASH is a significant risk factor for hepatic cirrhosis, 
compared with simple steatosis[5], and 4%-27% of  cases 
of  NASH progress to hepatocellular carcinoma after the 
development of  cirrhosis[6]. In one study, NAFLD was pres-
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ent in 75% of  obese [body mass index (BMI)≥ 30 kg/m2] 
patients, 16% of  non-obese patients, and 34%-74% of  
patients with type 2 diabetes[7]. Another study reported di-
agnoses of  fatty liver in 39% of  obese (BMI ≥ 30 kg/m2) 
patients, 41% of  patients with known type 2 diabetes, and 
32% of  patients with dyslipidemia[8]. Patients with NAFLD 
are not only insulin resistant, but also tend to present 
with alterations in plasma triglyceride levels[9]. NAFLD is 
strongly associated with metabolic syndrome, especially 
insulin resistance, central obesity, and dyslipidemia. There-
fore, NAFLD is regarded as a difficult to treat component 
of  metabolic syndrome[10]. In this review, we investigate the 
mechanisms of  hepatic fat accumulation, focusing on the 
role of  insulin resistance therein, and review current thera-
peutic options and new candidate drugs for the treatment 
of  NAFLD.

PATHOGENESIS 
Insulin resistance - free fatty acid flux and hyperinsulinemia 
Hepatic steatosis is caused by an imbalance in triglyc-
eride movement through the liver cell. Triglyceride is 
composed of  free fatty acid (FFA) and glycerol. Total 
FFA is derived from three sources, the diet (15%), de novo 
synthesis (26%), and circulating FFA (56%)[11]. A high-
fat diet is known to lead to the development of  hepatic 
steatosis. However, estimates suggest that approximately 
60% of  liver fat is derived from circulating nonesteri-
fied fatty acids (NEFAs) in individuals who eat a normal 
fat-containing diet[11]. Obesity is associated with insulin 
resistance and an elevated leptin level. In particular, in-
creased visceral fat correlates with peripheral and hepatic 
insulin resistance[12,13]. Insulin resistance in skeletal muscle 
and adipose tissue results in increased levels of  NEFAs 
through increased lipid oxidation in adipose tissue (Figure 
1). Accordingly, NEFA flux plays an important role in 
hepatic fat accumulation[14]. An increase in hepatocellular 
diacylglycerol is associated with decreased tyrosine phos-
phorylation of  insulin receptor substrate 2 (IRS-2)[15,16]. 
In turn, the decreased activity of  IRS-2 and PI3K leads 
to increased hepatic glucose production[17]. Hyperinsu-
linemia also arises in response to insulin resistance in adi-
pose tissue, leading not only to downregulation of  IRS-2 
in the liver, but also to a continued increase in the level of  
sterol regulatory element binding protein-1c (SREBP-1c) 
via the insulin signaling pathway involving AKT2, liver X 
receptor (LXR) and mammalian target of  rapamycin[18,19]. 
Elevated levels of  SREBP-1c up-regulate lipogenic gene 
expression, increase fatty acid synthesis, and accelerate 
hepatic fat accumulation[20]. Additionally, overexpression 
of  SREBP-1c represses IRS-2 expression[21]. Glucose-
stimulated lipogenesis is mediated by carbohydrate-
responsive element-binding protein (ChREBP) in the 
liver. Like SREBP-1c, ChREBP increases lipogenesis by 
inducing lipogenic gene expression during consumption 
of  a diet high in carbohydrates[22,23].

Endoplasmic reticulum stress 
The endoplasmic reticulum (ER) is an intracellular organ-

elle that plays an important role in the synthesis, folding, 
and trafficking of  proteins. Cellular nutrient status and 
energy condition highly influence the function of  the 
ER, and dysfunction in the ER causes accumulation of  
unfolded proteins therein, triggering an unfolded pro-
tein response (UPR)[24]. Under stress, such as hypoxia, 
inflammation and energy excess, UPR is characterized by 
adaptive cellular processes of  increased degradation of  
proteins and translational arrest of  protein synthesis to 
restore normal function of  the ER. As well, UPR medi-
ates metabolic and immune responses that aggravate 
insulin resistance[25-27]. Both PKR-like kinase and the 
α-subunit of  translation initiation factor 2 (eIF2α), well-
known ER stress markers, are increased in hepatocytes 
of  ob/ob mice, compared with control mice[26]. Obesity 
causes ER stress that leads to suppression of  insulin sig-
naling through serine phosphorylation of  insulin receptor 
substrate-1 (IRS-1) and activation of  the c-Jun N-terminal 
kinase (JNK) pathway[26]. Among subjects with metabolic 
syndrome, those with NASH showed higher levels phos-
phorylated JNK protein, compared to subjects with sim-
ple hepatic steatosis. Furthermore, subjects with NASH 
did not generate spliced manipulation of  X-box–binding 
protein-1 (sXBP-1), which is a key regulator in ER stress 
in relation to insulin action[24,26]. Additionally, weight 
reduction in obese subjects has been shown to induce 
improvement in ER stress via suppression of  phosphory-
lated JNK and eIF2α in adipose tissue and the liver[28].

Role of oxidative stress - mitochondrial dysfunction 
The two-hit hypothesis is a key concept of  NAFLD 
pathogenesis. In fatty livers, simple hepatic steatosis 
(first hit) sensitizes the liver to inflammatory cytokines 
or oxidative stress (second hit), leading to development 
of  steatohepatitis[29]. Oxidative stress is resulted from a 
serious imbalance between the limited antioxidant de-
fenses and excessive formation of  reactive species such 
as reactive oxygen species (ROS) or reactive nitrogen spe-
cies (RNS)[30]. ROS is an integrated term that describes a 
variety of  species of  free radicals derived from molecu-
lar oxygen, such as superoxide, hydrogen peroxide, and 
hydroxyl[31]. In cells, mitochondria are a major source 
of  ROS generation. The important factor modulating 
mitochondrial ROS generation is the redox state of  the 
respiratory chain[32,33] . FFAs are metabolized via the mito-
chondrial β-oxidation pathway and the tricarboxylic acid 
(TCA) cycle, which generates citrate that in turn inhibits 
glycolysis. As a result, glucose oxidation and glucose up-
take via glucose transporter type 4 (GLUT4) in skeletal 
muscle are reduced[34,35]. To compensate for the exces-
sive fat storage in the liver, increased hepatic FFA uptake 
stimulates hepatic oxidation of  fatty acids in obese indi-
viduals. Mitochondrial FFA oxidation is maintained until 
mitochondrial respiration becomes severely impaired[36,37]. 
However, accelerated β-oxidation not only causes exces-
sive electron flux in the electron transport chain, but also 
leads to increased production of  ROS, and can lead to 
mitochondrial dysfunction[38]. Excessive ROS produc-
tion by mitochondria can lead to oxidative damage to 
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the mitochondrial membrane and DNA and can impair 
mitochondrial metabolic functions[33]. The increase in 
hepatic lipogenesis in NASH results in increased produc-
tion of  malonyl-CoA. Inhibition of  carnitine palmitoyl-
transferase-I (CPT-1) by malonyl-CoA leads to decreased 
entry of  long chain fatty acid into the mitochondria, and 
causes reduced β-oxidation and enhanced triglyceride ac-
cumulation in the liver[38-40]. The nuclear receptor peroxi-
some proliferator-activated receptor α (PPAR-α) plays 
an important role in the transcriptional control of  many 
enzymes involved in mitochondrial fatty acid β-oxidation. 
Peroxisome proliferator-activated receptor-gamma co-
activator (PGC) -1α cooperates with PPAR-α and regu-
lates genes that encode mitochondrial fatty acid oxidation 
enzymes, such as CPT-1 and medium chain acyl-CoA 
dehydrogenase[40]. Previously, a PPAR-α-deficient mouse 
model showed a lack of  hepatic peroxisome proliferation 
and dyslipidemia with obesity and hepatic steatosis[41].

Inflammation and adipokines 
Overall obesity is correlated with NAFLD, and accu-
mulation of  intra-abdominal fat in particular is believed 
to play an important role in the development of  insulin 
resistance[12,13]. Meanwhile, hepatic fat accumulation is 

associated with insulin resistance independent of  intra-
abdominal fat accumulation and overall obesity. Even 
in normal weight subjects, hepatic steatosis has been 
shown to be related to various parameters of  insulin 
resistance, such as basal glucose level or serum FFA 
level[42]. In addition to being a major organ of  triglyceride 
deposition, adipose tissue acts an endocrine organ that 
secretes several hormones[43]. Adipocytes secrete adipo-
nectin and leptin, in addition to the other adipokines, 
such as retinol-binding protein, tumor necrosis factor-α 
(TNF-α), interleukin 6 (IL-6), and plasminogen activator 
inhibitor-1[43]. Adiponectin stimulates phosphorylation 
of  AMP-activated protein kinase (AMPK) and acetyl-
CoA carboxylase (ACC) in the liver and muscles, thereby, 
increasing glucose utilization and fatty-acid oxidation[44]. 
In a previous study, serum adiponectin levels decreased 
with an increases in obesity, in particular increases in 
intra-abdominal fat mass[45,46]. In another study, adiponec-
tin knockout mice fed a high-fat diet exhibited increased 
incidences of  obesity, hyperinsulinemia, and steatohepa-
titis. These experimental data indicate that adiponectin 
may play a key protective role against the progression of  
NASH[47]. Reportedly, adipose tissue in obese individu-
als stimulates a shift in macrophage activation from the 
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Figure 1  Mechanism of hepatic insulin resistance and the key pathway of drug action. Delivery of FFAs to the liver and skeletal muscle is increased in insulin 
resistance conditions, and these are metabolized via mitochondrial b-oxidation. Consequently, hyperglycemia and increased hepatic FFA uptake reduce glucose up-
take and oxidation in skeletal muscle. Diet and exercise are the main treatment strategies for this pathogenesis; insulin sensitizers and MUFA may contribute to reduc-
ing peripheral insulin resistance. Pioglitazone and fenofibrate act on β-oxidation of mitochondria and reduce hepatic steatosis. Accelerated β-oxidation also causes 
increased production of ROS. Vitamin E can reduce oxidative stress. Adipose tissue inflammation of the liver leads to inflammatory activation of hepatic Kupffer cells 
via classic response (M1) and produce inflammatory cytokines. This is also associated with decreased adiponectin levels and promotes hepatic steatohepatitis. Pent-
oxifylline inhibits TNF-α and alleviates steatohepatitis. Hyperglycemia caused by insulin resistance up-regulates lipogenic gene expression, such as SREBP-1c and 
ChREBP, and induces lipogenesis in hepatocytes. Cilostasol may inhibit SREBP-1c. FFA: Free fatty acid; TG: Triglyceride; CPT-Ⅰ: Carnitine palmitoyltransferase-
Ⅰ; ACC: Acetyl-CoA carboxylase; ATGL: Adipose triglyceride lipase; ChREBP: Carbohydrate responsive element binding protein; SREBP-1c: Sterol regulatory ele-
ment binding protein-1c; TCA: Tricarboxylic acid; ROS: Reactive oxygen species; IRS: Insulin receptor substrate; DAG: Diacylglycerol; G-6-P: Glucose 6-phosphate; 
TNF-α: Tumor necrosis factor- α; MUFA: Monosaturated fatty acids; M1: Kupffer cells activated via classic pathway.
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TREATMENT
Life style modification - diet and exercise
Weight loss due to diet and exercise has been demon-
strated to alleviate hepatic steatosis[61]. Body weight re-
duction and exercise are important independent factors 
for improvement of  hepatic steatosis[62]. In obese women, 
hepatic fat content measured by magnetic resonance im-
aging was shown to decrease in response to weight loss 
interventions[63]. Several studies have shown a significant 
reduction in alanine transaminase (ALT) levels and im-
provement in biochemical markers following intervention 
with a calorie-restricted diet combined with exercise[63,64]. 
A few studies have also shown histologic improvement 
with increased exercise and weight reduction[65,66] (Table 
1). Exercise improves insulin sensitivity in skeletal muscle 
via GLUT4 expression and increases glucose utilization. 
Thus, exercise decreases levels of  serum glucose and in-
sulin[67]. An improvement in hyperinsulinemia can result 
in decreased liver fat mass, because hyperinsulinemia 
stimulates hepatic steatosis via the SREBP-1c pathway[19]. 
In particular, NAFLD patients with metabolic syndrome 
show a great improvement in hepatic steatosis after 
weight loss[68].

Insulin sensitizer-thiazolidinedione, metformin
Thiazolidinedione: Thiazolidinediones (TZDs) are 
insulin-sensitizing agents that have been shown to im-
prove not only hepatic steatosis, but also whole body 
insulin resistance[69]. Improvements in insulin resistance 
and histologic and biochemical parameters were reported 
with TZD treatment[70-74]. Rosiglitazone is one TZD and 

alternative response (M2) to the classic response (M1), 
and these classically activated macrophages secrete a va-
riety of  inflammatory cytokines, such as TNF-α, IL-6, 
and NO[48]. Additionally, studies showed that inflamma-
tory activation of  hepatic Kupffer cells in ob/ob mice 
promotes hepatotoxicity, resulting in hepatic insulin resis-
tance and steatohepatitis[49,50]. Thus, increases in TNF-α 
and IL-6 in obese subjects may play an important role in 
insulin resistance and hepatic steatosis[51,52].

Gut-microbial alternation and TLRs stimulation
As mentioned above, obesity is often associated with 
NASH and systemic inflammation characterized increases 
in inflammatory cytokine levels. Obesity also can cause in-
creased intestinal mucosa permeability and endotoxin lev-
els in portal circulation that can contribute to hepatocel-
lular damage[53,54]. Kupffer cells in the liver play a key role 
in clearing endotoxin and are activated through Toll like 
receptor 2,3,4 and 9 signaling in the presence of  endotox-
in. In particular, activation of  Toll like receptor4 (TLR4) is 
reportedly associated with stimulation of  lipopolysaccha-
ride (LPS)[55-57]. Previously, animal model studies showed 
that TLRs 2, 4 and 9 may contribute to the pathogenesis 
of  NAFLD[55,58]. Activated Kupffer cells induce expres-
sion of  pro-inflammatory cytokines, such TNF-α, IL-6, 
IL-18 and IL-12 as well as anti-inflammatory cytokines[59]. 
TLRs including TLRs 2,4 and 9 are activated via a MyD88 
dependent pathway. This pathway consists of  the activa-
tion of  serine kinase IL-1R-associated kinase and TBF-
receptor-associated factor 6 and is involved in the activa-
tion of  the transcription factor NF-κB, which is related to 
inflammatory cytokine production[60].

  Study Treatment group Control group No. Study design Duration (mo) Histology Liver enzymes US

  Life style modification
     Huang et al[66] Diet -   12 Open label 12 Improved - -
     Ueno et al[65] Diet/Exercise Control   15 Open label   3 Improved Improved -
  Pioglitazone (insulin sensitizer)
     Promrat et al[71] Pioglitazone -   18 Open label 12 Improved Improved -
     Belfort et al[72] Pioglitazone and Diet Placebo   55 RCT   6 Improved Improved -
     Aithal et al[73] Pioglitazone and diet/Exercise Placebo   74 RCT 12 Improved Improved -
     Sanyal et al[74] Pioglitazone Placebo      163 RCT 24 Improved Improved -
  Metformin (insulin sensitizer)
     Garinis et al[100] Metformin and Diet Diet   50 RCT   6 - - Improved
     Haukeland et al[103] Metformin Placebo   48 RCT   6 - - -
     Uygun et al[101] Metformin and Diet Control   50 Open label   6 - - Improved
     Bugianes et al[99] Metformin Diet   53 RCT 12 Improved Improved -
     Bugianes et al[99] Metformin Vitamin E   57 RCT 12 - Improved -
  Vitamin E (antioxidant)
     Bugianesi et al[99] Vitemin E Diet   55 RCT 12 - - -
     Sanyal et al[74] Vitamin E Placebo 167 RCT 24 Improved Improved
     Vajro et al[109] Vitamin E Diet   25 RCT   6 - - -
  Other drugs
     Sanjay et al[112] Pentoxifylline -   18 Open label   6 - Improved -
    Yoneda et al[127] Ezetimibe -   10 Open label   6 Improved Improved
    Vasilios et al[118] Statin Control      437 Open label 36 - Improved -
    Lindor et al[130] UDCA Placebo      166 RCT 48 - - -
    Capani et al[138] PUFA Control   42 RCT 12 - Improved Improved

Table 1  Treatment outcomes of variable regimens

No.: Number; US: Ultrasonography; RCT: Randomized controlled trial.
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is associated with an increased risk of  myocardial infarc-
tion and cardiovascular death[75]. Meanwhile, pioglitazone 
is regarded as safe in regards to cardiovascular outcomes 
and is not associated with increased cardiovascular 
risk[76,77]. In patients with type 2 diabetes, pioglitazone has 
been recommended for the treatment of  steatohepatitis 
proven by liver biopsy; however, its role in non-diabetic 
patients has not been established. The American Asso-
ciation for the Study of  Liver Disease (AASLD) intro-
duced pioglitazone as a first-line treatment of  NAFLD 
in patients with type 2 diabetes[78]. TZDs increase glucose 
utilization of  peripheral tissue and improve whole body 
insulin sensitivity as measured by the hyperinsulinemic 
euglycemic clamp technique, in patients with type 2 
diabetes. Moreover, serum adiponectin levels increase 
and serum insulin levels decreases after treatment with 
pioglitazone[79,80]. An increase in serum adiponectin con-
tributes to alleviation of  hepatic steatosis and improves 
hepatic and peripheral insulin resistance[79]. As mentioned 
above, adiponectin increases lipid oxidation of  FFA by 
ACC phosphorylation in the liver[44], and promotes the 
activation of  anti-inflammatory M2 macrophages rather 
than M1 macrophages[81]. Obesity is closely related to an 
increase in NAFLD risk[82]. Increased levels of  inflam-
matory adipose tissue macrophages (ATMs) and their 
secreted cytokines in a mouse model were shown to be 
related to systemic insulin resistance, which is associated 
with NAFLD development[15,83]. According to previous 
studies, ATMs are increased in obese subjects[84], and pio-
glitazone treatment results in not only a decrease in ATM 
content, but also in the inflammatory markers, TNF-α, 
IL-6, and inducible nitric oxide synthase[85,86]. TZDs also 
promote the alternative activation of  monocytes into 
macrophages with anti-inflammatory properties, as op-
posed to the pro-inflammatory phenotype[87]. Although 
the pathogenesis of  NAFLD development is closely re-
lated to obesity, the distribution of  fat is more important 
than overall obesity. Excessive visceral fat accumulation 
plays an important role in the development of  insulin 
resistance and NAFLD by acting as a source of  FFA[12]. 
Pioglitazone is strongly associated with fat redistribution, 
increases in subcutaneous fat area decreases in visceral fat 
area (visceral to subcutaneous fat ratio)[88]. Another study 
showed that the ratio of  visceral fat thickness to subcuta-
neous fat thickness decreases after pioglitazone treatment 
and is correlated with a change in high sensitivity C-re-
active protein levels[89]. TZD treatment results revealed a 
decrease in serum FFA levels, which in turn reduced FFA 
supply to the liver and led to a decrease in hepatic triglyc-
eride content[90]. Recent studies have focused on the role 
of  sirtuin-6 (SIRT-6) in the glucose and lipid metabolism 
associated with TZDs. TZD treatment reduced hepatic 
fat accumulation and increased expression of  SIRT-6 and 
PGC1-α in rat livers[91]. Also, liver-specific SIRT-6 knock-
out mice exhibited fatty liver formation[92], leading to 
NASH[93].

Metformin: Metformin improves insulin resistance and 
hyperinsulinemia by increasing peripheral glucose uptake 

and decreasing hepatic gluconeogenesis[94]. Metformin 
activates AMP kinase via a LKB-1 dependent mechanism 
in skeletal muscle. Also it can activate AMPK by stimu-
lating AMP accumulation in hepatocytes. The increase 
in AMP interferes with glucagon action and decreases 
cAMP levels, leading to decreased production of  hepatic 
glucose[95,96]. Activation of  AMPK results in decreased 
hepatic triglyceride synthesis and increased fatty acid 
oxidation[97], as well as attenuated hepatic steatosis due to 
decreased SREBP-1c activity[98]. A randomized controlled 
trial showed that subjects treated with metformin exhibit 
significant improvement in ALT levels, compared with those 
who were on a restricted diet or were treated with vitamin 
E, as well as improvements in histology after a 12 mo of  
treatment[99,100]. Many studies have shown that metformin 
treatment normalizes transaminase levels and decreases 
hepatic steatosis as determined by follow-up ultrasound; 
nevertheless, histologic data remain limited[100-103]. As 
NASH is closely associated with development of  HCC 
and liver fibrosis, metformin may be limited in the reduc-
tion of  these severe outcomes, including mortality[104].

Antioxidant - vitamin E (α-tocopherol), pentoxifylline
As mentioned above, oxidative stress contributes to the 
progression of  NASH from simple hepatic steatosis. 
A recent study reported that subjects who were treated 
with vitamin E (α-tocopherol) showed improvement in 
hepatic steatosis and serum aminotransferase levels com-
pared to a placebo group[74]. Vitamin E (α-tocopherol) 
has been used to treat non-diabetic NASH patients di-
agnosed by liver biopsy[78]. Meta-analyses of  vitamin E 
have revealed an increase in all-cause mortality with high 
dose (≥ 400 IU/d) vitamin E supplement use, especially 
in subjects with chronic disease or at high risk for cardio-
vascular disease events, such as type 2 diabetes. However, 
these results are uncertain in healthy subjects[105,106]. Two 
pilot studies reported improved ALT levels with vitamin 
E treatment[107,108]. However, two randomized controlled 
trials failed to show the efficacy of  vitamin E treatment 
in NAFLD[109,110]. Pentoxifylline, a TNF-α inhibitor, has 
also been considered for the treatment of  hepatic ste-
atosis, since it plays an important role in the progression 
of  simple hepatic steatosis to steatohepatitis. In previous 
studies, administration of  pentoxifylline generated im-
provements in biochemical markers, such as aminotrans-
ferase and Homa-IR, in patients with NASH[111,112]. Nev-
ertheless, further study is needed to prove the efficacy of  
pentoxifylline with respect to histologic improvement of  
NAFLD.

Lipid-lowering agents - fibrates, ezetimibe and statins
Hypertriglyceridemia is a major component of  metabolic 
syndrome and is strongly associated with NAFLD. In-
creased FFA delivery to the liver causes accumulation of  
hepatic fat[9]. Many different lipid-lowering agents have 
been investigated for the treatment of  NAFLD. Patients 
treated with gemfibrozil, one type of  fibrate, showed 
decreased ALT levels, compared to the control group[113]. 
However, clofibrate did not show a beneficial effect on 
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NAFLD[114]. PPAR-α modulates not only FFA transport 
and β-oxidation to decrease triglyceride in hepatocytes, 
but also glucose and amino acid metabolism in liver and 
skeletal muscle. PPAR-α activation is involved in lipopro-
tein metabolism by increasing lipolysis, thus reducing the 
production of  triglyceride-rich particles[115]. Fenofibrate 
increased levels of  PPAR-α and decreased hepatic steato-
sis in an APOE2KI mouse model that represented diet-
induced NASH[116]. A prospective study using atorvastatin 
reported significant reductions in serum transaminase 
level[117,118]. Atorvastatin induces hepatic low-density lipo-
protein receptor-related protein 1 (LRP-1) that plays an 
important role in clearance of  circulating triglyceride in 
the liver[119]. In disposal of  chylomicron in hepatocytes, 
interaction of  LRP-1 receptors and apolipoprotein E 
(ApoE) play important roles[120]. Thus, ApoE-deficient 
mice showed development of  hepatic steatosis even 
when they were fed a normal chow-diet. Accordingly, 
ApoE may play a key role in intracellular metabolism and 
control of  VLDL production by hepatocytes[121]. Statins 
are very important drugs to treat dyslipidemia in subjects 
with both insulin resistance and NAFLD. However, there 
is continued concern about the use of  statins in subjects 
with established liver disease. According to several ran-
domized controlled studies and retrospective studies, 
statin rarely induces serious liver injury[122-125]. Ezetimibe, 
a potent inhibitor of  cholesterol absorption, has been re-
ported to improve hepatic steatosis in obese Zucker fatty 
rats[126]. In a randomized controlled study, six months of  
treatment with ezetimibe led to improvements in serum 
ALT levels and histologic observations[127,128].

Ursodeoxycholic acid
Ursodeoxycholic acid (UDCA) is widely used in subjects 
with abnormal liver function. Several studies have in-
vestigated the efficacy of  UDCA as a treatment drug of  
NAFLD, reporting that UDCA treatment attenuated he-
patic steatosis, including histologic improvement[114,129,130]. 
However, in a placebo controlled, randomized control 
trial, UDCA exhibited limited efficacy in histologic im-
provement in subjects with NASH and improvements 
in liver enzyme did not differ in the UDCA group, com-
pared to the placebo group[130]. Accordingly, AASLD does 
not recommend UDCA for the treatment of  NAFLD[78].

Other treatment options - future candidates
Cilostazol: SREBP-1c is a key regulator of  lipogenic 
gene expression in hepatocytes. Recent data have shown 
that cilostazol, a selective type Ⅲ phosphodiesterase in-
hibitor, inhibits SREBP-1c expression via the suppression 
of  LXR and Sp1 activity[131]. Cilostazol also decreases 
serum triglyceride levels by increasing lipoprotein lipase 
(LPL) activity in STZ-induced diabetic rats[132]. Also, ex-
perimental data show that cilostazol stimulates LRP1 pro-
moter activity in hepatocytes, leading to increased hepatic 
LRP1 expression[133]. In a study that used two experimen-
tal NAFLD models, both high-fat/high-calorie (HF/HC) 
diet mice and the choline-deficient/L-amino acid-defined 
(CDAA) diet mice, cilostazol generated improvement in 

hepatic steatosis in both mice models[134]. Cilostazol ex-
hibits the potential for improvement of  hepatic steatosis, 
and further data on its role in NAFLD are needed. 

Polyunsaturated fatty acids and monounsaturated 
fatty acids: Polyunsaturated fatty acids (PUFAs) are 
found primarily in safflower, corn, soybean, cottonseed, 
sesame, and sunflower oils. Omega-3 fatty acids are rep-
resentative of  PUFA. A marked increase in long-chain 
PUFA n-6/n-3 ratio is observed in NAFLD patients and 
is associated with increased production of  pro-inflamma-
tory eicosanoids and dysregulation of  liver and adipose 
tissue function[135]. PPAR-α activity is impaired in condi-
tions in which levels of  circulating n-3 PUFA are de-
creased and the n-6/n-3 fatty acid ratio is increased[136,137]. 
Treatment with n-3 PUFA was shown to improve bio-
chemical parameters and alleviated hepatic steatosis by 
ultrasound follow-up[138,139]. Monounsaturated fatty ac-
ids (MUFAs) are comprised in olive oil. In a rat model, 
supplementation with MUFA resulted in improved insulin 
sensitivity, compared to rats fed a saturated fatty acid (SFA) 
diet. Additionally, GLUT4 translocation in skeletal muscle 
was decreased in rats fed a SFA diet, but not in those fed 
a MUFA diet. Increased GLUT4 translocation is related 
to an improvement in insulin sensitivity[140]. In obese rats, 
MUFA diet attenuated hepatic steatosis and altered he-
patic fatty acid levels[141]. The beneficial effects of  dietary 
MUFA in NAFLD patients should be investigated.

GLP-1 analogue: Exenatide is the synthetic form of  
exendin4 and it stimulates endogenous insulin secretion, 
leading to decreases in blood glucose. In one animal study, 
treatment of  exendin4 resulted in a decrease of  hepatic 
fat content, as well as reduction of  fatty acid synthesis, in 
the liver of  ob/ob mice[142]. In patients with type 2 dia-
betes, an exenatide treatment group showed greater im-
provements in liver enzymes, attenuating hepatic steatosis, 
than the metformin treatment group. However, this study 
had limitations of  a lack of  histologic confirmation of  the 
liver[143]. To prove the efficacy of  glucagon like peptide-1 
(GLP-1) analogue in treatment of  NAFLD, randomized 
controlled trials over a longer period are required.

MK615: MK615 is extracted from Japanese apricots, and 
can suppress the production of  inflammatory cytokines 
such as TNF-α and IL-6 by inactivating NF-κB[144,145]. 
MK615 is regarded as a hepatoprotective agent, as it has 
been shown that a MK615 treatment group exhibited 
greater decreases in liver enzyme levels, compared with 
control groups. In rat models, MK615 treatment mice 
showed more improved liver histology than control 
mice[146]. Thus, further studies are required to clarify the 
effects of  MK615 in subjects with NAFLD.

CONCLUSION
NAFLD is a common disease that can progress to liver 
cirrhosis. Moreover, NAFLD is strongly associated with 
type 2 diabetes and insulin resistance. NAFLD is the 
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result of  complex interactions among diet, metabolic 
components, adipose tissue inflammation, and mitochon-
drial dysfunction. The pathogenesis of  hepatic steatosis 
has not yet been fully determined. In this review, we 
outlined previously known mechanisms of  NAFLD, 
as well as introduced new mechanisms that have been 
recently discovered. Above all, we reviewed the mecha-
nisms of  drugs matched to the pathogenesis of  NAFLD. 
Furthermore, we introduced future treatment option for 
NAFLD. TZDs play a key role in restoring insulin sensi-
tivity and decreasing adipose tissue inflammation, gener-
ating histologic improvements in hepatic steatohepatitis. 
Pioglitazone can be used to treat NASH in patients with 
type 2 diabetes with biopsy-proven NAFLD; meanwhile, 
non-diabetic patients can be treated with vitamin E. Met-
formin is a well-known insulin sensitizer; however, fur-
ther study is needed to prove histologic improvements in 
patients with NAFLD. Additionally, the cholesterol-low-
ering agent ezetimibe has also shown histologic improve-
ments. Cilostazol acts on SREBP-1c and can improve 
dyslipidemia; however, further research is needed to 
clarify the relationship between NAFLD and cilostazol. 
Finally, there is an outstanding need for effective preven-
tive and therapeutic regimens to overcome NAFLD.

REFERENCES
1	 Teli MR, James OF, Burt AD, Bennett MK, Day CP. The 

natural history of nonalcoholic fatty liver: a follow-up study. 
Hepatology 1995; 22: 1714-1719 [PMID: 7489979]

2	 Milić S, Stimac D. Nonalcoholic fatty liver disease/steato-
hepatitis: epidemiology, pathogenesis, clinical presentation 
and treatment. Dig Dis 2012; 30: 158-162 [PMID: 22722431 
DOI: 10.1159/000336669]

3	 Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 
2002; 346: 1221-1231 [PMID: 11961152 DOI: 10.1056/NEJM-
ra011775]

4	 Byrne CD, Olufadi R, Bruce KD, Cagampang FR, Ahmed 
MH. Metabolic disturbances in non-alcoholic fatty liver 
disease. Clin Sci (Lond) 2009; 116: 539-564 [PMID: 19243311 
DOI: 10.1042/cs20080253]

5	 Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH. Sys-
tematic review of risk factors for fibrosis progression in non-
alcoholic steatohepatitis. J Hepatol 2009; 51: 371-379 [PMID: 
19501928 DOI: 10.1016/j.jhep.2009.03.019]

6	 Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty 
liver disease and hepatocellular carcinoma: a weighty con-
nection. Hepatology 2010; 51: 1820-1832 [PMID: 20432259 
DOI: 10.1002/hep.23594]

7	 Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, 
Horton JD, Cohen JC, Grundy SM, Hobbs HH. Prevalence of 
hepatic steatosis in an urban population in the United States: 
impact of ethnicity. Hepatology 2004; 40: 1387-1395 [PMID: 
15565570 DOI: 10.1002/hep.20466]

8	 Fan JG, Zhu J, Li XJ, Chen L, Lu YS, Li L, Dai F, Li F, Chen 
SY. Fatty liver and the metabolic syndrome among Shanghai 
adults. J Gastroenterol Hepatol 2005; 20: 1825-1832 [PMID: 
16336439 DOI: 10.1111/j.1440-1746.2005.04058.x]

9	 Cassader M, Gambino R, Musso G, Depetris N, Mecca F, Ca-
vallo-Perin P, Pacini G, Rizzetto M, Pagano G. Postprandial 
triglyceride-rich lipoprotein metabolism and insulin sensi-
tivity in nonalcoholic steatohepatitis patients. Lipids 2001; 36: 
1117-1124 [PMID: 11768156]

10	 Zelber-Sagi S, Nitzan-Kaluski D, Halpern Z, Oren R. Preva-
lence of primary non-alcoholic fatty liver disease in a popu-

lation-based study and its association with biochemical and 
anthropometric measures. Liver Int 2006; 26: 856-863 [PMID: 
16911469 DOI: 10.1111/j.1478-3231.2006.01311.x]

11	 Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, 
Boldt MD, Parks EJ. Sources of fatty acids stored in liver 
and secreted via lipoproteins in patients with nonalcoholic 
fatty liver disease. J Clin Invest 2005; 115: 1343-1351 [PMID: 
15864352 DOI: 10.1172/jci23621]

12	 Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr 
DR, Wang F, Hull RL, Boyko EJ, Retzlaff BM, Walden CE, 
Knopp RH, Kahn SE. The concurrent accumulation of intra-
abdominal and subcutaneous fat explains the association 
between insulin resistance and plasma leptin concentrations 
: distinct metabolic effects of two fat compartments. Diabetes 
2002; 51: 1005-1015 [PMID: 11916919]

13	 Miyazaki Y, Glass L, Triplitt C, Wajcberg E, Mandarino LJ, 
DeFronzo RA. Abdominal fat distribution and peripheral 
and hepatic insulin resistance in type 2 diabetes mellitus. 
Am J Physiol Endocrinol Metab 2002; 283: E1135-E1143 [PMID: 
12424102 DOI: 10.1152/ajpendo.00327.2001]

14	 Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, 
Baldi S, Ponti V, Pagano G, Ferrannini E, Rizzetto M. Insulin 
resistance in non-diabetic patients with non-alcoholic fatty 
liver disease: sites and mechanisms. Diabetologia 2005; 48: 
634-642 [PMID: 15747110 DOI: 10.1007/s00125-005-1682-x]

15	 Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Ro-
manelli AJ, Shulman GI. Mechanism of hepatic insulin resis-
tance in non-alcoholic fatty liver disease. J Biol Chem 2004; 279: 
32345-32353 [PMID: 15166226 DOI: 10.1074/jbc.M313478200]

16	 Erion DM, Shulman GI. Diacylglycerol-mediated insulin 
resistance. Nat Med 2010; 16: 400-402 [PMID: 20376053 DOI: 
10.1038/nm0410-400]

17	 Preiss D, Sattar N. Non-alcoholic fatty liver disease: an over-
view of prevalence, diagnosis, pathogenesis and treatment 
considerations. Clin Sci (Lond) 2008; 115: 141-150 [PMID: 
18662168 DOI: 10.1042/cs20070402]

18	 Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, 
Brown MS, Goldstein JL. Decreased IRS-2 and increased 
SREBP-1c lead to mixed insulin resistance and sensitivity 
in livers of lipodystrophic and ob/ob mice. Mol Cell 2000; 6: 
77-86 [PMID: 10949029]

19	 Li S, Brown MS, Goldstein JL. Bifurcation of insulin signal-
ing pathway in rat liver: mTORC1 required for stimulation 
of lipogenesis, but not inhibition of gluconeogenesis. Proc 
Natl Acad Sci USA 2010; 107: 3441-3446 [PMID: 20133650 
DOI: 10.1073/pnas.0914798107]

20	 Horton JD, Goldstein JL, Brown MS. SREBPs: activators 
of the complete program of cholesterol and fatty acid syn-
thesis in the liver. J Clin Invest 2002; 109: 1125-1131 [PMID: 
11994399 DOI: 10.1172/jci15593]

21	 Shimano H. SREBP-1c and TFE3, energy transcription factors 
that regulate hepatic insulin signaling. J Mol Med (Berl) 2007; 
85: 437-444 [PMID: 17279346 DOI: 10.1007/s00109-007-0158-5]

22	 Uyeda K, Repa JJ. Carbohydrate response element binding 
protein, ChREBP, a transcription factor coupling hepatic 
glucose utilization and lipid synthesis. Cell Metab 2006; 4: 
107-110 [PMID: 16890538 DOI: 10.1016/j.cmet.2006.06.008]

23	 Browning JD, Horton JD. Molecular mediators of hepatic 
steatosis and liver injury. J Clin Invest 2004; 114: 147-152 
[PMID: 15254578 DOI: 10.1172/jci22422]

24	 Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kel-
lum JM, Sanyal AJ. Activation and dysregulation of the un-
folded protein response in nonalcoholic fatty liver disease. 
Gastroenterology 2008; 134: 568-576 [PMID: 18082745 DOI: 
10.1053/j.gastro.2007.10.039]

25	 Hummasti S, Hotamisligil GS. Endoplasmic reticulum 
stress and inflammation in obesity and diabetes. Circ Res 
2010; 107: 579-591 [PMID: 20814028 DOI: 10.1161/circre-
saha.110.225698]

26	 Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, 
Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS. En-

Yoon HJ et al . Non-alcoholic fatty liver disease



807 November 27, 2014|Volume 6|Issue 11|WJH|www.wjgnet.com

doplasmic reticulum stress links obesity, insulin action, and 
type 2 diabetes. Science 2004; 306: 457-461 [PMID: 15486293 
DOI: 10.1126/science.1103160]

27	 Schwabe RF, Uchinami H, Qian T, Bennett BL, Lemasters 
JJ, Brenner DA. Differential requirement for c-Jun NH2-
terminal kinase in TNFalpha- and Fas-mediated apoptosis 
in hepatocytes. FASEB J 2004; 18: 720-722 [PMID: 14766793 
DOI: 10.1096/fj.03-0771fje]

28	 Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, 
Hotamisligil GS, Klein S. Endoplasmic reticulum stress is re-
duced in tissues of obese subjects after weight loss. Diabetes 
2009; 58: 693-700 [PMID: 19066313 DOI: 10.2337/db08-1220]

29	 Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gas-
troenterology 1998; 114: 842-845 [PMID: 9547102]

30	 Robertson G, Leclercq I, Farrell GC. Nonalcoholic steatosis 
and steatohepatitis. II. Cytochrome P-450 enzymes and oxi-
dative stress. Am J Physiol Gastrointest Liver Physiol 2001; 281: 
G1135-G1139 [PMID: 11668021]

31	 Halliwell B. Biochemistry of oxidative stress. Biochem Soc 
Trans 2007; 35: 1147-1150 [PMID: 17956298 DOI: 10.1042/
bst0351147]

32	 Skulachev VP. Role of uncoupled and non-coupled oxida-
tions in maintenance of safely low levels of oxygen and its 
one-electron reductants. Q Rev Biophys 1996; 29: 169-202 
[PMID: 8870073]

33	 Murphy MP. How mitochondria produce reactive oxygen 
species. Biochem J 2009; 417: 1-13 [PMID: 19061483 DOI: 
10.1042/bj20081386]

34	 Roden M, Price TB, Perseghin G, Petersen KF, Rothman 
DL, Cline GW, Shulman GI. Mechanism of free fatty acid-
induced insulin resistance in humans. J Clin Invest 1996; 97: 
2859-2865 [PMID: 8675698 DOI: 10.1172/jci118742]

35	 García-Ruiz C, Baulies A, Mari M, García-Rovés PM, Fer-
nandez-Checa JC. Mitochondrial dysfunction in non-alco-
holic fatty liver disease and insulin resistance: cause or con-
sequence? Free Radic Res 2013; 47: 854-868 [PMID: 23915028 
DOI: 10.3109/10715762.2013.830717]

36	 Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, 
Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN. 
Nonalcoholic steatohepatitis: association of insulin resistance 
and mitochondrial abnormalities. Gastroenterology 2001; 120: 
1183-1192 [PMID: 11266382 DOI: 10.1053/gast.2001.23256]

37	 Miele L, Grieco A, Armuzzi A, Candelli M, Forgione A, Gas-
barrini A, Gasbarrini G. Hepatic mitochondrial beta-oxidation 
in patients with nonalcoholic steatohepatitis assessed by 13C-
octanoate breath test. Am J Gastroenterol 2003; 98: 2335-2336 
[PMID: 14572600 DOI: 10.1111/j.1572-0241.2003.07725.x]

38	 Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress 
in the pathogenesis of nonalcoholic steatohepatitis. Free Radic 
Biol Med 2012; 52: 59-69 [PMID: 22064361 DOI: 10.1016/j.free
radbiomed.2011.10.003]

39	 McGarry JD, Foster DW. Importance of experimental con-
ditions in evaluating the malonyl-CoA sensitivity of liver 
carnitine acyltransferase. Studies with fed and starved rats. 
Biochem J 1981; 200: 217-223 [PMID: 7340831]

40	 Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooper-
ates with peroxisome proliferator-activated receptor alpha in 
transcriptional control of nuclear genes encoding mitochon-
drial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20: 
1868-1876 [PMID: 10669761]

41	 Costet P, Legendre C, Moré J, Edgar A, Galtier P, Pineau T. 
Peroxisome proliferator-activated receptor alpha-isoform 
deficiency leads to progressive dyslipidemia with sexu-
ally dimorphic obesity and steatosis. J Biol Chem 1998; 273: 
29577-29585 [PMID: 9792666]

42	 Seppälä-Lindroos A, Vehkavaara S, Häkkinen AM, Goto T, 
Westerbacka J, Sovijärvi A, Halavaara J, Yki-Järvinen H. Fat 
accumulation in the liver is associated with defects in insulin 
suppression of glucose production and serum free fatty ac-
ids independent of obesity in normal men. J Clin Endocrinol 

Metab 2002; 87: 3023-3028 [PMID: 12107194 DOI: 10.1210/
jcem.87.7.8638]

43	 Trayhurn P, Beattie JH. Physiological role of adipose tissue: 
white adipose tissue as an endocrine and secretory organ. 
Proc Nutr Soc 2001; 60: 329-339 [PMID: 11681807]

44	 Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida 
S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, 
Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, 
Kahn BB, Kadowaki T. Adiponectin stimulates glucose utili-
zation and fatty-acid oxidation by activating AMP-activated 
protein kinase. Nat Med 2002; 8: 1288-1295 [PMID: 12368907 
DOI: 10.1038/nm788]

45	 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miya-
gawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, 
Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara 
K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. 
Paradoxical decrease of an adipose-specific protein, adipo-
nectin, in obesity. Biochem Biophys Res Commun 1999; 257: 
79-83 [PMID: 10092513]

46	 Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, 
Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn SE. 
Relationship of adiponectin to body fat distribution, insulin 
sensitivity and plasma lipoproteins: evidence for inde-
pendent roles of age and sex. Diabetologia 2003; 46: 459-469 
[PMID: 12687327 DOI: 10.1007/s00125-003-1074-z]

47	 Asano T, Watanabe K, Kubota N, Gunji T, Omata M, Kad-
owaki T, Ohnishi S. Adiponectin knockout mice on high 
fat diet develop fibrosing steatohepatitis. J Gastroenterol 
Hepatol 2009; 24: 1669-1676 [PMID: 19788607 DOI: 10.1111/
j.1440-1746.2009.06039.x]

48	 Odegaard JI, Chawla A. Alternative macrophage activation 
and metabolism. Annu Rev Pathol 2011; 6: 275-297 [PMID: 
21034223 DOI: 10.1146/annurev-pathol-011110-130138]

49	 Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, 
Morel CR, Goforth MH, Subramanian V, Mukundan L, Fer-
rante AW, Chawla A. Alternative M2 activation of Kupffer 
cells by PPARdelta ameliorates obesity-induced insulin 
resistance. Cell Metab 2008; 7: 496-507 [PMID: 18522831 DOI: 
10.1016/j.cmet.2008.04.003]

50	 Li Z, Diehl AM. Innate immunity in the liver. Curr Opin Gas-
troenterol 2003; 19: 565-571 [PMID: 15703606]

51	 Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. 
Adipose tissue tumor necrosis factor and interleukin-6 ex-
pression in human obesity and insulin resistance. Am J Physi-
ol Endocrinol Metab 2001; 280: E745-E751 [PMID: 11287357]

52	 Carter-Kent C, Zein NN, Feldstein AE. Cytokines in the 
pathogenesis of fatty liver and disease progression to ste-
atohepatitis: implications for treatment. Am J Gastroen-
terol 2008; 103: 1036-1042 [PMID: 18177455 DOI: 10.1111/
j.1572-0241.2007.01709.x]

53	 Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù 
G, Martines D. Increased intestinal permeability in obese 
mice: new evidence in the pathogenesis of nonalcoholic ste-
atohepatitis. Am J Physiol Gastrointest Liver Physiol 2007; 292: 
G518-G525 [PMID: 17023554 DOI: 10.1152/ajpgi.00024.2006]

54	 Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, 
Desimone C, Song XY, Diehl AM. Probiotics and antibodies 
to TNF inhibit inflammatory activity and improve nonalco-
holic fatty liver disease. Hepatology 2003; 37: 343-350 [PMID: 
12540784 DOI: 10.1053/jhep.2003.50048]

55	 Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, 
Allman M, Wallace M. Toll-like receptor-4 signaling and 
Kupffer cells play pivotal roles in the pathogenesis of non-
alcoholic steatohepatitis. J Hepatol 2007; 47: 571-579 [PMID: 
17644211 DOI: 10.1016/j.jhep.2007.04.019]

56	 Thobe BM, Frink M, Hildebrand F, Schwacha MG, Hub-
bard WJ, Choudhry MA, Chaudry IH. The role of MAPK in 
Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-me-
diated signaling following trauma-hemorrhage. J Cell Physiol 
2007; 210: 667-675 [PMID: 17117477 DOI: 10.1002/jcp.20860]

Yoon HJ et al . Non-alcoholic fatty liver disease



808 November 27, 2014|Volume 6|Issue 11|WJH|www.wjgnet.com

57	 Jiang W, Sun R, Wei H, Tian Z. Toll-like receptor 3 ligand 
attenuates LPS-induced liver injury by down-regulation of 
toll-like receptor 4 expression on macrophages. Proc Natl 
Acad Sci USA 2005; 102: 17077-17082 [PMID: 16287979 DOI: 
10.1073/pnas.0504570102]

58	 Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, König-
srainer A, Maier KP, Bischoff SC, Bergheim I. Nonalcoholic 
fatty liver disease in humans is associated with increased 
plasma endotoxin and plasminogen activator inhibitor 1 
concentrations and with fructose intake. J Nutr 2008; 138: 
1452-1455 [PMID: 18641190]

59	 Su GL. Lipopolysaccharides in liver injury: molecular mech-
anisms of Kupffer cell activation. Am J Physiol Gastrointest 
Liver Physiol 2002; 283: G256-G265 [PMID: 12121871 DOI: 
10.1152/ajpgi.00550.2001]

60	 Aderem A, Ulevitch RJ. Toll-like receptors in the induction 
of the innate immune response. Nature 2000; 406: 782-787 
[PMID: 10963608 DOI: 10.1038/35021228]

61	 Suzuki A, Lindor K, St Saver J, Lymp J, Mendes F, Muto A, 
Okada T, Angulo P. Effect of changes on body weight and 
lifestyle in nonalcoholic fatty liver disease. J Hepatol 2005; 43: 
1060-1066 [PMID: 16140415 DOI: 10.1016/j.jhep.2005.06.008]

62	 Xiao J, Guo R, Fung ML, Liong EC, Tipoe GL. Therapeutic 
approaches to non-alcoholic fatty liver disease: past achieve-
ments and future challenges. Hepatobiliary Pancreat Dis Int 
2013; 12: 125-135 [PMID: 23558065]

63	 Tiikkainen M, Bergholm R, Vehkavaara S, Rissanen A, Häk-
kinen AM, Tamminen M, Teramo K, Yki-Järvinen H. Effects 
of identical weight loss on body composition and features of 
insulin resistance in obese women with high and low liver 
fat content. Diabetes 2003; 52: 701-707 [PMID: 12606511]

64	 Palmer M, Schaffner F. Effect of weight reduction on hepatic 
abnormalities in overweight patients. Gastroenterology 1990; 
99: 1408-1413 [PMID: 2210247]

65	 Ueno T, Sugawara H, Sujaku K, Hashimoto O, Tsuji R, Ta-
maki S, Torimura T, Inuzuka S, Sata M, Tanikawa K. Thera-
peutic effects of restricted diet and exercise in obese patients 
with fatty liver. J Hepatol 1997; 27: 103-107 [PMID: 9252081]

66	 Huang MA, Greenson JK, Chao C, Anderson L, Peterman 
D, Jacobson J, Emick D, Lok AS, Conjeevaram HS. One-
year intense nutritional counseling results in histological 
improvement in patients with non-alcoholic steatohepatitis: 
a pilot study. Am J Gastroenterol 2005; 100: 1072-1081 [PMID: 
15842581 DOI: 10.1111/j.1572-0241.2005.41334.x]

67	 Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal 
muscle glucose uptake. Physiol Rev 2013; 93: 993-1017 [PMID: 
23899560 DOI: 10.1152/physrev.00038.2012]

68	 Dixon JB, Bhathal PS, Hughes NR, O’Brien PE. Nonalcoholic 
fatty liver disease: Improvement in liver histological analy-
sis with weight loss. Hepatology 2004; 39: 1647-1654 [PMID: 
15185306 DOI: 10.1002/hep.20251]

69	 de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Lau-
rent D, Burkey BF. Effects of pioglitazone on adipose tissue 
remodeling within the setting of obesity and insulin resis-
tance. Diabetes 2001; 50: 1863-1871 [PMID: 11473050]

70	 Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, Oliver 
D, Bacon BR. Improved nonalcoholic steatohepatitis after 48 
weeks of treatment with the PPAR-gamma ligand rosigli-
tazone. Hepatology 2003; 38: 1008-1017 [PMID: 14512888 DOI: 
10.1053/jhep.2003.50420]

71	 Promrat K, Lutchman G, Uwaifo GI, Freedman RJ, Soza A, 
Heller T, Doo E, Ghany M, Premkumar A, Park Y, Liang 
TJ, Yanovski JA, Kleiner DE, Hoofnagle JH. A pilot study 
of pioglitazone treatment for nonalcoholic steatohepatitis. 
Hepatology 2004; 39: 188-196 [PMID: 14752837 DOI: 10.1002/
hep.20012]

72	 Belfort R, Harrison SA, Brown K, Darland C, Finch J, Har-
dies J, Balas B, Gastaldelli A, Tio F, Pulcini J, Berria R, Ma JZ, 
Dwivedi S, Havranek R, Fincke C, DeFronzo R, Bannayan 
GA, Schenker S, Cusi K. A placebo-controlled trial of piogli-

tazone in subjects with nonalcoholic steatohepatitis. N Engl 
J Med 2006; 355: 2297-2307 [PMID: 17135584 DOI: 10.1056/
NEJMoa060326]

73	 Aithal GP, Thomas JA, Kaye PV, Lawson A, Ryder SD, 
Spendlove I, Austin AS, Freeman JG, Morgan L, Webber J. 
Randomized, placebo-controlled trial of pioglitazone in non-
diabetic subjects with nonalcoholic steatohepatitis. Gastroen-
terology 2008; 135: 1176-1184 [PMID: 18718471 DOI: 10.1053/
j.gastro.2008.06.047]

74	 Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl 
AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia 
J, Unalp A, Van Natta M, Clark J, Brunt EM, Kleiner DE, 
Hoofnagle JH, Robuck PR. Pioglitazone, vitamin E, or pla-
cebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362: 
1675-1685 [PMID: 20427778 DOI: 10.1056/NEJMoa0907929]

75	 Nissen SE, Wolski K. Effect of rosiglitazone on the risk of 
myocardial infarction and death from cardiovascular causes. 
N Engl J Med 2007; 356: 2457-2471 [PMID: 17517853 DOI: 
10.1056/NEJMoa072761]

76	 Mannucci E, Monami M, Lamanna C, Gensini GF, Mar-
chionni N. Pioglitazone and cardiovascular risk. A compre-
hensive meta-analysis of randomized clinical trials. Diabetes 
Obes Metab 2008; 10: 1221-1238 [PMID: 18505403 DOI: 
10.1111/j.1463-1326.2008.00892.x]

77	 Shah P, Mudaliar S. Pioglitazone: side effect and safety pro-
file. Expert Opin Drug Saf 2010; 9: 347-354 [PMID: 20175701 
DOI: 10.1517/14740331003623218]

78	 Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, 
Cusi K, Charlton M, Sanyal AJ. The diagnosis and manage-
ment of non-alcoholic fatty liver disease: practice Guideline 
by the American Association for the Study of Liver Diseases, 
American College of Gastroenterology, and the Ameri-
can Gastroenterological Association. Hepatology 2012; 55: 
2005-2023 [PMID: 22488764 DOI: 10.1002/hep.25762]

79	 Bajaj M, Suraamornkul S, Piper P, Hardies LJ, Glass L, 
Cersosimo E, Pratipanawatr T, Miyazaki Y, DeFronzo RA. 
Decreased plasma adiponectin concentrations are closely re-
lated to hepatic fat content and hepatic insulin resistance in 
pioglitazone-treated type 2 diabetic patients. J Clin Endocri-
nol Metab 2004; 89: 200-206 [PMID: 14715850 DOI: 10.1210/
jc.2003-031315]

80	 Hirose H, Kawai T, Yamamoto Y, Taniyama M, Tomita M, 
Matsubara K, Okazaki Y, Ishii T, Oguma Y, Takei I, Saruta 
T. Effects of pioglitazone on metabolic parameters, body fat 
distribution, and serum adiponectin levels in Japanese male 
patients with type 2 diabetes. Metabolism 2002; 51: 314-317 
[PMID: 11887166]

81	 Lovren F, Pan Y, Quan A, Szmitko PE, Singh KK, Shukla 
PC, Gupta M, Chan L, Al-Omran M, Teoh H, Verma S. Adi-
ponectin primes human monocytes into alternative anti-in-
flammatory M2 macrophages. Am J Physiol Heart Circ Physiol 
2010; 299: H656-H663 [PMID: 20622108 DOI: 10.1152/ajp-
heart.00115.2010]

82	 Luyckx FH, Desaive C, Thiry A, Dewé W, Scheen AJ, Gielen 
JE, Lefèbvre PJ. Liver abnormalities in severely obese sub-
jects: effect of drastic weight loss after gastroplasty. Int J Obes 
Relat Metab Disord 1998; 22: 222-226 [PMID: 9539189]

83	 Moraes-Vieira PM, Yore MM, Dwyer PM, Syed I, Aryal P, 
Kahn BB. RBP4 activates antigen-presenting cells, leading to 
adipose tissue inflammation and systemic insulin resistance. 
Cell Metab 2014; 19: 512-526 [PMID: 24606904 DOI: 10.1016/
j.cmet.2014.01.018]

84	 Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, 
Ferrante AW. Obesity is associated with macrophage accu-
mulation in adipose tissue. J Clin Invest 2003; 112: 1796-1808 
[PMID: 14679176 DOI: 10.1172/jci19246]

85	 Koppaka S, Kehlenbrink S, Carey M, Li W, Sanchez E, Lee 
DE, Lee H, Chen J, Carrasco E, Kishore P, Zhang K, Hawkins 
M. Reduced adipose tissue macrophage content is associ-
ated with improved insulin sensitivity in thiazolidinedione-

Yoon HJ et al . Non-alcoholic fatty liver disease



809 November 27, 2014|Volume 6|Issue 11|WJH|www.wjgnet.com

treated diabetic humans. Diabetes 2013; 62: 1843-1854 [PMID: 
23349486 DOI: 10.2337/db12-0868]

86	 Marx N, Kehrle B, Kohlhammer K, Grüb M, Koenig W, 
Hombach V, Libby P, Plutzky J. PPAR activators as antiin-
flammatory mediators in human T lymphocytes: implica-
tions for atherosclerosis and transplantation-associated arte-
riosclerosis. Circ Res 2002; 90: 703-710 [PMID: 11934839]

87	 Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, 
Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, 
Chinetti-Gbaguidi G. PPARgamma activation primes hu-
man monocytes into alternative M2 macrophages with anti-
inflammatory properties. Cell Metab 2007; 6: 137-143 [PMID: 
17681149 DOI: 10.1016/j.cmet.2007.06.010]

88	 Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Har-
dies J, Cusi K, Mandarino LJ, DeFronzo RA. Effect of piogli-
tazone on abdominal fat distribution and insulin sensitivity 
in type 2 diabetic patients. J Clin Endocrinol Metab 2002; 87: 
2784-2791 [PMID: 12050251 DOI: 10.1210/jcem.87.6.8567]

89	 Moon JH, Kim HJ, Kim SK, Kang ES, Lee BW, Ahn CW, 
Lee HC, Cha BS. Fat redistribution preferentially reflects 
the anti-inflammatory benefits of pioglitazone treatment. 
Metabolism 2011; 60: 165-172 [PMID: 20092860 DOI: 10.1016/
j.metabol.2009.12.007]

90	 Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, 
Cline GW, Enocksson S, Inzucchi SE, Shulman GI, Petersen 
KF. The effects of rosiglitazone on insulin sensitivity, lipoly-
sis, and hepatic and skeletal muscle triglyceride content 
in patients with type 2 diabetes. Diabetes 2002; 51: 797-802 
[PMID: 11872682]

91	 Park CY, Park SW. Role of peroxisome proliferator-activated 
receptor gamma agonist in improving hepatic steatosis: Pos-
sible molecular mechanism. J Diabetes Investig 2012; 3: 93-95 
[PMID: 24843551 DOI: 10.1111/j.2040-1124.2012.00204.x]

92	 Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos 
A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH, Gao B, Deng 
CX. Hepatic-specific disruption of SIRT6 in mice results in 
fatty liver formation due to enhanced glycolysis and triglyc-
eride synthesis. Cell Metab 2010; 12: 224-236 [PMID: 20816089 
DOI: 10.1016/j.cmet.2010.06.009]

93	 Xiao C, Wang RH, Lahusen TJ, Park O, Bertola A, Maruyama 
T, Reynolds D, Chen Q, Xu X, Young HA, Chen WJ, Gao B, 
Deng CX. Progression of chronic liver inflammation and fi-
brosis driven by activation of c-JUN signaling in Sirt6 mutant 
mice. J Biol Chem 2012; 287: 41903-41913 [PMID: 23076146 
DOI: 10.1074/jbc.M112.415182]

94	 Marchesini G, Brizi M, Bianchi G, Tomassetti S, Zoli M, 
Melchionda N. Metformin in non-alcoholic steatohepatitis. 
Lancet 2001; 358: 893-894 [PMID: 11567710]

95	 Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, 
Depinho RA, Montminy M, Cantley LC. The kinase LKB1 
mediates glucose homeostasis in liver and therapeutic effects 
of metformin. Science 2005; 310: 1642-1646 [PMID: 16308421 
DOI: 10.1126/science.1120781]

96	 Pernicova I, Korbonits M. Metformin--mode of action and 
clinical implications for diabetes and cancer. Nat Rev Endo-
crinol 2014; 10: 143-156 [PMID: 24393785 DOI: 10.1038/nren-
do.2013.256]

97	 Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, 
Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, 
Goodyear LJ, Moller DE. Role of AMP-activated protein 
kinase in mechanism of metformin action. J Clin Invest 2001; 
108: 1167-1174 [PMID: 11602624 DOI: 10.1172/jci13505]

98	 Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park 
O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren 
TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates 
and inhibits SREBP activity to attenuate hepatic steatosis 
and atherosclerosis in diet-induced insulin-resistant mice. 
Cell Metab 2011; 13: 376-388 [PMID: 21459323 DOI: 10.1016/
j.cmet.2011.03.009]

99	 Bugianesi E, Gentilcore E, Manini R, Natale S, Vanni E, Vil-

lanova N, David E, Rizzetto M, Marchesini G. A randomized 
controlled trial of metformin versus vitamin E or prescrip-
tive diet in nonalcoholic fatty liver disease. Am J Gastroen-
terol 2005; 100: 1082-1090 [PMID: 15842582 DOI: 10.1111/
j.1572-0241.2005.41583.x]

100	 Garinis GA, Fruci B, Mazza A, De Siena M, Abenavoli S, 
Gulletta E, Ventura V, Greco M, Abenavoli L, Belfiore A. 
Metformin versus dietary treatment in nonalcoholic hepatic 
steatosis: a randomized study. Int J Obes (Lond) 2010; 34: 
1255-1264 [PMID: 20179669 DOI: 10.1038/ijo.2010.40]

101	 Uygun A, Kadayifci A, Isik AT, Ozgurtas T, Deveci S, Tuzun 
A, Yesilova Z, Gulsen M, Dagalp K. Metformin in the treat-
ment of patients with non-alcoholic steatohepatitis. Aliment 
Pharmacol Ther 2004; 19: 537-544 [PMID: 14987322]

102	 Nar A, Gedik O. The effect of metformin on leptin in obese 
patients with type 2 diabetes mellitus and nonalcoholic fatty 
liver disease. Acta Diabetol 2009; 46: 113-118 [PMID: 18839053 
DOI: 10.1007/s00592-008-0067-2]

103	 Haukeland JW, Konopski Z, Eggesbø HB, von Volkmann 
HL, Raschpichler G, Bjøro K, Haaland T, Løberg EM, Birke-
land K. Metformin in patients with non-alcoholic fatty liver 
disease: a randomized, controlled trial. Scand J Gastroenterol 
2009; 44: 853-860 [PMID: 19811343 DOI: 10.1080/00365520902
845268]

104	 Vernon G, Baranova A, Younossi ZM. Systematic review: 
the epidemiology and natural history of non-alcoholic fatty 
liver disease and non-alcoholic steatohepatitis in adults. Ali-
ment Pharmacol Ther 2011; 34: 274-285 [PMID: 21623852 DOI: 
10.1111/j.1365-2036.2011.04724.x]

105	 Miller ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Ap-
pel LJ, Guallar E. Meta-analysis: high-dosage vitamin E sup-
plementation may increase all-cause mortality. Ann Intern 
Med 2005; 142: 37-46 [PMID: 15537682]

106	 Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud 
C. Mortality in randomized trials of antioxidant supple-
ments for primary and secondary prevention: systematic 
review and meta-analysis. JAMA 2007; 297: 842-857 [PMID: 
17327526 DOI: 10.1001/jama.297.8.842]

107	 Hasegawa T, Yoneda M, Nakamura K, Makino I, Terano A. 
Plasma transforming growth factor-beta1 level and efficacy 
of alpha-tocopherol in patients with non-alcoholic steato-
hepatitis: a pilot study. Aliment Pharmacol Ther 2001; 15: 
1667-1672 [PMID: 11564008]

108	 Lavine JE. Vitamin E treatment of nonalcoholic steatohepa-
titis in children: a pilot study. J Pediatr 2000; 136: 734-738 
[PMID: 10839868]

109	 Vajro P, Mandato C, Franzese A, Ciccimarra E, Lucariello 
S, Savoia M, Capuano G, Migliaro F. Vitamin E treatment in 
pediatric obesity-related liver disease: a randomized study. J 
Pediatr Gastroenterol Nutr 2004; 38: 48-55 [PMID: 14676594]

110	 Kugelmas M, Hill DB, Vivian B, Marsano L, McClain CJ. 
Cytokines and NASH: a pilot study of the effects of lifestyle 
modification and vitamin E. Hepatology 2003; 38: 413-419 
[PMID: 12883485 DOI: 10.1053/jhep.2003.50316]

111	 Adams LA, Zein CO, Angulo P, Lindor KD. A pilot trial of 
pentoxifylline in nonalcoholic steatohepatitis. Am J Gastro-
enterol 2004; 99: 2365-2368 [PMID: 15571584 DOI: 10.1111/
j.1572-0241.2004.40064.x]

112	 Satapathy SK, Garg S, Chauhan R, Sakhuja P, Malhotra V, 
Sharma BC, Sarin SK. Beneficial effects of tumor necrosis fac-
tor-alpha inhibition by pentoxifylline on clinical, biochemi-
cal, and metabolic parameters of patients with nonalcoholic 
steatohepatitis. Am J Gastroenterol 2004; 99: 1946-1952 [PMID: 
15447754 DOI: 10.1111/j.1572-0241.2004.40220.x]

113	 Basaranoglu M, Acbay O, Sonsuz A. A controlled trial of 
gemfibrozil in the treatment of patients with nonalcoholic 
steatohepatitis. J Hepatol 1999; 31: 384 [PMID: 10453959]

114	 Laurin J, Lindor KD, Crippin JS, Gossard A, Gores GJ, Lud-
wig J, Rakela J, McGill DB. Ursodeoxycholic acid or clofi-
brate in the treatment of non-alcohol-induced steatohepatitis: 

Yoon HJ et al . Non-alcoholic fatty liver disease



810 November 27, 2014|Volume 6|Issue 11|WJH|www.wjgnet.com

a pilot study. Hepatology 1996; 23: 1464-1467 [PMID: 8675165 
DOI: 10.1002/hep.510230624]

115	 Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out 
the roles of PPAR alpha in energy metabolism and vascular 
homeostasis. J Clin Invest 2006; 116: 571-580 [PMID: 16511589 
DOI: 10.1172/jci27989]

116	 Shiri-Sverdlov R, Wouters K, van Gorp PJ, Gijbels MJ, Noel 
B, Buffat L, Staels B, Maeda N, van Bilsen M, Hofker MH. 
Early diet-induced non-alcoholic steatohepatitis in APOE2 
knock-in mice and its prevention by fibrates. J Hepatol 2006; 
44: 732-741 [PMID: 16466828 DOI: 10.1016/j.jhep.2005.10.033]

117	 Kiyici M, Gulten M, Gurel S, Nak SG, Dolar E, Savci G, 
Adim SB, Yerci O, Memik F. Ursodeoxycholic acid and ator-
vastatin in the treatment of nonalcoholic steatohepatitis. Can 
J Gastroenterol 2003; 17: 713-718 [PMID: 14679419]

118	 Athyros VG, Tziomalos K, Gossios TD, Griva T, Anagnostis 
P, Kargiotis K, Pagourelias ED, Theocharidou E, Karagiannis 
A, Mikhailidis DP. Safety and efficacy of long-term statin 
treatment for cardiovascular events in patients with coronary 
heart disease and abnormal liver tests in the Greek Atorv-
astatin and Coronary Heart Disease Evaluation (GREACE) 
Study: a post-hoc analysis. Lancet 2010; 376: 1916-1922 [PMID: 
21109302 DOI: 10.1016/s0140-6736(10)61272-x]

119	 Moon JH, Kang SB, Park JS, Lee BW, Kang ES, Ahn CW, Lee 
HC, Cha BS. Up-regulation of hepatic low-density lipopro-
tein receptor-related protein 1: a possible novel mechanism 
of antiatherogenic activity of hydroxymethylglutaryl-coen-
zyme A reductase inhibitor Atorvastatin and hepatic LRP1 
expression. Metabolism 2011; 60: 930-940 [PMID: 20951395 
DOI: 10.1016/j.metabol.2010.08.013]

120	 Jiang ZG, Robson SC, Yao Z. Lipoprotein metabolism in 
nonalcoholic fatty liver disease. J Biomed Res 2013; 27: 1-13 
[PMID: 23554788 DOI: 10.7555/jbr.27.20120077]

121	 Mensenkamp AR, Havekes LM, Romijn JA, Kuipers F. 
Hepatic steatosis and very low density lipoprotein secre-
tion: the involvement of apolipoprotein E. J Hepatol 2001; 35: 
816-822 [PMID: 11738112]

122	 Chalasani N, Aljadhey H, Kesterson J, Murray MD, Hall SD. 
Patients with elevated liver enzymes are not at higher risk 
for statin hepatotoxicity. Gastroenterology 2004; 126: 1287-1292 
[PMID: 15131789]

123	 Vuppalanchi R, Teal E, Chalasani N. Patients with elevated 
baseline liver enzymes do not have higher frequency of hepa-
totoxicity from lovastatin than those with normal baseline liv-
er enzymes. Am J Med Sci 2005; 329: 62-65 [PMID: 15711421]

124	 Chalasani N. Statins and hepatotoxicity: focus on patients 
with fatty liver. Hepatology 2005; 41: 690-695 [PMID: 15789367 
DOI: 10.1002/hep.20671]

125	 Browning JD. Statins and hepatic steatosis: perspectives 
from the Dallas Heart Study. Hepatology 2006; 44: 466-471 
[PMID: 16871575 DOI: 10.1002/hep.21248]

126	 Deushi M, Nomura M, Kawakami A, Haraguchi M, Ito 
M, Okazaki M, Ishii H, Yoshida M. Ezetimibe improves 
liver steatosis and insulin resistance in obese rat model of 
metabolic syndrome. FEBS Lett 2007; 581: 5664-5670 [PMID: 
18022391 DOI: 10.1016/j.febslet.2007.11.023]

127	 Yoneda M, Fujita K, Nozaki Y, Endo H, Takahashi H, 
Hosono K, Suzuki K, Mawatari H, Kirikoshi H, Inamori 
M, Saito S, Iwasaki T, Terauchi Y, Kubota K, Maeyama S, 
Nakajima A. Efficacy of ezetimibe for the treatment of non-
alcoholic steatohepatitis: An open-label, pilot study. Hepatol 
Res 2010; 40: 566-573 [PMID: 20412324 DOI: 10.1111/j.1872-
034X.2010.00644.x]

128	 Takeshita Y, Takamura T, Honda M, Kita Y, Zen Y, Kato 
K, Misu H, Ota T, Nakamura M, Yamada K, Sunagozaka 
H, Arai K, Yamashita T, Mizukoshi E, Kaneko S. The ef-
fects of ezetimibe on non-alcoholic fatty liver disease and 
glucose metabolism: a randomised controlled trial. Diabe-
tologia 2014; 57: 878-890 [PMID: 24407920 DOI: 10.1007/
s00125-013-3149-9]

129	 Leuschner UF, Lindenthal B, Herrmann G, Arnold JC, Rössle 
M, Cordes HJ, Zeuzem S, Hein J, Berg T. High-dose urso-
deoxycholic acid therapy for nonalcoholic steatohepatitis: a 
double-blind, randomized, placebo-controlled trial. Hepatology 
2010; 52: 472-479 [PMID: 20683947 DOI: 10.1002/hep.23727]

130	 Lindor KD, Kowdley KV, Heathcote EJ, Harrison ME, Jor-
gensen R, Angulo P, Lymp JF, Burgart L, Colin P. Ursode-
oxycholic acid for treatment of nonalcoholic steatohepatitis: 
results of a randomized trial. Hepatology 2004; 39: 770-778 
[PMID: 14999696 DOI: 10.1002/hep.20092]

131	 Jung YA, Kim HK, Bae KH, Seo HY, Kim HS, Jang BK, Jung 
GS, Lee IK, Kim MK, Park KG. Cilostazol inhibits insulin-
stimulated expression of sterol regulatory binding protein-
1c via inhibition of LXR and Sp1. Exp Mol Med 2014; 46: e73 
[PMID: 24458133 DOI: 10.1038/emm.2013.143]

132	 Tani T, Uehara K, Sudo T, Marukawa K, Yasuda Y, Kimura 
Y. Cilostazol, a selective type III phosphodiesterase inhibitor, 
decreases triglyceride and increases HDL cholesterol levels 
by increasing lipoprotein lipase activity in rats. Atherosclero-
sis 2000; 152: 299-305 [PMID: 10998457]

133	 Kim HJ, Moon JH, Kim HM, Yun MR, Jeon BH, Lee B, Kang 
ES, Lee HC, Cha BS. The hypolipidemic effect of cilostazol 
can be mediated by regulation of hepatic low-density li-
poprotein receptor-related protein 1 (LRP1) expression. 
Metabolism 2014; 63: 112-119 [PMID: 24139096 DOI: 10.1016/
j.metabol.2013.09.006]

134	 Fujita K, Nozaki Y, Wada K, Yoneda M, Endo H, Takahashi 
H, Iwasaki T, Inamori M, Abe Y, Kobayashi N, Kirikoshi H, 
Kubota K, Saito S, Nagashima Y, Nakajima A. Effectiveness 
of antiplatelet drugs against experimental non-alcoholic fatty 
liver disease. Gut 2008; 57: 1583-1591 [PMID: 18596193 DOI: 
10.1136/gut.2007.144550]

135	 Scorletti E, Byrne CD. Omega-3 fatty acids, hepatic lipid me-
tabolism, and nonalcoholic fatty liver disease. Annu Rev Nutr 
2013; 33: 231-248 [PMID: 23862644 DOI: 10.1146/annurev-
nutr-071812-161230]

136	 Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, 
Pettinelli P, Poniachik J. Increase in long-chain polyunsatu-
rated fatty acid n - 6/n - 3 ratio in relation to hepatic steato-
sis in patients with non-alcoholic fatty liver disease. Clin Sci 
(Lond) 2004; 106: 635-643 [PMID: 14720121 DOI: 10.1042/
cs20030326]

137	 Di Minno MN, Russolillo A, Lupoli R, Ambrosino P, Di Min-
no A, Tarantino G. Omega-3 fatty acids for the treatment of 
non-alcoholic fatty liver disease. World J Gastroenterol 2012; 18: 
5839-5847 [PMID: 23139599 DOI: 10.3748/wjg.v18.i41.5839]

138	 Capanni M, Calella F, Biagini MR, Genise S, Raimondi L, 
Bedogni G, Svegliati-Baroni G, Sofi F, Milani S, Abbate R, 
Surrenti C, Casini A. Prolonged n-3 polyunsaturated fatty 
acid supplementation ameliorates hepatic steatosis in pa-
tients with non-alcoholic fatty liver disease: a pilot study. 
Aliment Pharmacol Ther 2006; 23: 1143-1151 [PMID: 16611275 
DOI: 10.1111/j.1365-2036.2006.02885.x]

139	 Bouzianas DG, Bouziana SD, Hatzitolios AI. Potential treat-
ment of human nonalcoholic fatty liver disease with long-
chain omega-3 polyunsaturated fatty acids. Nutr Rev 2013; 
71: 753-771 [PMID: 24148001 DOI: 10.1111/nure.12073]

140	 Moon JH, Lee JY, Kang SB, Park JS, Lee BW, Kang ES, Ahn 
CW, Lee HC, Cha BS. Dietary monounsaturated fatty acids 
but not saturated fatty acids preserve the insulin signaling 
pathway via IRS-1/PI3K in rat skeletal muscle. Lipids 2010; 45: 
1109-1116 [PMID: 20960069 DOI: 10.1007/s11745-010-3475-3]

141	 Hanke D, Zahradka P, Mohankumar SK, Clark JL, Taylor 
CG. A diet high in α-linolenic acid and monounsaturated 
fatty acids attenuates hepatic steatosis and alters hepatic 
phospholipid fatty acid profile in diet-induced obese rats. 
Prostaglandins Leukot Essent Fatty Acids 2013; 89: 391-401 
[PMID: 24140006 DOI: 10.1016/j.plefa.2013.09.009]

142	 Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exen-
din-4, a glucagon-like protein-1 (GLP-1) receptor agonist, 

Yoon HJ et al . Non-alcoholic fatty liver disease



811 November 27, 2014|Volume 6|Issue 11|WJH|www.wjgnet.com

reverses hepatic steatosis in ob/ob mice. Hepatology 2006; 43: 
173-181 [PMID: 16374859 DOI: 10.1002/hep.21006]

143	 Fan H, Pan Q, Xu Y, Yang X. Exenatide improves type 2 dia-
betes concomitant with non-alcoholic fatty liver disease. Arq 
Bras Endocrinol Metabol 2013; 57: 702-708 [PMID: 24402015]

144	 Kawahara K, Hashiguchi T, Masuda K, Saniabadi AR, Ki-
kuchi K, Tancharoen S, Ito T, Miura N, Morimoto Y, Biswas 
KK, Nawa Y, Meng X, Oyama Y, Takenouchi K, Shrestha B, 
Sameshima H, Shimizu T, Adachi T, Adachi M, Maruyama 
I. Mechanism of HMGB1 release inhibition from RAW264.7 
cells by oleanolic acid in Prunus mume Sieb. et Zucc. Int J 
Mol Med 2009; 23: 615-620 [PMID: 19360320]

145	 Morimoto Y, Kikuchi K, Ito T, Tokuda M, Matsuyama T, 
Noma S, Hashiguchi T, Torii M, Maruyama I, Kawahara 
K. MK615 attenuates Porphyromonas gingivalis lipopoly-
saccharide-induced pro-inflammatory cytokine release via 
MAPK inactivation in murine macrophage-like RAW264.7 
cells. Biochem Biophys Res Commun 2009; 389: 90-94 [PMID: 
19706286 DOI: 10.1016/j.bbrc.2009.08.103]

146	 Hokari A, Ishikawa T, Tajiri H, Matsuda T, Ishii O, Matsu-
moto N, Okuse C, Takahashi H, Kurihara T, Kawahara K, 
Maruyama I, Zeniya M. Efficacy of MK615 for the treatment 
of patients with liver disorders. World J Gastroenterol 2012; 18: 
4118-4126 [PMID: 22919243 DOI: 10.3748/wjg.v18.i31.4118]

P- Reviewer: Liang J, Malnick S, Pan Q    S- Editor: Tian YL    
L- Editor: A    E- Editor: Wu HL

Yoon HJ et al . Non-alcoholic fatty liver disease



                                      © 2014 Baishideng Publishing Group Inc. All rights reserved.

Published by Baishideng Publishing Group Inc
8226 Regency Drive, Pleasanton, CA 94588, USA

Telephone: +1-925-223-8242
Fax: +1-925-223-8243

E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx

http://www.wjgnet.com


	800
	Back Cover

