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Abstract
Cancer stem cells (CSCs) are tumor cells that share functional characteristics with 
normal and embryonic stem cells. CSCs have increased tumor-initiating capacity 
and metastatic potential and lower sensitivity to chemo- and radiotherapy, with 
important roles in tumor progression and the response to therapy. Thus, a current 
goal of cancer research is to eliminate CSCs, necessitating an adequate phenotypic 
and functional characterization of CSCs. Strategies have been developed to 
identify, enrich, and track CSCs, many of which distinguish CSCs by evaluating 
the expression of surface markers, the initiation of specific signaling pathways, 
and the activation of master transcription factors that control stemness in normal 
cells. We review and discuss the use of reporter gene systems for identifying 
CSCs. Reporters that are under the control of aldehyde dehydrogenase 1A1, 
CD133, Notch, Nanog homeobox, Sex-determining region Y-box 2, and POU class 
5 homeobox can be used to identify CSCs in many tumor types, track cells in real 
time, and screen for drugs. Thus, reporter gene systems, in combination with in 
vitro and in vivo functional assays, can assess changes in the CSCs pool. We 
present relevant examples of these systems in the evaluation of experimental 
CSCs-targeting therapeutics, demonstrating their value in CSCs research.

Key Words: Cancer; Gene reporter systems; Cancer stem cells; Pluripotency transcription 
factors; Anticancer drugs; Preclinical analysis; Cancer stem cells marker

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Controversial cancer stem cells (CSCs) research has caused confusion in this 
discipline. CSCs should be analyzed based on their function with regard to their ability 
to generate serially transplantable tumors. However, such evaluations are expensive 
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and time-consuming and are fraught with ethical issues. Gene reporter assays can be 
used as a surrogate measure of the presence of CSCs in a sample. When combined with 
immunophenotyping and functional assays, reporter systems improve the quality of the 
evidence. However, there is no standard system; thus, the selection of an appropriate 
system must carefully consider its utility in previous works for the tumor type that is to 
be analyzed.

Citation: Salinas-Jazmín N, Rosas-Cruz A, Velasco-Velázquez M. Reporter gene systems for 
the identification and characterization of cancer stem cells. World J Stem Cells 2021; 13(7): 
861-876
URL: https://www.wjgnet.com/1948-0210/full/v13/i7/861.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i7.861

INTRODUCTION
Cancer stem cells (CSCs) constitute a small population in the heterogeneous tumor 
mass and have characteristics and functions of cancer cells and stem cells. In addition 
to the hallmark alterations of cancer cells, CSCs have the capacity to self-renew and 
generate a pool of transit-amplifying cells that produce tumor-bulk cells. Accordingly, 
CSCs can seed tumors when transplanted into immunocompromised or syngeneic 
animals. Also, CSCs mediate metastasis and the resistance to cytotoxic treatments, 
including radio- and chemotherapy, leading to minimal residual disease and cancer 
relapse[1-4].

CSCs differ from tumor-bulk cells with regard to phenotype and function. CSCs 
have a different gene expression profile and, thus, differentially expressed proteins 
that can be used as markers. CSCs are quiescent, and when they proliferate, they 
frequently undergo asymmetric cell division. The gene expression and consequent 
functional characteristics of CSCs are regulated in part by several key transcription 
factors that control stemness in embryonic and adult stem cells, including POU class 5 
homeobox 1 (POU5F1; OCT4), Nanog homeobox (NANOG), Sex-determining region 
Y-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and MYC proto-oncogene [5,6].

CSCs have been proposed to be the "seeds" for tumor initiation and development, 
metastasis, and recurrence in many tumors, based on their ability to repopulate tumor 
heterogeneity[2,7]. Given their critical function in tumor progression and clinical 
importance, many strategies for identifying CSCs have been described, including the 
quantification of the fraction of cancer cells that express markers that are associated 
with the CSCs phenotype; evaluation of the ability of cancer cells to form colonies in 
vitro; and assessment of their tumor-initiating potential in xenograft models, the gold 
standard approach for examining CSCs[8-10].

CSCs are identified by immunophenotyping by analyzing the expression of cell-
surface markers. Although this approach is used extensively, it has limited specificity, 
because dissimilar markers might be expressed in CSCs from disparate tumor 
subtypes and, in some cases, even between samples of the same subtype[7,11]. 
Conversely, analyzing tumor-initiating capacity by limiting-dilution xenotrans-
plantation (LDX) is expensive and time-consuming and requires many animals, posing 
an ethical dilemma for researchers. Further, LDX is unsuitable for high-throughput 
drug screening[9,12,13].

To supplement existing tools for identifying, isolating, and characterizing CSCs, 
several reporter gene systems have been developed, having proven to be useful in 
substituting or complementing the identification of CSCs by immunophenotyping[14,
15]. Reporter gene systems have become essential tools in analyzing the contribution 
of CSCs to cancer progression and developing CSCs-selective therapies. In this report, 
we provide integral information on the advantages and drawback of reporter gene 
systems for analyzing and studying CSCs. In addition, we review and discuss their use 
in the development of CSCs-targeting drugs, providing specific examples.

The use of biomarkers in analyzing CSCs 
The classical strategy for identifying, analyzing, isolating, and enriching CSCs entails 
the analysis of cell surface markers that are differential expressed between CSCs and 
non-CSCs[16-19]. The first CSCs markers were identified in acute myelogenous 
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leukemia (CD34+CD38-)[20]. Subsequently, markers that are shared between CSCs and 
normal human stem cells have been used to identify self-renewing CSCs in solid 
tumors (see[7,11] for reviews).

Immunophenotyping is widely used because it is easy and fast, and can be 
performed without special training. Fluorescence-activated cell sorting (FACS) and 
magnetic-activated cell sorting (MACS) with surface markers are the primary 
strategies for isolating CSCs[21]. FACS can sort by multiple biomarkers simultan-
eously, has robust specificity, and can be combined with other strategies to analyze the 
functional characteristics of CSCs, such as fluorescence screening of Hoechst 33342 
exclusion[22]. However, FACS requires sterile conditions, and cell sorting is stressful 
to cells, which can impact their behavior. Further, given that CSCs are a rare 
population, their sorting requires an excessive number of cells, leading to high experi-
mental costs, and treating cell cultures with trypsin can affect their expression of 
surface markers[8,23,24].

MACS is a simple antibody-based separation technique that does not requires 
specialized equipment; however, the number of biomarkers that can be used is limited, 
and thus, it might be unsuitable for complex CSCs immunophenotypes. The resulting 
purity is typically higher with FACS, but cell survival rates are better with MACS[14]. 
Both methods are invaluable in CSCs immunophenotyping. For example, leukemia 
stem cells have been able to be isolated and characterized by FACS[20,25].

However, the expression of CSCs surface markers depends on the type of tumor 
and the cell of tumor origin, showing heterogeneity between samples[26]. Thus, the 
immunophenotype of CSCs from a particular tumor can not be applied to all samples. 
Moreover, the expression of CSC surface markers can change over time or become 
susceptible to culture conditions[23,24]. For example, enzymatic dissociation of 
glioblastoma cells modifies the retention of CD133 at their surface[23], and in “stem-
like” pancreatic cancer cells, CD133 is upregulated under hypoxic culture conditions
[24]. In addition, the use of different commercial monoclonal antibodies (each with a 
different specificity) complicates the reproducibility of results[15,27]. Given these 
caveats, surface marker profiles of CSCs are frequently inconsistent between cancer 
types. Thus, immunophenotyping alone is considered to be insufficient to demonstrate 
changes in the CSCs pool and has limited use in developing new prognostic and 
therapeutic options for cancer[11,28,29].

To overcome these issues, non-membrane CSCs biomarkers have been identified, 
the most prominent of which is aldehyde dehydrogenase (ALDH). ALDH1 catalyzes 
the oxidation of aldehydes to carboxylic acids and retinol to retinoic acid, allowing 
detoxification from drugs and reactive oxygen species[30,31]. ALDH is expressed by 
normal stem cells, and high levels of ALDH1 activity are observed in CSCs, repres-
enting a reliable biomarker for identifying this subset of cells in tumors from many 
tissues, including breast, bladder, embryonal rhabdomyosarcoma, head and neck 
squamous cell carcinoma, and lung cancer[30]. Higher ALDH1 expression confers 
resistance to several chemotherapeutic agents, such as cisplatin, etoposide, 
fluorouracil, and gefitinib[32]. The selection of a population of interest must be based 
on the expression levels of the enzyme in the tumor cells, given the heterogeneity in 
CSCs phenotype between tumors[11]. For example, in breast tumors, 2 subpopulations 
of CSCs have been identified, but only one is ALDH+[33]. Thus, it is possible that 
different methods enrich distinct subpopulations of CSCs.

ALDH-based staining is also transient and depends on the presence of its substrate, 
rendering the system suitable only for a limited period[34,35]. To mitigate these 
disadvantages, Anorma et al[34] developed and tested a turn-on fluorescent probe 
(AlDeSense) in vitro and ex vivo. The methyl acetate (MA) group of AlDeSense MA is 
hydrolyzed by an intracellular esterase to form AlDeSense, and its aldehyde group is 
then oxidized to carboxylic acid by ALDH1A1 in CSCs, emitting fluorescence. The 
authors observed a 3-fold increase in fluorescence in spheres that were formed by 
purified CSCs. For the ex vivo evaluation, they analyzed the lungs of mice that had 
been injected intravenously with CSCs or non-CSCs through the tail vein to generate 
metastases. When the lungs were perfused with AlDeSense solution, the signal in the 
lungs from CSCs-injected mice was higher than in non-CSCs-injected mice. When 
AlDeSense was injected intratumorally, intratumoral CSCs could be observed in vivo 
using a whole-body fluorescence imager-but only for 2 weeks postimplantation.

These limitations and the need to track CSCs in vivo during metastasis, 
angiogenesis, and CSC-stroma interactions, have prompted the development of new 
tools, including reporter gene systems.
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REPORTER GENE SYSTEMS TO STUDY CSCs
A reporter gene system comprises an easily detectable reporter gene and a regulatory 
complex of transcriptional control (promoters or enhancers that are constitutive or 
inducible). The expression of the reporter gene reflects the direct activation of the latter 
in response to the binding of transcription factors to response elements. Reporters that 
are under constitutive promoters are used primarily to track cells that have been 
transduced with the construct[36]. Conversely, inducible reporters are used to monitor 
biological processes. When a reporter gene construct includes transcriptional control 
components, it functions as a molecular-genetic sensor that responds to endogenous 
transcription factors and transcription-regulating complexes that initiate and control 
reporter gene expression[36,37].

The design and development of reporting systems to analyze such properties as 
phenotypic plasticity and response to therapy require expertise in genetic engineering
[36,38,39]. Moreover, because reporter systems are usually designed to trigger the 
expression of fluorescent proteins, the incorporation of additional fluorescent dyes 
into the experiment should be planned carefully to prevent cross-contamination 
between the signals. Fortunately, there are various fluorescent proteins with a range of 
excitation and emission spectra (from blue to far red) and distinct structural properties 
and stability. The selection of the fluorescent protein must also consider its maturation 
time and half-life in the cell to match the desired application[36,37,40,41]. Altern-
atively, bioluminescent reporter genes with increased sensitivity can be used for in vivo 
applications[36]. The combination of luciferase genes with fluorescent protein-coding 
genes into a single sequence has provided an additional tool for analyzing cell 
populations in vivo and ex vivo, because this strategy allows 2 signals to be monitored 
independently[36,37].

In CSCs research, reporter gene systems have many advantages, because they allow 
live detection and isolation of CSCs from several tumor types. Further, these systems 
can be combined (simultaneously or sequentially) with other methods that analyze cell 
viability or the expression of other biomarkers, strengthening the distinction of CSCs 
vs non-CSCs and increasing the reliability of the evaluation of effects of stimuli on 
either population.

However, the value of a particular reporter gene systems in tracking a particular 
type of CSCs is directly proportional to its validation using in vitro and in vivo 
functional assays. Several reporting systems have been used to identify CSCs from 
various tumors (Table 1) and have thus become important tools for the study of CSCs 
biology[12,42-45].

Reporter gene systems based on CSCs biomarkers
As discussed, CSCs can be characterized by their expression of various differential 
markers, including: (1) Cell surface proteins, such as CD133; (2) Enzymes, such as 
ALDH1; and (3) Transcription factors[7,11]. Many reports support that self-renewal 
markers, including ALDH1A1, POU5F1, and SOX2, reliably distinguish CSCs several 
cancers[29,38,46,47]. However, because these molecules are intracellular, antibody-
based screens are not compatible with functional assays.

To overcome this limitation, reporter systems that are based on ALDH1A1 
expression have been developed by cloning fluorescent proteins under the control of 
the ALDH1A1 promoter[29,31,35]. These systems have been used to identify CSCs in 
breast cancer[31,35], colon cancer[35], and oral squamous cell carcinoma[29]. They can 
live track CSCs, allowing one to study CSCs dynamics in their microenvironment, 
increasing our understanding of CSCs involvement in the formation of metastases, 
resistance to therapy, and cancer recurrence. For example, a fluorescent reporter 
system that is based on control of the fusion protein mNeptune-TK by the ALDH1A1 
promoter was used to identify a population (mNeptunehigh) in breast cancer cells that 
were pluripotent, had high sphere-forming capacity, and were more resistant to 
chemotherapy and radiotherapy[31]. These mNeptunehigh cells were more tumorigenic 
in immunodeficient mice and generated highly resistant tumors. The reporter system 
efficiently identified and tracked CSCs in several luminal and mesenchymal breast 
cancer cell lines[31] and thus might be useful in studying CSCs dynamics in tumors.

A different approach exploits the finding that the glycoprotein CD133 is a CSCs 
surface marker in various cancers, including breast[11,48], colon[11,49], lung[11], and 
brain[11,16]. A reporter system that is based on CD133 expression has been developed 
and used to detect CSCs. Guerra-Rebollo et al[16] transduced human glioblastoma U87 
tumor cells with a trifunctional chimeric reporter that expresses Renilla reniformis 
luciferase, red fluorescent protein, and a truncated version of the herpes simplex virus 
thymidine kinase sr39tk (tTK), driven by the CD133 promoter. This strategy allowed 
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Table 1 Studies using reporter system based on known cancer stem cells biomarkers

Promoter gene/element 
response Reporter gene Tumor type Functional assays performed for 

validation

Sphere formation

Limiting-dilution xenotransplantation

Reprogramming of non-CSCs to CSCs after 
cytotoxic treatments

Extravasation potential

Far red fluorescent protein 
(mNeptune)

Breast cancer[31]

Drug sensitivity in vivo 

Sphere formation

Limiting-dilution xenotransplantation

tdTomato fluorescent protein Breast and colon cancer[35]

Drug sensitivity in vivo

Sphere formation

Xenotransplantation assays

ALDH 

DsRed2 fluorescent protein Oral squamous cell carcinoma[29]

Drug sensitivity in vitro 

Sphere formation

Transactivation assay

Limiting-dilution xenotransplantation

Drug sensitivity in vivo

CD133 Luciferase/RFP Glioma[16]

Drug sensitivity in vitro

Sphere formationLimiting-dilution 

xenotransplantation

Liver (cholangiocarcinoma) [94]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

AFP GFP

Pancreatic cancer[95]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

GFP Breast cancer[51]

Drug sensitivity in vivo

Sphere formation

Limiting-dilution xenotransplantation

Drug sensitivity in vivo

Notch

Luminescent protein Lung cancer[52]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

Extravasation potential

TERT GFP Osteosarcoma[53]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

s-SHIP GFP Prostate cancer[96]

Drug sensitivity in vitro

Sphere formation

Xenotransplantation assay

DACH1 GFP Breast cancer[97,98]

Transactivation assay
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Sphere formationLGR5 GFP Colorectal cancer[99]

Gene expression profiling of flow-sorted cells

ALDH: Aldehyde dehydrogenase; AFP: Alpha-fetoprotein; TERT: Telomerase reverse transcriptase; s-SHIP: Stem-SH2-domain-containing 5'-inositol 
phosphatase; LGR5: G-protein-coupled receptor 49, Gpr49; GFP: Green fluorescent protein; RFP: Red fluorescent protein.

them to independently monitor the entire tumor population or tumor cell subpopu-
lations with an active CD133 promoter by bioluminescence imaging or confocal 
microscopy[16]. When culturing U87 cells that were transduced with this reporter, an 
increase in the formation of tumorspheres was observed. The expression of the tTK 
gene from the construct selectively killed replicating cells with an active CD133 
promoter on treatment with ganciclovir[16].

Other reporter systems center on the activation of specific signaling pathways in 
CSCs. The Notch pathway, which maintains pluripotent hematopoietic stem cells by 
inhibiting their differentiation, is specifically involved in preserving self-renewal and 
amplification in CSCs, supporting tumor formation and mediating resistance to 
chemotherapeutic agents and recurrence in various tumor types[50]. However, the 
function and activity of Notch signaling is context-dependent in many tumors[49] and 
thus can not be considered a universal marker for CSCs. The use of reporter genes that 
respond to Notch signaling has facilitated the identification of a subset of cells with 
stem cell activity in breast[51] and lung cancer[52], in which the function of Notch 
signaling has been examined extensively. These reporter systems detect and monitor 
CSCs in vitro and in vivo, allowing the study of drug resistance in diverse experimental 
models. Hassan et al[52] used a Notch-green fluorescent protein (GFP) reporter 
construct that is activated when Notch intracellular domain translocate to the nucleus. 
They identified a subset of lung cancer cells with high Notch activity (GFPbright) with 
increased ability to form tumorspheres and generate GFPbright and GFPdim cell 
populations. Similarly, GFPbright cells were resistant to chemotherapy and tumorigenic 
in serial xenotransplantation assays, demonstrating that only cells with active Notch 
signaling could self-renew[52].

Another reporter gene system has been developed to detect CSCs, in which GFP is 
driven by the telomerase reverse-transcriptase (TERT) promoter, successfully 
enriching human osteosarcoma stem cells[53]. These GFP+ cells had greater sphere-
forming ability and enhanced stem cell-like properties, such as invasiveness, 
metastatic activity, and resistance to chemotherapeutic agents in vitro and in vivo[53]. 
Further, the subpopulation in which the hTERT promoter was activated had 
significantly higher tumorigenic activity in vivo. In orthotopic and ectopic transplant-
ations, the GFP+ cells consistently formed tumors at a lower number of injected cells; 
these tumors were phenotypically diverse and could initiate new tumors after serial 
transplantation[53]. However, certain osteosarcoma cell lines and two-thirds of clinical 
osteosarcoma samples are telomerase-negative, rendering TERT-dependent labeling 
unsuitable for some patients.

Reporter gene systems based on CSCs transcription factors
The transcription factors that regulate stemness in normal stem cells are also involved 
in cancer progression and CSC biology. In mouse embryonic stem cells, these factors 
form interconnected feed-forward transcriptional loops to establish and reinforce cell 
type-specific gene expression programs[54,55] (Figure 1A). The ensemble of core 
transcription factors and their regulatory loops constitutes core transcriptional 
regulatory circuitry in many signaling pathways that regulate CSCs functions[56] 
(Figure 1B).

High expression of OCT4 correlates with self-renewal, chemoresistance, and 
tumorigenic potential of bladder, breast, and glial cells[57-59] and an unfavorable 
prognosis in cervical, breast, and esophageal squamous cancers[58,60,61]. SOX2 is 
important in maintaining self-renewal and tumorigenesis and inhibiting differen-
tiation in CSCs from melanoma, lung adenocarcinoma, and lymphoma tissue[62-64], 
and its elevated expression correlates positively with drug resistance and poor 
survival in prostate, breast, and glioma cancer patients[65-69]. Overexpression of 
NANOG in CSCs promotes tumorigenicity by regulating self-renewal and prolif-
eration in prostate, ovarian, and head and neck squamous cells[4,70-72] and is an 
unfavorable prognostic marker in colorectal, renal, and rectal cancer patients[73-75]. 
KLF4 is a bifunctional transcription factor that can be an oncogenic or tumor 
suppressor signal, depending on the type of cancer[76]; lower KLF4 expression 
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Figure 1 The pluripotency transcription factors POU class 5 homeobox 1, Sex-determining region Y box-2 and Nanog homeobox control 
stemness. A: In embryonic stem cells, POU class 5 homeobox 1, Sex-determining region Y box-2 and Nanog homeobox form a transcription network that maintain 
pluripotency and inhibits differentiation. B: In cancer cells, those transcription factors play key roles in controlling the functional characteristics that define cancer stem 
cells. OCT4: POU class 5 homeobox 1; SOX2: Sex-determining region Y box-2; NANOG: Nanog homeobox.

contributes to cellular hyperproliferation and malignant transformation in 
meningioma and prostate cancer[77,78], but upregulation of KLF4 promotes tumor 
progression in osteosarcoma, breast, and gastrointestinal cancer[79-81]. MYC is 
usually dysregulated in human cancers, in which it cooperates with other factors 
during tumorigenesis and promotes invasiveness in CSCs[7,82,83].

Based on their relevance in cancer progression, pluripotent stem cell transcription 
factors have been used to develop reporter gene systems that are based on their 
promoters (Table 2). Several promoter-reporter constructs that incorporate portions of 
the Oct4, Sox2, and Nanog promoters have been used widely to monitor the 
reprogramming of murine somatic cells into an induced pluripotent state[38]. 
However, the expression levels of these transcription factors might be lower in CSCs 
and vary significantly between samples[84-88]. Moreover, the large promoter regions 
that are used in such constructs invariably contain response elements for other 
transcription factors, potentially reducing reporter specificity, limiting their 
application in identifying CSCs. Further, some of these genes, such as Oct4, have 
alternate transcripts and pseudogenes, complicating their detection[38,39].

Thus, systems that use reporter genes under the transcriptional control of promoters 
that are active specifically in human CSCs have been generated[15,35]. For example, a 
GFP reporter that is driven by the NANOG promoter was developed to enrich and 
track ovarian CSCs[72,89]. Wiechert et al[89] introduced this reporter into cisplatin-
naïve, high-grade, serous ovarian cancer patient-derived xenografts and ovarian 
cancer cell lines. GFP+ cells expressed higher levels of stem cell transcription factors 
(NANOG, SOX2, and POU5F1) and CSC surface markers (CD44, CD133, CD117, 
CD49f, and CD24) and showed increased tumor-initiating potential. GFP+CD49f+ 
patient-derived cells were enriched using the reporter system and CD49f staining. 
Further, the reporter system allowed the group to visualize dynamic changes in 
stemness in response to cisplatin treatment and to analyze the self-renewing capacity 
of cisplatin resistant cells[89].

Another example is a lentiviral reporter system, called SORE6, that was developed 
by Tang et al[38]. The system comprises 6 concatenated repeats of the SOX2 and OCT4 
response elements from the proximal human NANOG promoter, controlling the 
expression of reporter genes (GFP or mCherry). This tool was validated in vitro and in 
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Table 2 Studies using reporter system based on CSCs transcription factors.

Promoter 
gene/element 
response

Reporter gene Tumor type Functional assays performed for 
validation

Sphere formation

Limiting-dilution xenotransplantation

Extravasation potential

Breast cancer[100]

In vitro limiting-dilution assays 

Breast cancer[98] Transactivation assay

Sphere formation

Extravasation potential

Drug sensitivity in vitro

Prostate cancer[70]

Limiting-dilution xenotransplantation

Sphere formation

Limiting-dilution xenotransplantation

Extravasation potential

Drug sensitivity in vivo

Nasopharynx cancer [101]

Drug sensitivity in vitro

Sphere formationLimiting-dilution 
xenotransplantation

Extravasation potential

Liver (hepatocellular 
carcinoma)[45]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

Ovary cancer[89]

Drug sensitivity in vitro

Sphere formation

Xenotransplantation assay

Drug sensitivity in vitro

NANOG GFP; Luminescent protein

Ovary cancer[72]

Extravasation potential

Breast cancer[17] Sphere formation

Breast cancer[102] Sphere formation

Sphere formation

Drug sensitivity in vitro

Breast cancer[43]

Transactivation assay

Breast cancer[98] Transactivation assay

Sphere formation

Xenotransplantation assay

Glioma[46]

In vitro limiting-dilution assays

Limiting-dilution xenotransplantationSkin cancer[103]

Drug sensitivity in vivo

Sphere formationCervical cancer[104]

Limiting-dilution xenotransplantation

Sphere formationCervical cancer[105]

Transactivation assay

SOX2 tdTomato fluorescent protein/ Luminescent 
protein; GFP; Luminescent protein
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Thyroid cancer[106] Transactivation assay

Transactivation assay

Drug sensitivity in vivo

Teratomas from 
neoplastic hPSCs[12]

Progenitor assays (clonogenic and multilineage 
hematopoietic differentiation)

Sphere formation

Limiting-dilution xenotransplantation

Liver (hepatocellular 
carcinoma)[47]

Drug sensitivity in vitro

Sphere formation

Drug sensitivity in vitro 

Melanoma[92]

Xenotransplantation assay

Xenotransplantation assay

Drug sensitivity in vitro

Sarcoma[18]

Drug sensitivity in vivo

Sphere formation

Drug sensitivity in vitro

Breast cancer[43]

Transactivation assay

Transactivation assay

Drug sensitivity in vitro

OCT4 GFP; Luminescent protein

Teratomas from 
neoplastic hPSCs[12]

Progenitor assays (clonogenic and multilineage 
hematopoietic differentiation)

Sphere formation

Limiting-dilution xenotransplantation

Breast cancer[38]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

Sarcoma[42]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

Drug sensitivity in vivo

Prostate cancer[107]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

Gastric cancer[44]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

Malignant mesothelioma
[108]

Drug sensitivity in vitro

Sphere formation

Limiting-dilution xenotransplantation

Head and neck squamous 
cancer[109]

Drug sensitivity in vitro

Sphere formation

Transactivation assay

Limiting-dilution xenotransplantation

Drug sensitivity in vitro

SOX2-OCT4 GFP; mCherry fluorescent protein; 
Luminescent protein; Luminescent protein/ 
RFP

Glioma[16]
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Drug sensitivity in vivo

hPSCs: Human pluripotent stem cells; GFP: Green fluorescent protein; RFP: Red fluorescent protein

vivo in several models of breast cancer, tracking self-renewal, the generation of hetero-
geneous offspring, tumor- and metastasis-initiating activity, CSCs plasticity, and the 
response to therapeutics in real time. SORE6+ cells underwent asymmetrical cell 
division, generated SORE6- cells, and initiate tumors in serial transplantation, 
demonstrating that they have tumor-initiating ability and long-term self-renewal[38]. 
However, no CD44+CD24- cells (the subset commonly reported as breast CSCs) were 
enriched in the SORE6+ fraction, and there was no overlap with the ALDH1-positive 
population, suggesting that heterogeneity exists even within stem cell populations, as 
published[90]. Thus, CSCs detection with SORE6 in breast cancer is more robust than 
with typical biomarkers, rendering the system ideal for the preclinical evaluation of 
new drugs.

These examples indicate that systems that report the expression and activity of 
NANOG, SOX2, and OCT4 are valuable tools for studying CSCs, accelerating the 
development of more efficient and specific reporter systems and transgene delivery 
strategies. As discussed, the validation of such systems will require extensive and 
meticulously planned preclinical testing.

USE OF REPORTER GENE SYSTEMS IN THE EVALUATION OF NEW 
THERAPIES
The number of CSCs affects tumor progression, disease recurrence, promotion of 
angiogenesis, evasion of the immune system, and resistance to conventional anticancer 
therapies[1,2,18,91]. Increased CSC content in a tumor has also been associated with a 
more aggressive form and metastatic type[10,33,92,93]. Although certain therapeutic 
agents that target CSCs have been described[1,10,11,28], it is evident that new selective 
treatments should be developed. Several studies have demonstrated the value of 
reporter gene systems in identifying drugs that target CSCs and determining their 
mechanisms of action (Table 2). For example, the combination of reporting systems 
with cell viability-tracking dyes can distinguish agents that induce differentiation and 
the loss of self-renewing pluripotency vs those cause direct cytotoxicity.

In sarcomas, stemness is coordinated by the expression of the pluripotency factor 
SOX2. Accordingly, the SORE6 reporter system has been used to study the response of 
CSCs to therapeutics agents in patient-derived cell lines from undifferentiated 
pleomorphic sarcoma[42]. The simultaneous analysis of SORE6 and caspase-3 
activation identified the differential mechanism that was associated with the ability of 
trabectedin and EC-8042 to reduce the CSC fraction. Trabectedin is an efficient inducer 
of apoptosis in SORE6+ and SORE6- cells, but EC-8042 reduces the percentage of 
SORE6+ cells before the apoptotic effect becomes evident, suggesting that EC-8042 
switches off SORE6-related transcriptional activity and CSC-associated properties[42].

Similarly, Pádua et al[44] used the SORE6 reporter system to characterize CSCs from 
gastric cancer and evaluate small molecules in a high-throughput screen[44]. SORE6+ 
gastric cancer cells from the AGS and Kato III cell lines underwent increased sphere 
formation and tumorigenicity. Kato III SORE6+ cells had higher levels of ALDH1 
compared with SORE6− cells, but AGS cells did not express ALDH1. No other CSC-
marker was enriched in SORE6+ cells from either cell line, consistent with several 
reports that have demonstrated that stemness transcription factors are better markers 
of CSCs. In the same work, the authors screened 1200 compounds from the Prestwick 
chemical library in SORE6+ or SORE- cells and observed that monensin induces a 
reduction in cell number selective towards the SORE6+ population[44]. Given that 
SORE+ cells are resistant to 5-FU, the identification of monensin as a gastric CSC-
targeting drug might guide the development of future adjuvant therapies.

These examples, with those in Table 2, demonstrate that the transcriptional activity 
of pluripotency transcription factors can be used as a marker of CSCs in various tumor 
types. Thus, reporter systems can be implemented as a core component of analyses 
that identify compounds and molecules that target CSCs.
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CONCLUSION
In summary, the appropriate selection of a gene reporter system eliminates common 
obstacles in the CSCs research, based on their ability to:

Allow direct quantification and isolation of cells with CSCs properties in preclinical 
tumor models and freshly excised tumors.

Track cells in time and space (in vitro and in vivo) in the analysis of CSCs niches, 
interactions between CSCs and their microenvironment, and interactions with 
neighboring cells.

Circumvent direct cell staining procedures and avoid issues with label dilution 
phenomena.

Track functional properties of CSCs, such as their phenotypic plasticity.
Identify selective agents that target CSCs and could be useful for preclinical testing 

of anticancer drugs with high sensitivity.
Lastly, it is expected that new reporter gene systems will be generated in the coming 

years, after the identification of additional CSCs-specific promoters and response 
elements. Those reporter gene systems could be combined with genetic-editing 
strategies, such as the CRISPR/Cas9 system, to improve their specificity and reliability 
by reducing genomic instability due by the integration of indirect genetic markers 
through viral vectors.
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