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Abstract
Genome-wide association studies (GWAS) have been 
applied to various gastrointestinal and liver diseases 
in recent years. A large number of susceptibility genes 
and key biological pathways in disease development 
have been identified. So far, studies in inflammatory 
bowel diseases, and in particular Crohn’s disease, have 
been especially successful in defining new susceptibility 
loci using the GWAS design. The identification of 
associations related to autophagy as well as several 
genes involved in immunological response will be 
important to future research on Crohn’s disease. In 
this review, key methodological aspects of GWAS, the 
importance of proper cohort collection, genotyping 
issues and statistical methods are summarized. Ways 
of addressing the shortcomings of the GWAS design, 
when it comes to rare variants, are also discussed. 
For each of the relevant conditions, findings from the 
various GWAS are summarized with a focus on the 
affected biological systems.
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INTRODUCTION
The genetic epidemiology of  gastrointestinal diseases 
has been hard to unravel, despite the fact that many of  
the diseases have a high sibling recurrence risk pointing 
to genetic risk factors[1,2]. However, over the last three 
years, with the recent advent of  genome-wide association 
studies (GWAS), a wealth of  susceptibility loci have 
been discovered. Several hundred GWAS have been 
reported to this end, with thousands of  reports on novel 
disease genes and loci. Interestingly, inflammatory bowel 
disease (IBD) has been leading the race[3-17]. The genes 
and polymorphisms identified have revealed several 
biological pathways by which gastroenterological diseases 
develop and may eventually be treated. Although most 
of  the associations are weak in a statistical sense [odds 
ratios (OR) of  risk variants in the range of  1.1-1.2][10,18], 
they point to loci involved in biological systems worth 
investigating further with other methodologies. This 
current review includes studies published or available 
early online up to August 20, 2009.

The most important milestone in the development 
of  GWAS has clearly been the HapMap project which 
involved genotyping of  1 million single nucleotide 
polymorphisms (SNPs) of  the human genome in the 
first phase[19] and 3.1 million in the second phase[20]. 
Since the frequency of  genetic variants varies between 
different geographical regions, genotyping was performed 
in populations from Nigeria (Yoruba), Japan, China and 
the United States [residents with ancestry from Northern 
and Western Europe, collected in 1980 by the Centre d’
Etude du Polymorphisme Humain (CEPH) and used for 
other human genetic maps]. The HapMap website (www.
hapmap.org) reports on the frequencies of  the SNPs and 
their correlation through linkage disequilibrium (LD). 
The HapMap resource has become an invaluable tool for 
genetic research[21]. By taking into account the information 
regarding LD in HapMap, companies have been able to 
select SNPs for the most recent genome-wide genotyping 
arrays that provide information on more than 90% of  the 
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genetic variation in HapMap. In addition to SNPs selected 
via LD, modern genotyping arrays also contain markers 
with a high likelihood of  biological relevance (e.g. non-
synonymous SNPs leading to an amino acid change in 
the encoded protein), as well as probes designed to detect 
other types of  genetic variation (e.g. deletions, insertions 
and duplications of  DNA segments). Once completed, 
the currently ongoing 1000 genomes project (http://
www.1000genomes.org/), which aims at sequencing 
1000 individuals, will further add to the publicly available 
catalogues of  genetic variants and aid in the design of  
novel genotyping products.

The GWAS design contrasts with the traditional 
hypothesis-driven studies of  biomedical research. Initial 
criticism with regard to this design has been replaced by 
appraisal as the scientific community has realized that 
hypothesis-free data mining performed in a systematic 
manner[22] represents a powerful tool to pin-point 
biological systems and generate hypotheses for further 
research.

PHASES OF A GWAS
Table 1 summarizes the different parts in the study 
design that make up a GWAS. In the following 
paragraphs, detailed points are discussed regarding the 
GWAS study design, both for the researcher planning 
to embark on a GWAS and the casual reader trying to 
interpret the findings of  an existing study.

Cohort collection
To maximize the power to detect even low-effect risk 
variants, the study panels of  a GWAS should preferably 
contain DNA from as many patients and healthy controls 
as possible. However, this ideal is limited by several 
pragmatic factors such as the logistics of  identifying and 
classifying patients, recruitment formalities and financial 
constraints. Given the significant investment, with a 
considerably higher price per sample than for genotyping 
of  a few markers, great care should be taken in the 
sample collection process. The “lowest hanging fruits” 
with the highest risk effects were easily identified in the 
first round of  GWAS and further studies in the same 
phenotypes will require larger study panels to identify 
the genes associated with a more modest risk.

The phenotype of  the cases used in the study should 
be very homogeneous. For instance, for IBD it would be 
advisable to only include patients for whom long-lasting 
follow-up data is available in order to ensure the correct 
diagnosis was made (e.g. for IBD, 10% of  the patients 
change diagnosis during the first year of  the disease 
course[23]). Although a perfect phenotype description is 
the aim, a small misascertainment seems to only slightly 
reduce power[24]. If  the alternative is not to do a study at 
all, slight uncertainties in phenotyping can probably be 
accepted and other aspects for increasing power applied 
instead.

To enrich the sample collection with risk alleles 
and thereby increase power, familiar cases[25], which are 
believed to have the respective disease due to a larger 

contribution of  genetic factors, can be used. The risk 
estimates achieved in such a cohort should not be 
used to judge the risk effect of  the allele in the general 
population, both due to enrichment of  the associated 
alleles in these types of  panels and preferential selection 
of  the most associated markers (the so called ‘winner’s  
curse’)[26]. Therefore, replication of  findings and final 
effect size calculations need to be performed in separate 
study panels sampled without bias.

In rare diseases or in meta-analyses (see separate 
section on this subject below), case-control cohorts 
recruited in different countries and even continents[18,27] 
might be necessary to make the study panels large 
enough to perform sensible genome-wide association 
analyses. The main challenge that arises when several 
case-control cohorts are combined is differences in 
allele frequencies between populations; a problem that 
is particularly pronounced in African populations[28], but 
also needs to be taken into account when combining 
study panels of  European descent[29]. Recently, analytical 
tools utilizing genome-wide SNP data for correction 
of  population heterogeneity/stratification (e.g. the 
EIGENSTRAT software[30] and similar approaches[31]) 
have become available to generate non-inf lated 
population stratification-corrected test statistics. 

Healthy control data can be shared between groups 
working in different diseases, thereby reducing the 
cost of  genotyping. Increasing the control-to-case 
ratio increases the power. This was recently done to an 
extreme degree in an Icelandic study with 37 196 controls 
and 192 cases[32]. It is important to keep in mind that the 
gain in power is minute when increasing the control-to-
case ratio above 4. For example, the power at a P-value 
of  5 × 10-7 in a study including 1000 cases increases 
from 77% to 87% for an allele with a frequency of  0.2 
and an OR of  1.4, by increasing the number of  controls 
from 4000 to 10 000. 

Genotyping chips
The high density genotyping chips now available 
have the potential to assay up to 1 million markers 
(Affymetrix SNP 6.0 and Illumina 1M). In essence, the 
chips consist of  dense arrays of  specific labeled probes 
for given DNA sequences that will emit a light signal in 
the case of  hybridization (binding of  a matching DNA 
sequence in the investigated sample).

Since the price is lower, it has recently been 
suggested that the most cost-effective way to perform 
a GWAS is to continue using the older and cheaper 
arrays with medium density (300 000-500 000 SNPs) 
and then computationally determine untyped SNPs in 
the remainder of  the genome by means of  the HapMap 
reference (so called imputation)[33]. An even cheaper 
approach is to employ DNA-pooling[34]. This means 
that the DNA samples from several individuals are 
pooled together and subsequently used for genotyping. 
However, this design only yields estimated allele 
frequencies across all case or control samples instead 
of  individual genotypes. Therefore, analyses relying on 
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individuals’ genotypes such as phenotype associations 
and imputation are not possible.

Genetic coverage 
As opposed to a candidate gene study, a GWAS aims to, 
as the name implies, assay the whole genome. Therefore, 
the genetic coverage of  the employed genotyping array 
is of  crucial importance. At present, the dbSNP database 
(http://www.ncbi.nlm.nih.gov/sites/entrez) of  known 
SNPs includes over 12 million entries[35], and of  these 
almost 9 million are annotated as validated (for validation 
criteria see http://www.ncbi.nlm.nih.gov/projects/
SNP/snp_legend.cgi?legend=validation). Due to LD, 
assaying all these SNPs in a GWAS is not necessary to 
achieve complete genome-wide coverage. The genetic 
information obtained at SNPs can depending on the rate 
of  recombination within this genomic region - precisely 
predict the alleles of  closely linked, un-genotyped 
markers. There are substantial differences in the 
coverage between the different commercially available 
SNP arrays, but simulation has demonstrated that this 
does not necessarily translate into an increased power 
for detecting disease-associated variants[36]. It is also 
important to keep in mind that a high overall coverage 
does not necessarily mean that an individual gene is well 
covered, and at the gene level, there are large differences 
in coverage between different genotyping platforms[37]. 
Coverage estimations also tend to be biased, as in most 
cases the HapMap is used as the reference which is, by 
itself, assumed to be partially biased in terms of  selected 
SNPs and in terms of  included populations. Therefore, 
SNP arrays that mostly include HapMap tagging SNPs 
will have a higher genetic coverage compared to arrays 
that include random SNPs when basing assumptions on 
the HapMap.

Dataset quality
The sizes of  modern genome-wide datasets are larger by 
many magnitudes than what was typical for a candidate 
gene study. For instance, in a GWAS with 1000 cases 
and 1000 controls using the Affymetrix SNP 6.0, the 
number of  genotypes generated is 1.8 × 109. This huge 
amount of  data renders automatic and semi-automatic 
procedures necessary, since manual processing is 
simply not feasible. In principle, this process can be 
divided into two steps (1) Exclusion of  samples (low-
performance samples, related individuals and population 
outliers) and (2) Exclusion of  SNPs with evidence of  
bad performance. Partly this process has to be done 
iteratively as (a) influences (b) and vice-versa. Firstly, 
measures should be taken to ensure that the PCR and 
hybridization reaction are performed properly, and 
samples where this is not the case should be discarded 
at this stage or processed over again. Next, platform-
specific quality measures should be applied (e.g. the QC-
contrast for the Affymetrix SNP 6.0 chip[38]) to make 
sure the samples are within acceptable limits for the 
experiment as a whole. After this, genotype calling is 
performed, preferably in batches of  similarly handled 
samples as batch effects can have an impact on the 
results[39]. Next, samples with a low call-rate (typically < 
95%) and samples where there are mismatches between 
the gender recorded and the gender calculated based on 
the genotype data of  the X chromosome are detected 
and should be excluded, since both of  these measures 
can relate to poor performance on particular chips. 
The latter also can be due to sample mix-up. To avoid 
poor performing probes within otherwise acceptable 
arrays, SNPs with study-wise low genotyping rate  
(< 95%) should be removed along with SNPs with a low 
(< 1%) minor allele frequency. SNPs with a low minor 

Sample panel building
   Cases and healthy controls of same ethnicity (for power estimates see figure 2)
   Enrichment with early onset cases and/or familial cases
   Keep variability in phenotype at a minimum
   Establish replication cohort(s) after the same principles. Other, yet similar, ethnicities may be included, although matched healthy controls should be 
   collected
Genotyping
   Sample preparation (DNA extraction, calibration)
   Genotyping chip (cost vs number of samples)
   Genetic coverage
Initial quality control
   Exclude samples failing platform-specific QC measures
   Exclude samples with low call-rate
   Exclude SNPs with a low genotyping rate
   Exclude SNPs with a low minor allele frequency and those grossly out of Hardy-Weinberg equilibrium (e.g. P < 10-4)
Statistical analysis
   Imputation of non-genotyped SNPs using HapMap as the reference
   Single-point association analysis, if needed include covariates of interest in the present study (e.g. gender, sex, smoking, imputation uncertainties etc.)
   Manually inspect cluster plots for highly significant SNPs that should be followed-up
   Select 1-2 SNPs from each associated locus to take forward in replication
Replication
   Genotype (preferentially independent technology) in a panel of cases and healthy controls that are properly sized to detect effects in the same range as 
   seen in the discovery panel
Follow-up experiments
   Highly depends on results, i.e. nature of genetic finding, and normally not part of the GWAS design

Table 1  Phases in the initiation and analysis of a genome-wide association study
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allele frequency have a tendency to be mis-called by the 
clustering algorithm, since most likely only two instead of  
three clusters will be present in the signal intensity plots, 
with a significantly smaller heterozygote cloud. Even when 
one plans to use robust statistical tests, SNPs showing 
deviation (normal cut-off  P-values 10-4-10-7) from Hardy-
Weinberg Equilibrium in the healthy controls (not in the 
case/patient panel) should be removed, since this is also 
an indication of  low genotyping quality[40]. After these 
measures have been applied, the resulting SNP set can be 
forwarded to the initial association analysis for removal of  
duplicates, related individuals software and ethnic outliers 
with, for instance, PLINK[41] and EIGENSTRAT[30]. 
After the removal of  duplicates, related individuals and 
ethnic outliers, the SNP-specific quality measures should 
be performed over again on a fresh dataset without these 
samples. As the genotyping is an automatic process with 
little user input, one should go back to the raw data after 
the chosen statistical test has been performed to manually 
inspect the clustering plots of  top hits. An example of  
two typical cluster plots, one good and one bad, can 
be found in Figure 1. The SNPs with evidence of  bad 
clustering should be discarded and not followed up.

Imputation
To increase the number of  SNPs to test for association, 

the use of  imputation to estimate genotypes at un-
genotyped loci has become popular. Imputation will also 
increase call rates at all typed SNPs to 100%. Given the 
former feature, researchers may choose less dense and 
therefore cheaper arrays. Another advantage is that the 
chance to be closer to the possible functional variant, 
and hence statistical power - increases with a denser SNP 
data set.

In brief, imputation relies on the LD and haplotype 
information contained in a reference dataset. The 
HapMap datasets are most commonly used, which 
the algorithm aligns with the genotyped SNPs to 
use LD information to estimate the genotype at the 
target locus. Imputation has already been available in 
software packages such as PHASE and fastPHASE[42,43], 
however recent implementations such as MACH 
(http://www.sph.umich.edu/csg/abecasis/MaCH/), 
IMPUTE[44] and Beagle[45] specifically aimed at GWAS 
data are recommended[46] and have been shown to 
produce accurate and reliable results[47]. There are some 
differences between the software packages, with MACH 
and IMPUTE having the edge[47,48], but in general, they 
produce comparable results.

Statistical analysis
The goal of  a GWAS is to identify the genetic variants 
that are statistically associated with the disease or trait 
in question. The first step to achieve this is normally to 
perform a single-locus association test, i.e. only a single 
SNP is considered at a time. As up to 1 million SNPs are 
assessed, it is impossible to have an a priori hypothesis 
about the genetic model expected. The statistical test 
used should therefore be robust and powerful to detect 
different genetic models (e.g. dominant, recessive and 
allele-dosage). As both the allele count and genotype 
count χ2 tests do not meet these requirements, a trend-
based test is normally recommended, for instance the 
Cochrane-Armitage trend test. If  it is sensible to include 
co-variables in the disease model (e.g. sex, age, BMI etc.), 
the best way is to use a logistic regression procedure 
and add these as covariates. For quantitative traits (e.g. 
enzyme levels), normal linear regression is applicable and 
could also include co-variables.

After the initial test statistics have been calculated, 
the genomic inflation factor should be determined (i.e. 
the median χ2 test statistics observed divided by the 
expected test statistics) and a quantile-quantile plot (a 
plot of  the observed vs the expected test statistics or the 
negative logarithm of  the P-values) should be examined. 
The quantile-quantile plot should not, in the setting 
of  a non-stratified dataset, show large deviations from 
the expected distribution in the lower tail. In the upper 
tail, deviation indicates possible disease association. A 
genomic inflation factor above 1 typically indicates the 
presence of  population stratification (or a differential bias 
in genotyping)[49]. If  the genomic inflation factor is above 
1.1, methods for correcting for population heterogeneity 
should be considered. It is, however, important to note 
that a small increase in the inflation factor can be caused 
by disease-associated markers. 
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Figure 1  Example of cluster plots for two SNPs. Plot A shows the plotting 
of the normalized intensity values for a SNP with good clustering. Each color 
represents the respective genotype (blue for GG, green for AG and red for AA). 
Plot B demonstrates the cluster plot for a SNP with bad clustering (same color 
coding as in A). Disease-associated SNPs demonstrating cluster plots as in 
B should be discarded as the significant associations at such SNPs are most 
likely technical artifacts.
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Most of  the analytical methods described above are 
implemented in the software package, PLINK[41]. The 
analysis of  a small number of  cases and controls could 
in principle be analyzed on a standard desktop computer. 
However, for more computationally challenging analyses, 
e.g. imputation, and/or a large number of  cases and 
controls, the use of  a high-performance computing 
cluster with a comfortable batch job submission 
environment is desirable.

Methods looking at haplotypes[43,50] and gene-gene 
or SNP-SNP interactions (so called epistasis)[51] should 
also be applied. Recently, pathway-oriented analyses, 
i.e. analyzing SNPs that belong to genes in a common 
biological pathway[52-54], have been proposed. We would 
recommend that these methods are first applied after the 
main associations in the dataset have been explored and 
replicated.

Replication
Applying the traditional P-value cut-off  of  < 0.05 for 
statistical significance to a GWAS leads to the fact, 
even in the presence of  no association, that 5% of  
the tested SNPs are reported as statistically significant. 
In a typical GWAS where around 650 000 SNPs are 
tested, this means that 30 000-35 000 SNPs are reported 
to associate significantly with disease. To avoid this 
very large number of  false-positive results, a very 
conservative P-value cut-off  that is robust to correction 
using Bonferroni’s method has been described, namely 
the term of  a “genome-wide significant P-value”. In 
the Wellcome Trust case-control consortium landmark 
paper[5] this level was set to P < 5 × 10-7. However, 
with new chips assaying over 1 million markers and 
even imputed results with more than 2 million markers, 
this genome-wide significance threshold might not be 
conservative enough. On the other hand, simulation 
studies have suggested the effective number of  tests 
to be around 106[55]; the reason for this number being 
lower than the actual number of  tested SNPs being the 
correlation between SNPs due to LD. In Figure 2 the 
power estimates for different sample sizes for different 
ORs are shown. A few studies have already, in the first 
round of  analyses, been able to identify novel disease 

loci at genome-wide significance[56-58]. As most studies do 
not achieve such robust associations in their initial phase, 
a two-staged design is applied. This means that the 
strongest associated SNPs are carried forward to another 
study panel and again tested for association. Corrections 
for multiple testing must be applied to the association 
results obtained in the second stage. Even when applying 
strict criteria for selection of  SNPs for replication, 
normally only a few SNPs will replicate. While most 
often signifying that the original associations were 
due to type Ⅰ errors, this can also be due to different 
effects of  a disease variant in different populations, e.g. 
due to interaction with other genetic variants; so called 
epistasis[59].

BOWEL DISEASES (SEE TABLE 2 FOR 
DETAILS)
Inflammatory bowel diseases - ulcerative colitis and 
Crohn’s disease
Ulcerative colitis (UC) and Crohn’s disease are the two 
major phenotypes of  IBD with a combined incidence 
rate of  2.2 to 28.9 per 100 000 person-years in Caucasian 
populations[60], giving rise to inflammation in the colon 
and the entire intestinal tract, respectively[61]. The sibling 
recurrence risks are estimated to be 15-35 for Crohn’s  
disase and 6-9 for UC[1]. Besides the associations seen 
within the human leukocyte antigen (HLA)-complex[62-64], 
there was one particularly notable and reproducible 
genetic discovery in gastroenterology before the advent 
of  GWAS; the association of  Crohn’s disease with the 
NOD2 (also known as CARD15) gene[65,66]. A thorough 
review of  the relevant genetics, including the NOD2 
gene in Crohn’s disease before the GWAS era, can be 
found elsewhere[67]. 

Figure 3 shows the development of  Crohn’s disease 
genetics over the last 10 years. The eight GWAS 
performed in Crohn’s disease[3-9,15,17] have identified 
several loci influencing disease susceptibility and a 
recent meta-analysis implicated 20-30 additional loci[10]. 
It should be noted that the discovery panel and the 
replication panel used in the meta-analysis overlap with 
the previous studies and some of  the confirmatory 
associations are biased, as the original study panel is 
also included. Many of  the new findings in Crohn’s 
disease segregate into particular biological pathways and 
functions. Two of  the key pathways are autophagy and 
the IL-23/Th17 pathway. Autophagy is responsible for 
recycling of  cellular organelles and long-lived proteins, 
and plays an important role in tissue homeostasis and 
in the processing of  intracellular bacteria, which is also 
known as xenophagy. ATG16L1 may participate in this 
process via the regulation of  Paneth cells[68], whereas 
IRGM mediates autophagy of  intracellular bacteria[69]. 
IL-23 stimulates the Th17 cell population to produce 
IL-17 and other pro-inflammatory cytokines involved in 
intestinal inflammation[70,71]. Interestingly, one of  the first 
reported IBD genes by GWAS, IL-23R[4], participates in 
the IL-23/Th17 pathway. Through pathway analyses[53] 
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Figure 2  Power calculations for different case-control study panel sizes. 
Power calculations for different case-control study panel sizes using an allelic 
based association test and a P-value of P < 5 × 10-7. All calculations assume a 
minor allele frequency of 30% and 1:2 ratio of cases vs controls.
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Table 2  Genome-wide association studies in bowel disease

Disease Genotyping 
platform

Number of cases/
controls in discov-
ery panel

Number of cases/
controls in replica-
tion panel(s)

Novel Loci reported     Ref. Independently replicated

Celiac disease Illumina Hu-
manHap300

778/1422 991/1489 KIAA1109-TENR-IL2-IL21 
(4q27)

[112] [165,166]

Celiac disease
Two papers extending the 
study above with follow-
up of more markers

Illumina Hu-
manHap300

767/1422 Paper 1: 
1643/3406

Paper 2: 
2220/3851

Paper 1: 1q31 (RGS1), 3p21 
(CCR1, CCR2, CCRL2, 

CCR3, CCR5 and XCR1), 
2q12.1 (IL18RAP), 3q25-

3q26 (IL12A), 3q28 (LPP), 
6q25 (TAGAP), 12q24 (LNK 

and ATXN2), Paper 2: 
6q23.3 (TNFAIP3) REL

[113,114] (1q31, 3p21, 3q25-26, 3q28)[167]

(3q25-26, 12q24, 1q31, 3q28)[166]

(IL18RAP)[168]

Crohn’s disease Custom array 
(80k SNPs)

94/752 347 trios and 233 
multiplex families 
(Crohn’s disease 

and UC)

TNFSF15 [15] For CD: [10,77,169-171]

CD and UC:[14]

Crohn’s disease Custom 
SNPlex panel 
of non-synon-
ymous SNPs 

(16k) 

735/368 498/1032 and 380 
trios

ATG16L1 [3] [5,8-10,14,73,80,84,172-188]

Crohn’s disease Illumina Hu-
manHap300

547/548 401/433 and 883 
families (Crohn’s 
disease and UC)

IL23R [4] For CD: [5,9,13,14,17,73,79,82-84,173,174,178,

180,182,184,185,188-197]

For UC: [12,13,73,173,178,180,184,185,188,190,

191,193,195]

Crohn’s disease
Published in two articles; 
WTCCC main paper and 
separate Crohn’s disease 
paper

Affymetrix 
500k

1748/2938 1182/2024 IRGM
PTPN2
NKX2-3
MST1
1q24
1q31

IL12B
FLJ45139

[5,6] (IRGM, NKX2-3, 1q24)[184]

(IRGM, IL12B, MST1, NKX2-3, 
PTPN2,1q24)[73]

(MST1)[17]

(IRGM)[187]

(IRGM)[198]

(NKX2-3)[199]

(IRGM)[200]

(1q24, IRGM, IL12B, MST1, 
NKX2-3, PTPN2)[73]

(MST1)[201]

(IL12B, MST1, IRGM, 1q24)[84]

Crohn’s disease Perlegen 
array 164 279 

markers 

382 trios 752/828 and 521 
trios

Replication of already 
known loci

[17]

Crohn’s disease Affymetrix 
100k

393/399 1861/1961 and 829 
trios

NELL1 [7]

Crohn’s disease
Joint analysis of the 
individuals in study above 
with Sarcoidosis patients

Affymetrix 
100k

382/394
and 398 Sarcoidosis 

patients

1549/3361 and 
924 Sarcoidosis 

patients

10p12 [16]

Crohn’s disease Illumina Hu-
manHap300

946/977 353/207 and 530 
trios

10q21
PHOX2B

NCF4
FAM92B

[8] (NCF)[200]

(10q21)[199]

(10q21)[184]

(10q21)[84]

(10q21)[73]

Crohn’s disease Illumina Hu-
manHap300

547/928 1266/559 and 428 
trios

5p13.1 [9] [6,7,73,184]

Crohn’s disease Illumina Hu-
manHap300 
and Affyme-

trix 500k

3230/4829 2325/1809 and 
1339 trios

PTPN22, ITLN1, 1q32, 
CDKAL1, 6q21, CCR6, 

7p12, 8q24, JAK2, 10p11, 
C11orf30, LRRK2/MUC19, 
13q14, ORMDL3, STAT3, 

21q21, ICOSLG

[10] (1q32, LRRK2/MUC19, 7p12, 
8q24)[84]

Ulcerative colitis Custom In-
finium array 
(11k SNPs)

905/1465 936/1470 ECM1 [13]

Ulcerative colitis Affymetrix 
SNP 5.0

1167/777 1855/3091 IL-10, ARPC2, HLA-
BTNL2

[11] (HLA-BTNL2)[13], 
(HLA-BTNL2)[12]

Ulcerative colitis Illumina Hu-
manHap300 
and Human-

Hap550

1052/2571 1387/1115 1p36, 12q15 [12]
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of  other components of  this pathway the importance 
has been further demonstrated[54,72]. Importantly, a 
“pathway-based” analysis approach also takes into 
account variants that do not pass the formal threshold 
for being taking forward for replication in a traditional 
GWAS.

Several genes originally shown to associate with 
Crohn’s disease were recently shown to confer risk also 
for ulcerative colitis[73,74]. This indicates the presence of  

shared pathogenetic mechanisms in these closely-related 
conditions. However, disease genes that are specific for 
UC also exist, such as variants in the IL-10 gene[11]. This 
specific finding is supported by the fact that il-10 -/- 
mice develop colitis[75] closely resembling human UC. 
Other UC-specific regions are found at chromosome 
1p36 and 12q15[12], however, at these loci, the exact 
disease genes remain to be identified. The association of  
classical HLA alleles and UC is well known[63], and also 

Pediatric IBD (Crohn’s and 
Ulcerative colitis)

Illumina Hu-
manHap550

1011/4250 173/3481 + 
WTCCC Crohn’s 

cohort

20q13 (TNFRSF6B), 21q22                      [14] (20q13)[202]

Colorectal carcinoma Affymetrix 
100k + Af-

fymetrix 10k 
+ Custom 

panel

960/984 (numbers 
for Affymetrix 

100k, slightly more 
for the two other 

technologies)

4024/4042 8q24 (published simulta-
neously as study below)

                     [91] [87-90,92-99]

Colorectal carcinoma Illumina Hu-
manHap550 

930/960 7334/5246 8q24 (published simulta-
neously as study above)

                     [87] [88-99]

Colorectal carcinoma
Same discovery panel as 
study above, published 
separately 

Illumina Hu-
manHap550 

930/960 7473/5984 SMAD7                      [110] [88] 

Colorectal carcinoma
Extension of the two stud-
ies above with a staged 
design

Illumina Hu-
manHap550 

922/927 Phase 2: 
2854/2822

Phase 3: 
4287/3743

Phase 4: 
10 731/10 961

10p14, 8q23                      [25]

Colorectal carcinoma Illumina Hu-
manHap300 
and Human-

Hap240S

1012/1012 Phase 2: 2 024/2 
092

Phase 3: 
14 500/13 294

11q23                      [88] [203]

Colorectal carcinoma Illumina Hu-
manHap550 

+Human-
Hap300 and 

Human-
Hap240S

Phase 1: 1902/1929 Phase 2 - 39k 
SNPs: 4878/4914

13 406/14 012 
(Total number, all 
markers not geno-

typed in entire 
panel)

BMP4, CDH1, RHPN2, 
20p12.3

                     [18]

Hirschsprung’s disease Affymetrix 
500k

181/346 190/510 NRG1                      [120]

If the authors mainly reported one region with several candidate genes the region is listed with the candidates in the region in parentheses, while if a spe-
cific gene was reported this is listed. Where more than one panel was used, but jointly analyzed, the sum of cases and controls in these panels is listed.

Linkage scans 
identifies 9
susceptibility loci

First Crohn’s gene
that is widely 
replicated

NOD2

> 30 disease loci
identified in 
meta-analysis

Autophagy implicated 
in pathogenesis

ATG16L1  + IRGM

Involvement of
IL-23/Th17

IL23R

First Crohn’s GWAS

TNFSF15
Further possibilities:
   Larger meta-analysis
   Whole-genome sequencing
   Phenotype overlap analysis

1990’s 2000        2001        2002        2003        2004        2005       2006       2007         2008       2009

Human genome 
draft published

Hapmap released WTCCC study

Figure 3  Historical milestones in Crohn’s disease genetics. Developments in the knowledge of the genetics of Crohn’s disease. Only milestone gene discoveries 
are shown. With the publication of the Crohn’s disease meta-analysis in 2009 the number of replicated loci is now greater than 30.
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the GWAS SNPs near the HLA class Ⅱ genes are among 
the most prominent findings[11,12]. Functional enquiries 
are needed to clarify how the general IBD genes and 
phenotype-specific UC and Crohn’s disease genes 
operate in defining the IBD phenotype and even in 
affecting extraintestinal manifestations such as primary 
sclerosing cholangitis[64].

Except for one study regarding Crohn’s disease[15], 
which identified the TNFSFI5 gene in a Japanese 
population, all GWAS in IBD have so far been perfo
rmed in populations of  Caucasian decent. Follow-up 
studies of  TNFSFI5 have demonstrated differences in 
the effect across different populations[76,77]. This mirrors 
differences in IBD epidemiology in Asian populations 
compared to Caucasians[78], and further GWAS in Asia 
are likely to yield insight into differences in genetic 
susceptibility to IBD between these populations.

Notably, Crohn’s disease genes identified in adult 
patient populations show associations also in pediatric 
populations of  the same disease[14,79-84].

Colorectal cancer
Colorectal cancer is one of  the most important mali
gnancies world-wide, responsible for approximately 
500 000 deaths annually[85]. The relative risk in siblings 
is estimated to be between 2-7, depending on the site 
in the colon, with the right colon showing the highest 
heritability[86].

The chromosome 8q24 locus is the most widely-
replicated region for colorectal cancer discovered by 
GWAS[87-99]. This region has proven to harbor variants 
that predispose to several cancer types (e.g. prostate 
cancer and breast cancer[100-103]). As suggested by a 
recent publication[98], there is most likely more than 
one cancer-associated mutation at this locus. It was 
recently shown that one of  the lead SNPs (rs6983267) 
is related to MYC expression and the activity of  key 
Wnt signaling pathways[104,105]. In prostate cancer, it has 
been noted that the effect sizes of  the risk variants differ 
among populations, necessitating the need for further 
characterization, e.g. systematic re-sequencing[106] of  
this locus, to be performed in multiple ethnicities in 
parallel[107]. The association between colorectal cancer 
and genetic variants at chromosome 18q21, most 
probably in the SMAD7 gene, has been subjected to 
extensive characterization. This characterization has led 
to the identification of  a novel SNP which influences 
expression levels of  SMAD7, highlighting the importance 
of  SMAD7 expression in colorectal carcinogenesis[108]. 
Interestingly, a variant at chromosome 5p15 (rs401681), 
originally shown to confer risk for basal cell carcinoma, 
was recently reported to protect against colorectal 
carcinoma[109]. Most likely the causative variant(s) at this 
latter locus remain(s) to be defined. This finding is an 
example of  the complexity of  allelic associations at a 
disease locus.

Most of  the disease loci discovered in colorectal 
cancer exhibit low ORs (~1.1-1.2). Identification of  
further disease loci would therefore necessitate a large 
number of  cases and controls to achieve a sufficient 

power. In a recent meta-analysis of  two colorectal cancer 
GWAS studies[88,110], totaling 13 315 individuals, and 
subsequent replication in 27 418 individuals[18], as little 
as four novel loci (at chromosomes 14q22.2, 16q22.1 
19q13.1 and 20p12.3, respectively) were identified. 
This picture contrasts with the situation in Crohn’s 
disease where smaller study panels have detected more 
than 30 disease loci, and highlights the challenges of  
detecting disease loci in conditions with a low degree of  
heritability.

Celiac disease
When exposed to gluten, a protein found in wheat, rye 
and barley, celiac disease patients develop inflammatory 
lesions with villi destruction in the small intestine[111]. 
The main genetic factor predisposing to celiac disease, 
the HLA-DQB1*0201 variant, has been known for 20 
years[62]. However, since this HLA allele is present at 
high prevalence also in individuals who do not develop 
celiac disease[62], other genetic risk factors are likely to 
exist. One GWAS in celiac disease has been performed 
and published in three stages[112-114]. The first of  these 
publications demonstrated that, besides markers in 
the HLA-complex, variants in the IL2-IL21 region are 
associated[112]. Evidence concerning the involvement 
of  a specific variant in this region was not possible due 
to strong LD in the region. Interestingly, this region 
has also been shown to associate with type Ⅰ diabetes, 
rheumatoid arthritis and recently UC, hinting at the 
presence of  a common factor for immune-mediated 
diseases[115-117]. To increase the likelihood of  disease-gene 
identification in this GWAS data, additional non-HLA 
SNPs were subsequently subjected to genotyping in an 
even larger replication panel[113,114]. Solid evidence for 
association at several novel regions was obtained, several 
of  which harbor genes of  relevance to immunological 
components of  celiac disease pathogenesis (such as the 
chemokine-receptor cluster at chromosome 3p21, the 
IL12A locus at 3q25-3q26 and TNFAIP3). For other 
associations, e.g. the LPP gene at chromosome 3q28, 
further studies are required to define how defective 
gene function could contribute to the pathogenesis. As 
for the IL2-IL21 region, several of  the loci also show 
associations with type Ⅰ diabetes[118].

Hirschsprung’s disease
For Hirschsprung’s disease, a disease characterized 
by lack of  ganglia in the colon, there are large ethnic 
differences in incidence and clear cases of  family 
aggregation, both of  which are good indicators of  
a genetic contribution to pathogenesis. For a large 
proportion of  familial cases and a considerable amount 
of  sporadic cases, it has long been known that mutations 
in the RET gene are important[119]. In a small GWAS, 
Garcia-Barcelo et al[120] recently made several important 
discoveries. Firstly, they confirmed the associations 
previously detected at the RET locus. Secondly, they 
identified strong associations at the NRG1 gene. Thirdly, 
they reported a significant and strong interaction 
effect between NRG1 and RET polymorphisms in the 
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combined discovery and replication panel. The NRG1 
gene is probably important in the development of  the 
enteric nervous system and is thus a plausible biological 
candidate for a Hirschsprung’s disease gene. Another 
interesting aspect of  this study is that robust gene 
findings are possible even in small patient panels. This 
is probably more likely when the phenotype is clearly 
defined and shows early life debut, i.e environmental 
factors are less likely to be influential.

LIVER DISEASES (SEE TABLE 3 FOR 
DETAILS)
Biochemical markers of liver disease
One of  the most important clinical tools for detecting, 
diagnosing and monitoring liver diseases is the use of  
different biochemical parameters (often called ‘liver 
enzymes’). It has long been known that there are genetic 
factors influencing the level of  these enzymes, described 
in genetic terms as a genuine quantitative trait[121] that 
could either be due to (a) variants influencing the levels 
without any pathological condition present and/or 
(b) variants that are truly associated with liver disease 
and which indicates that undiagnosed cases of  disease 
are the cause of  the increased blood levels. Both of  
these entities are important to discover as: (a) may have 
practical implications for the handling of  apparently 
increased levels in healthy individuals, while (b) may 
serve as early markers for liver disease in apparently 
healthy individuals. Yuan et al[122] were able to identify 
6 different loci associated with the levels of  these 
enzymes (ALT: CPN1-ERLIN1-CHUK and PNPLA3-
SAMM50, ALP: ALPL, GPLD and JMJD1C-REEP, 
GGT: HNF1A). A large meta-analysis of  several GWAS 

datasets recently suggested highly significant associations 
with bilirubin levels and variants at the UGT1A1 and 
SLCO1B1 loci[123].

Drug-induced liver injury
In a very small genome-wide analysis in terms of  sample 
size, a highly significant association of  variants at the 
HLA-B locus was detected in 51 cases of  flucloxacillin-
induced liver injury[124]. The identified SNP was in LD 
with the HLA-B*5701 allele and subsequent direct 
genotyping confirmed this with an effect size equaling 
an OR of  80.6 (95% CI: 22.8-284.9). Although no 
formal replication panel was investigated, as many as 
20 out of  23 additional cases of  flucloxacillin-induced 
liver injury were HLA-B*5701 positive. This shows 
that development of  drug-induced liver injury is clearly 
dependent upon host factors of  which HLA variants are 
probably key determinants[125].

Non-alcoholic fatty liver disease (NAFLD)
There is an increased number of  subjects with NAFLD 
in siblings of  overweight children with NAFLD, 
indicating the presence of  genetic risk factors in this 
condition[126]. In a study evaluating the genetics of  
NAFLD using a quantitative measure (hepatic fat 
content measured by magnetic resonance imaging) an 
association with markers in the PNPLA3 gene was 
recently reported[127]. Importantly, the association was 
independent of  key confounders such as body mass 
index, alcohol consumption and diabetes. Noteworthy 
is that the low number of  SNPs assayed in the GWAS 
(approximately 10 000) was sufficient to generate this 
highly interesting finding[128]. Whereas the function 
of  the PNPLA3 gene is not known, the finding is 

Disease/trait Genotyping platform Number of cases/
controls in discovery 
panel

Number of cases/con-
trols in replication 
panel(s)

Novel Loci reported Ref. Independently 
replicated

Gallstone Affymetrix 500k 280/360 2000/1202 ABCG8 [140] [142]

Chronic hepatitis B Illumina HumanHap550 179/934 Second stage: 
607/1267 (12k SNPs)

Third stage: 1300/2100 

HLA-DPA/B [132]

Liver enzymes Affymetrix 500k (5636 samples)
Illumina

HumanHap550 (1200 samples), 
Two different Perlegen, custom 

arrays (879 samples)

7715 4704 ALT: CPN1-ERLIN1-
CHUK

PNPLA3-SAMM50
ALP: ALPL, GPLD, 

JMJD1C-REEP
GGT: HNF1A

[122]

Non-alcoholic fatty 
liver disease

Perlegen Custom array (12k) 2111 PNPLA3 [127]

Primary Biliary Cir-
rhosis

Illumina
HumanHap370 and Illumina, 

HumanHap300

505/1507 526/1206 IL12A, IL12RB2 [27]

Drug-induced liver 
injury due to Flu-
cloxacillin

Illumina 1M 51/282 23 cases (only HLA 
typed)

HLA-B*5701 [124]

Response to hepati-
tis C treatment

Illumina HumanHap610 1671 IL28B [137]

Table 3  Genome-wide association studies in liver disease

If the authors mainly reported one region with several candidate genes the region is listed with the candidates in the region in parentheses, while if a spe-
cific gene was reported this is listed. Where more than one panel was used, but jointly analyzed, the sum of cases and controls in these panels is listed. 
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substantiated by differential regulation of  the gene 
in different metabolic states[129]. Since NAFLD is an 
increasingly common condition, it is interesting to note 
that this locus also shows associations with alanine 
transaminase levels in the liver enzyme population-based 
study mentioned above[122].

Viral hepatitis
Hepatitis B is one of  the major causes of  world-wide 
liver morbidity and mortality[130]. Part of  the variability 
in clinical course[131] is related to viral properties, but 
there is strong reason to believe that host genetics are of  
importance. In a three-staged GWAS design, particular 
variants of  the class Ⅱ HLA-DPA and HLA-DPB 
genes were recently shown to be associated with chronic 
hepatitis B infection in Asian populations[132]. The HLA-
complex is characterized by strong LD[133] and, as hinted 
at by other studies, distinct HLA genes may prove to be 
important[134]. To clarify this, verification of  the Asian 
findings in Caucasian populations and supplementary 
mechanistic studies are needed. Chronic hepatitis C is a 
progressive liver disease, complicated by development 
of  cirrhosis and hepatocellular carcinoma[135]. Treatment 
with pegylated interferon and ribavirin offers the 
potential of  viral eradication in up to 80% of  the 
patients[136]. In a GWAS of  treatment response, variants 
in the IL28B gene were found to be associated in the 
three (European-Americans, African-Americans and 
Hispanics) ethnicities tested[137], shedding light on the 
biological mechanisms operating to define treatment 
success.

Gallstones
Defects of  bile formation are likely to be important in 
the development of  biliary calculi[138], inspiring candidate 
gene studies of  important transport proteins involved 
in this process[139]. Given this a priori knowledge, it was 
not surprising that the main disease locus in a German 
gallstone GWAS was ABCG8, encoding a component of  
the cholesterol transporter heterodimer ABCG5/G8[140]. 
Interestingly, the findings in previous linkage studies 
support the GWAS results[141]. The ABCG8 effect is not 
specific to Caucasian populations, as is evident from a 
Taiwanese report[142].

Primary biliary cirrhosis
Primary biliary cirrhosis (PBC) is a chronic cholestatic 
liver disease characterized by autoimmune destruction of  
the biliary canaliculi. There is evidence for genetic factors 
being involved in pathogenesis with a sibling recurrence 
risk reported at approximately 10.5[2]. PBC has long been 
known to exhibit strong HLA associations[143,144], so it 
was not surprising that SNPs in the HLA-complex were 
among the top hits of  a recent GWAS[27]. Of  particular 
interest were associations detected at the IL12A and 
IL12RB loci, strongly supporting the presence of  
autoimmune mechanisms in PBC pathogenesis. Genetic 
defects of  the IL-12 pathway have been proposed in 
other autoimmune conditions and the findings in PBC 

are thus in line with a paradigm where the majority of  
GWAS findings in these conditions seem to be common 
denominators rather than disease specific-findings[145].

FURTHER POSSIBILITIES WITH THE 
GWAS APPROACH
Meta-analysis
The advent of  imputation has facilitated integration 
of  data from different genotyping platforms[10,146,147]. 
A meta-analysis of  GWAS data sets in type 2 diabetes 
has highlighted the importance of  risk variants with 
low effect sizes[148,149]. In this condition, one of  the loci 
with a low effect size (OR < 1.2) is the PPARG locus, 
where the biological implications in terms of  glitazone 
therapeutics in type Ⅱ diabetes has long been proven. 
In gastroenterology, a large GWAS meta-analysis has so 
far only been performed in Crohn’s disease, where more 
than 30 loci were detected[10]. There is also a potential for 
combining different but related phenotypes to increase 
power in discovering factors common to both entities. A 
common risk factor for Crohn’s disease and sarcoidosis, 
both of  which are characterized by granulomas, was 
discovered with such an approach[16], and similar 
approaches can be defined for other clinical features of  
otherwise unrelated conditions[109,115]. 

In this way, GWAS studies also herald collaboration 
between research groups in different countries and across 
scientific traditions, a trend which can possibly generate 
scientific initiatives and discoveries, even beyond the 
meta-analyses. In the Genetic Association Information 
Network (GAIN) consortium (http://www.genome.
gov/19518664), the collaboration has been formalized 
and has led to a series of  successful publications[150]. 
Interestingly, researchers have also released their datasets 
into the public domain, partly due to requirements from 
their funding sources (e.g. NIH). The release of  data 
has been facilitated through the dbGAP interface[151]; 
however caution needs to be exercised in terms of  data 
protection and privacy issues[152]. 

Copy number variants (CNVs)
In the present review we have focused on the typical 
findings of  a GWAS; the associations between particular 
SNPs and a disease trait. The importance of  further 
genetic and functional characterization of  SNP 
findings is highlighted by the association between a 
deletion polymorphism at the IRGM locus and Crohn’s 
disease[153], a mutation which was later shown to alter the 
expression level of  IRGM[154]. Interestingly, this deletion 
was perfectly correlated with a SNP in the first study 
reporting an association in this region[6]. With dense 
SNP arrays and the aid of  imputation of  un-genotyped 
markers, there is a good chance of  detecting CNV 
associations through LD in this manner. In addition, the 
genotyping chips have separate probes for CNVs and 
specific computer algorithms can use these probes (and 
even the intensities from the SNP probes) to generate 
genotypes for CNVs at a given position. Most likely we 
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will see a number of  studies, even in gastroenterology 
and hepatology, where the application of  these 
algorithms will lead to the identification of  disease-
associated CNVs[155,156]. 

Deep re-sequencing
Due to the inherent design of  the SNP arrays and the 
available SNPs in the HapMap, rare variants (frequency 
< 1%-10%) are not easi ly detected in a GWAS 
analysis[157]. Also for statistical reasons, the power for 
detecting such variants in the unbiased GWAS design 
is low. In addition to common variants influencing 
gene expression or protein function, a disease locus 
can be constituted by a multitude of  rare variants with 
a high penetrance. This is a well-known phenomenon 
in monogenic diseases such as cystic fibrosis, where 
hundreds of  rare disease-causing mutations have been 
defined[158]. Probably the typical situation at a disease 
locus is a combination of  common and rare disease 
variants, as highlighted for the NOD2 locus (20% rare, 
80% common)[159]. Only the common variants are 
“visible” in the GWAS design, but this does not thus 
exclude the presence of  additional disease-causing 
variants at a locus only detectable by careful investigation 
of  the identified disease genes. The identification of  a 
disease-related variant with a functional effect, even if  
only present in singular patients[160], can yield important 
insight into the pathogenesis of  a condition. Over the 
last few years second generation sequencing technology 
(also called next-generation) has become available. This 
technology is able to resequence large regions of  DNA 
or even complete human individual genomes[161]. There 
are now three commercial platforms available (SOLiD 
from Applied Biosystems, 454/FLX from Roche and 
Genome Analyzer from Illumina), all of  which offer 
unprecedented throughput when compared to traditional 
Sanger sequencing (which has been the gold standard 
since 1977[162]). The application of  a combined re-
sequencing/association study approach was recently 
demonstrated in type 1 diabetes with the identification 
of  IFIH1 variants with likely functional effects[163]. No 
such extensive re-sequencing studies have so far been 
performed in gastroenterology or hepatology.

CONCLUSION
GWAS have proven to be an important tool for 
dissecting the genetic architecture of  common diseases. 
The genotyping arrays and statistical tools are now 
mature and their application has been a huge success in 
gastroenterology. In crude numbers, in only 2-3 years, 
the approach has delivered many times the number of  
genes that were discovered during the first 15-20 years 
of  gastroenterological disease genetics. As illustrated 
by several of  the findings we have summarized in this 
review, the effect sizes are often low and can only be 
discovered with large case-control collections. Clearly, 
for some diseases (such as primary sclerosing cholangitis) 
this situation may not be achievable and complementary 
approaches (e.g. pathway analyses[52-54]) may be needed to 

identify genetically defined disease mechanisms. 
As we have argued in the present review, and which is 

also a view shared by the editors of  prominent journals, 
the size of  the study panels is important. Interestingly, 
however, several of  the genes so far confirmed were 
initially detected in what was an apparently under-
powered discovery panel (e.g. TNFSF15 discovered 
in 94 cases[15]). In addition, clinically highly important 
findings have been made in small case-control panels[57]. 
Therefore, GWAS in smaller disease populations 
should also be welcomed, since identifying as little as a 
single disease gene can open broad avenues for future 
mechanistic studies[127].

In addition to the results from recent GWAS, it is 
worth mentioning a gene identified through a classical 
candidate gene approach. After identification of  the role 
of  XBP1 in endoplasmatic reticulum stress in a mouse 
xbp1 knock-out model, polymorphisms in this gene were 
tested in a large panel of  IBD patients[164]. In terms of  
P-values, several of  the IBD associations detected at 
this locus are below the detection limit of  the “GWAS 
radar” and highlight why hypothesis-based candidate 
gene approaches still have a role in disease genetics.

Even in the case of  large effect sizes, the new GWAS 
findings may not have immediate implications for clinical 
practice[124], however, and what seems to be the bottom 
line of  the present role of  these studies in biology 
serves as a glimpse of  the intricate pathology involved. 
Whereas few, if  any, of  the GWAS have provided a 
comprehensive mechanistic explanation as to how the 
detected polymorphisms affect disease risk, they have 
defined the priorities for basic research for decades to 
come. Ultimately, the challenge and goal for this research 
will be to define relevant diagnostic and prognostic 
markers as well as novel therapeutic options.
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