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Abstract
The innate immune response is triggered by a variety of 
pathogens, including viruses, and requires rapid induction 
of type I  interferons (IFN), such as IFNβ and IFNα. IFN 
induction occurs when specific pathogen motifs bind to 
specific cellular receptors. In non-professional immune, 
virally-infected cells, IFN induction is essentially initiated 
after the binding of dsRNA structures to TLR3 receptors 
or to intracytosolic RNA helicases, such as RIG-I /MDA5. 
This leads to the recruitment of specific adaptors, such 
as TRIF for TLR3 and the mitochondrial-associated 
IPS-1/VISA/MAVS/CARDIF adapter protein for the RNA 
helicases, and the ultimate recruitment of kinases, such 
as MAPKs, the canonical IKK complex and the TBK1/IKKε 
kinases, which activate the transcription factors ATF-2/
c-jun, NF-κB and IRF3, respectively. The coordinated 
action of these transcription factors leads to induction 
of IFN and of pro-inflammatory cytokines and to the 
establishment of the innate immune response. HCV can 
cleave both the adapters TRIF and IPS-1/VISA/MAVS/
CARDIF through the action of its NS3/4A protease. This 
provokes abrogation of the induction of the IFN and 
cytokine pathways and favours viral propagation and 
presumably HCV chronic infection.
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INTRODUCTION
The innate immune response is triggered in response to 
a variety of  pathogens, such as bacteria and viruses, and 
is essential for a rapid limitation in the spread or action 
of  these pathogens. The type I  interferons, represented 
by IFNβ and by different subtypes of  IFNα, play an 
important role in this process as they can mount an 
immediate antiviral response and stimulate adaptative 
immunity[1] Type I  interferons are secreted proteins that 
exert their function after binding to specific IFNAR 
receptors and after activation of  the JAK/STAT signalling 
pathway[2]. They are potent and can induce over 300 
genes, collectively referred to as interferon stimulated 
genes (ISGs)[3]. Because of  their antiviral, antiproliferative 
and immunomodulatory activities, IFNs are used for the 
treatment of  different tumors and viral infections, such as 
HBV and HCV. Under normal physiological and health 
conditions, however, IFNs are expressed at a minimum 
level and their induction in response to a pathogen involves 
a complex and well orchestrated cellular machinery.

Microbial agents are recognized through some of  
their motifs or pathogen-associated molecular patterns  
(PAMPS) by specific cellular receptors, referred to as PRRs 
(pathogen-recognition receptors). The PAMPs responsible 
for IFN induction can be bacterial external compounds, 
such as lipopolysacharides (LPS), viral envelopes and 
nucleic acids including dsRNA, ssRNA and DNA. The 
PRRs are members of  the toll-like receptors (TLRs) family, 
located either at cellular (TLR4 for LPS and viral envelops) 
or endosomal membranes (TLR3 for dsRNA, TLR7/8 
for ssRNA and TLR9 for DNA)[4-7]. In addition to this, 
another route of  induction takes place in the cytosol 
through activation of  specific RNA helicases, such as 
RIG-I  and MDA5[8,9]. The cellular type plays an important 
role in the specificity of  induction, since IFN is induced 
in the immune plasmacytoid cells through TLR7/8 
(ssRNA) and TLR9 (DNA), while its induction in the non-
professional immune cells, including dendritic cells (DCs), 
requires the endosomal TLR3 or the intracytoplasmic 
RNA helicase[10].

At the transcriptional level, IFN induction requires 
the conjugated action of  the three transcription factors: 
ATF2/c-jun, NF-κB and IRF3. ATF2/c-jun and NF-κB 
are activated in response to various stimuli, such as growth 
factors and pro-inflammatory molecules, by phosphorylation 
through the MAPK cascade and the canonical IKK α/β/γ 
complex, respectively. IRF3 phosphorylation is triggered by 
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a viral infection, after incubation of  cells with dsRNA or 
after introduction of  dsRNA by transfection[11]. The kinases 
responsible for IRF3 phosphorylation, which were referred 
to as VAK for virus-activated kinases for some years[11], were 
identified in 2003 as the two non-canonical IκB kinases: 
TBK1 (Tank binding kinase 1, also known as NAK for NF-
κB activating kinase) and IKKε[12,13].

THE TLR3/TRIF PATHWAY
After binding to their respective PAMPs, the TLRs recruit 
adaptor proteins through homotypic interactions with 
their cyoplasmic TIR (Toll/IL-1 receptor) domain. All 
TLRs, except TLR3, recruit MyD88, which links them to 
the NF-κB and MAPK pathways through activation of  
the IRAKs (IL-1 receptor associated kinases) and TRAF6 
(TNF receptor associated factor 6). In contrast, TLR3, 
upon dsRNA binding, recruits a different adapter, named 
TRIF (TIR domain-containing adapter inducing IFN-b) or 
TICAM (TIR-containing adaptor molecule-1)[14,15]. TLR4 
can also induce IFN through TRIF, but, in that case, it 
recruits TRIF indirectly through interaction with another 
adaptor called TRAM (TRIF related adaptor molecule) or 
TICAM-2[16]. TRIF interacts with a number of  signaling 
molecules, such as TRAF6, which in turn activate the 
NF-κB and MAPK pathways[17,18]. In addition, it can 
also activate NF-κB through interaction with the kinase 
RIP-1 (receptor interacting protein-1)[19]. Importantly, 
TRIF is involved in IRF3 activation by recruiting TBK1 
and, presumably, also IKKε , although this remains 
controversial[13,17]. TRIF can also recruit TRAF6, which 
activates the NF-κB and the MAPK pathways[17,18], NAP-1 
(NAK associated protein-1) and TRAF3, which are both 
involved in IFN induction, although their exact role still 
needs to be clarified[20,22]. Through all these different 
interactions, TRIF triggers induction of  IFN and pro-
inflammatory cytokines (Figure 1).

In accord with a role for TLR3 in IFN induction in 
response to dsRNA, TLR3 deficient mice present a strong 
reduction in their ability to induce IFN and proinflammatory 
cytokines when injected with synthetic or viral dsRNA. 
These mice are also more susceptible to infection by 
MCMV[5]. TLR3 is expressed in endosomal compartments 
and is abundant in conventional dendritic cells, therefore 
allowing immediate activation of  the immune response. 
TLR3 has also been shown to be important in crosspriming, 
therefore allowing CD8+ T-cell response at the site of  
virally-infected tissue cells[23]. However, the role of  TLR3 
in the antiviral response is probably more complex. For 
instance, infection of  TLR3-deficient mice with West Nile 
virus (WNV) resulted in a better survival of  these mice to 
the infection than the TLR3-wt mice, in which the infection 
provoked a TLR3-dependent inflammatory response, 
associated with brain penetration of  the virus and neuronal 
injury[24]. Similarly, TLR3-deficient mice had an unexpected 
survival advantage to Influenza A virus (IAV), which is 
a highly contagious acute respiratory disease, despite a 
higher viral production in the lungs, because these animals 
displayed significantly reduced inflammatory mediators than 
the wt animals in the bronchoalveolar airspace[25]. 

Like TLR3, the TLR 7, 8 and 9 are expressed in en-

dosomal compartments but their expression is restricted 
to a subtype of  dendritic cells, which are the plasmacytoid 
dendritic cells (pDCs). These latter cells represent less 
than 1% of  the circulating PBMCs but can release massive 
amounts of  IFN-α in the blood. They were previously also 
named NIPC for Natural Interferon Producing Cells[1]. 
Induction of  IFN by these TLRs, in response to ssRNA 
(TLR7.8) or DNA (TLR9) is exclusively MyD88-dependent 
and does not require TRIF. In this situation, the signaling 
events leading to IFN induction involve recruitment of  
TRAF6, IRAK4 and the transcription factor IRF7. This 
provokes IRF-7 phosphorylation and direct induction of  
IFNα. This signaling process is possible because of  the 
constitutive presence of  IRF7 in the pDCs[26,28].

THE RNA HELICASE PATHWAY
TLR3- and TRIF-deficient mice are impaired in their 
ability to induce IFN in response to dsRNA and they may 
become sensitive to viral infections[5,29]. However, their 
response to dsRNA is not totally abolished and they are 
still resistant to some viral infections, such as VSV (vesicular 
stomatitis virus) or SeV (Sendai virus)[30]. This suggested 
the existence of  novel IFN-inducing pathways, which 
were independent of  the TLR3/TRIF axis. A role for the 
dsRNA-dependent protein kinase PKR was unlikely since 
earlier studies showed that this kinase was not required 
for IRF3 or IRF7 phosphorylation[31]. Furthermore, the 
induction of  T cell stimulatory molecules was normal and 
induction of  IFN-β was only slightly suppressed in DC 
from PKR-deficient mice[32].

Human K562 cells lack the entire IFN-encoding locus 
and do not activate IRF3 after virus infection, unless 
they are treated with IFNβ. An expression cDNA library 
generated from IFNβ-treated K562 cells was therefore 
generated and screened for stimulation of  the transcription 
of  an IRF-dependent reporter in the presence of  the 
synthetic dsRNA poly(I)-poly(C), after transfection in 
murine L929 cells. This led to the isolation of  one clone 
encoding for the caspase activation recruitment domain 
(CARD)-containing the N terminal domain of  the DexD/
H box helicase RIG-I [8]. The presence of  CARD allows 
recruitment of  proteins through homotypic interactions. 
RIG-I was initially described as being induced by Retinoic 
Acid (RIG = retinoic acid inducible gene)[33]. It was also 
shown to be induced by IFNγ[34], TNF-α and IFNα[35]. 
RIG-I belongs to a family of  RNA helicases that also 
contains MDA-5 (melanoma differentiation associated 
gene-5)[36] and LGP2[37]. MDA-5 is highly homologous 
to RIG-I (23% identity in the CARD and 35% identity 
in the helicase domain). Both proteins bind dsRNA and 
transmit signaling through their RNA helicase/ATPase 
domain, probably by a conformational change, which 
enables their N-terminal CARD domain to initiate the 
downstream signaling events leading to ATF2/C-jun, NF-
κB and IRF3 activation. In contrast, LGP2, which shows 
31% and 41% identity with the RNA helicase domains 
of  RIG-I and MDA5, respectively, lacks the CARD 
domain and thus probably has a negative regulatory role 
on the RIG-I /MDA5 pathway[38]. It is interesting to note 
that all three RNA helicases, i.e., RIG-I , MDA5 and 



LGP2, are IFN-inducible proteins. Yet, they are directly 
involved in the very first step of  IFN induction, at least 
for RIG-I and MD-5. This indicates that the early steps 
of  IFN induction already require significant cytosolic 
expression of  these RNA helicases. Accordingly, RIG-I  
can be independently induced in response to different 
stimuli, such as TNF-α[35]. It is therefore possible that 
virally-induced inflammatory processes are important to 
generate the required amounts of  RIG-I necessary for 
triggering IFN induction. Although RIG-I and MDA5 
present strong similarities, they apparently do not have 
similar functions in cells. For instance, deletion of  the 
RIG-I gene is lethal with most of  the embryos dying 
between 12 and 14 d and with mice born alive dying 
after 3 wk. The developmental defect of  the RIG-I  -/- 
embryos was linked to massive liver degeneration[10]. In 
contrast, MDA-5 deficient mice are healthy[39]. Most cell 
types derived from the RIG-I deficient embryo are unable 
to produce type I  IFN and inflammatory cytokines, such 
as IL-6, upon SeV infection[10]. Interestingly, systematic 
comparison of  RIGI and MDA5 deficient MEFs showed 
that the two RNA helicases differ in their specificity for 
IFN induction. RIG-I was required for IFN induction by 
in vitro transcribed RNAs and by the following viruses: 
SeV, NDV, influenza virus, VSV or JEV, while MDA5 was 
required for IFN induction by poly(I)-poly(C) and the 
picornaviruses EMCV, Theiler and Mengo[39,40]. The reason 
for this discrepancy was recently solved independently 
by two groups who showed that the ligand for RIG-I is 
an uncapped 5' triphosphate RNA, which is a situation 
found in viruses of  the Flaviviridae family, including HCV, 
and non segmented viruses, such as Paramyxoviruses 
and rhabdoviruses. In contrast, MDA5 recognize viruses 
with protected 5' RNA ends, such as in the case of  
picornaviruses[41,42].

THE IPS-1/VISA/MAVS/Cardif ADAPTER
In 2005, four g roups independently repor ted the 

identification of  an adapter protein that links the RNA 
helicase to the downstream MAPK, NF-κB and IRF3 
signaling pathways. This protein is referred to as IPS-1 
(Interferon-β Promoter Stimulator 1[43]), VISA (Virus-
Induced Signaling Adaptor[44]), MAVS (Mitochondrial  
AntiViral Signaling[45]) and CARDIF (CARD adapter 
inducing IFNβ[46]). This protein was previously identified in 
a cDNA library screen as a NF-κB activating molecule[47]. 
In the absence of  a consensus name for this protein, it will 
be referred to here as CARDIF, in acknowledgment of  the 
group that first presented the sensitivity of  this protein to 
cleavage by the HCV NS3/4A protease (46; see below). 
The particularity of  this adapter protein is localization 
to the mitochondrial membrane through a specific 
transmembrane domain located at its C terminus[45]. The 
540 residue CARDIF protein associates with the tandem 
CARD domain of  RIG-I through its own N-terminal 
1-77 CARD-like domain. Coprecipitation assays showed 
that CARDIF associates strongly with RIG-I and weakly 
with MDA5[46]. Another important feature of  CARDIF 
is a proline rich region (103-173 residues) near the N 
terminus, through which it interacts with several signaling 
components including TRAF6, TRAF2[44], RIP1, FADD[43] 
and more recently, TRAF3[48] (Figure 1). It is still unclear 
how TBK1 and IKKε associate with CARDIF. In one 
report, TBK1 was found to associate with CARDIF and 
IKKε was not examined[44]. In another study, neither of  
these kinases was found to associate with CARDIF but the 
data were presented only for TBK1[43]. In contrast, a strong 
association of  CARDIF with IKKε and no interaction 
with TBK1 was presented[46]. In accord with the latter, 
recent confocal microscopy analysis demonstrated a tight 
colocalization for IKKε with the mitochondrial protein 
CARDIF, whereas TBK1 was associated with other 
vesicles[49]. Using coprecipitation techniques, our group also 
recently confirmed association of  CARDIF with IKKε but 
not with TBKI (Vitour et al, unpublished observations). 
The CARDIF deficient mice are viable and fertile. Upon 
viral infection, such as VSV, they can produce IFNα and 
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Figure 1  Schematic representation of the dsRNA-
activated TLR3 and RNA helicase IFN inducing pathways. 
dsRNA: double-stranded RNA; TLR3: Toll-like receptor 3; 
RIP-1 Receptor interacting protein -1; TRIF: TIR (Toll/IL-
1-like receptor) domain-containing adapter inducing 
IFN-b; TRAF2, TRAF3 and TRAF6: TNFR-associated 
factor; NAP-1: NAK ( NF-kB activating kinase) Associated 
Protein-1; TBK1: TANK (TRAF family member-associated 
NFkB activator) Binding Kinase 1 (also known as NAK); 
IKKe: IkB kinase epsilon; TAB: TAK binding protein; TAK: 
TGFb-associated kinase; IKKg: also known as NEMO 
(NF-kB Essential Modulator), associates  with the IKKa 
and IKKb kinases; IKKa IkB Kinase a; IKKb IkB Kinase 
b; MAPK: Mitogen activated protein kinase; IkB: Inhibitor 
NF-kB; P65: NF-kB subunit; P50: NF-kB subunit; AP1: 
ATF2/c-jun transcription factor; IRF3: Interferon regulatory 
factor 3; RIG-I: Retinoic inducible gene-1; MDA5: Melanoma 
differentiation associated gene 5; CARD: Caspase 
association recognition domain; IPS-1: Interferon-b 
promoter stimulator 1; MAVS: Mitochondrial  antiviral 
signaling; VISA: Virus-induced signaling adaptor; CARDIF: 
CARD adapter inducing IFNb; PRO: Proline rich domain; 
FADD: FAS associated protein via death domain. IL-1, IL-6 
and IL-12: Interleukines, TNF-a: Tumor necrosis factor a; 
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IFNβ in their sera, as measured by ELISA, presumably 
through TLR activation, for instance in pDCs. However, 
they failed to produce IFNα, IFNβ and IL-6 after poly(I)-
poly(C) injection, which is reminiscent of  the defect in 
MDA5 deficient mice to respond to poly(I)-poly(C)[39]. 
Infection of  the CARDIF -/- and -/+ mice with different 
concentrations of  VSV showed a VSV-induced mortality 
that was both dependent on the CARDIF gene dosage and 
viral titer. Since VSV was shown to induce IFN through 
RIG-I , these in vivo experiments firmly demonstrate that 
CARDIF is involved in both the IFN inducing pathways 
mediated by RIG-I and MDA5[50].

THE TBK1 AND IKKε KINASES
The TBK1 and IKKε kinases play an essential role 
in the induction of  IFN and inflammatory cytokines 
through their ability to phosphorylate serine residues at 
the C terminus of  both IRF3 and IRF7. This provokes 
a change in the conformation of  these transcription 
factors, promoting their dimerization and then their 
binding to their DNA consensus binding sites[12,13,51]. 
The two kinases are enzymatically similar with strong 
sequence identity. Accordingly, they behave similarly in 
their ability to activate IRF3 and IRF7 and in their ability 
to phosphorylate the IκBα inhibitor of  NF-κB at its Ser 
36 residue, whereas the two structurally related IKKα and 
IKKβ kinases phosphorylate IκBα at residues Ser32 and 
Ser36[52]. Although very similar, TBK1 and IKKε present 
some differences that may be of  importance. For instance, 
deletion of  the TBK1 gene leads to embryonic lethality at 
d 15[53], wheras IKKε deficient mice are viable[54]. Another 
difference is the fact that IKKε is more closely associated 
with CARDIF than TBK1[46,49]. Finally, both IKKε and 
TBK1 were shown to sustain the NF-κB transcriptional 
activity through the phosphorylation of  specific serine 
residues at the C terminal transactivation domain of  the 
cRel[55] or RelA p65 subunit[56,57]. Interestingly, however, 
IKKε was found to play a more critical role than TBK1 in 
controlling the basal/constitutive p65 phosphorylation[57]. 
This new finding coupled to the fact that IKKε can sustain 
its own expression via NF-κB and c/EBPδ transcription 
factors[58,59], whereas expression of  TBK1 is constitutive, 
provides a link to suspect a role for IKKε in controlling 
the proliferation of  certain cancer cells. In contrast, TBK1 
could play a major role in IFNβ induction. Indeed, studies 
with TBK1 and IKKε murine deficient cells pointed 
out a more important role for TBK1 than for IKKε in 
IFN induction in response to LPS, dsRNA (delivered 
intracytoplasmically) and to virus infection. However, 
use of  the IKKε/TBK1 doubly deficient cells revealed a 
complete abolition of  IFNβ induction[54].

THE HCV NS3/4A PROTEASE AND THE 
IFN INDUCING PATHWAYS
The current treatment against HCV, a combination of  
pegylated IFN and ribavirin, leads to viral clearance in 
50% to 80% of  cases. The efficacy of  treatment depends 
on several factors, such as age and sex of  the patients, viral 

parameters, such as genotypes and viral load, and host 
immune parameters[60]. HCV can interfere with the cellular 
response to IFN through some of  its proteins, which can 
target the JAK/STAT signaling pathway that is activated 
in response to the binding of  IFN to its receptor[61-63], 
or through other interactions leading to inhibition of  
the induction or the function of  some ISGs[64]. In 2003, 
the HCV NS3/4A protease was shown to interfere with 
IFN induction by preventing IRF3 phosphorylation[65]. 
This important finding was achieved at the same time 
as the identification of  the two kinases leading to IRF3-
phosphorylating kinases, TBK1 and IKKε[12,13].

The HCV 70 Kda NS3 protein presents a serine 
proteinase domain at its N terminus (aa 1-180) and an 
RNA helicase domain at its C-terminus (aa 181-631) 
(reviewed in[66]). Its helicase activity is coordinated by ATP 
and allows NS3 to move along the RNA like an inchworm 
to catalyse RNA unwinding[67]. This activity is important 
for HCV replication. The protease activity catalyses the 
following cleavages of  the viral polyprotein: NS3-NS4A, 
NS4A-NS4B, NS4B-NS5A and NS5A-NS5B with the 
following efficiency: NS5A/5B > NS4A/4B > NS4B/5A. 
Cleavage between NS3 and NS4A is an intramolecular 
reaction and the rest of  the cleavages are mediated in 
trans[68]. NS4A is a small protein of  54 aa that acts as a 
cofactor to enhance the NS3 protease activity. For this 
reason, and also because the NS3 requires a noncatalytic 
structural zinc ion for its protease activity, this enzyme 
is unique among the other members of  the trypsin 
superfamily to which it belongs[66]. The catalytic domain of  
NS3 is formed by a triad of  three important residues, S139, 
H57 and D81. After cleavage of  the NS3/4A junction, 
the C-terminus of  NS3 forms a β-strand that occupies 
the proteinase active site and thus protects it. In contrast 
with other proteinases, the substrate binding site of  NS3 is 
shallow and solvent-exposed and its selective recognition 
of  substrates requires extended contact surface. The 
active site of  NS3 is well conserved among the different 
genotypes and the HCV sequences that are cleaved by 
NS3/4A have the consensus sequence D/E-XXXX-C/T
↓S/A-XX-L/W/Y (Table 1). The cleavage sequence and 
protease specificity of  NS3/4A protease have been well 
characterized since 1993 and it was conceivable that, 
due to its ability to cleave in trans, the NS3/4A protease 
may be able to cleave cellular proteins in addition to the 
processing of  the viral proteins.

Analysis of  the mechanism(s) by which NS3/4A was 
inhibiting the IRF3 phosphorylation allowed determine 
that this protease was acting upstream of  the two TBK1/
IKKε kinases and was affecting both the TLR3/TRIF 
pathway and the RIG-I helicase pathway[69,70]. Disruption 
of  IFN induction through TLR3/TRIF was shown to be 
due to the cleavage of  the TLR3 adapter TRIF by NS3/
4A[71], while disruption of  IFN induction through the RIG-
I  pathway was due to the cleavage of  the mitochondrial 
adapter protein IPS-1/MAVS/VISA/CARDIF[46,49,72]. 
Cleavage of  TRIF occurs between its Cys372 and Ser373 
residues, which separates its TIR domain from the TBK1-
interacting N terminus domain. It is interesting to note that 
the TRIF cleavage site (PSSTPC↓SAHLT) differs from 
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the HCV consensus cleavage site by a proline at the P6 
position instead of  an acidic residue. Strikingly, this proline 
is preceded by a stretch of  7 prolines and it is thought that 
this particular sequence may enhance the affinity of  TRIF 
for the NS3 protease[73]. This stretch of  proline, which can 
form a left-handed polyproline II helix may compensate 
for the absence of  acidic residue at the P6 position, which 
normally is contributing to enhance the Km values in the 
viral natural substrates. A helix composed of  hydrophobic 
residues was identified in the NS3 protease domain, not 
far from the protease active site and may represent a 
possible site to anchor TRIF near the active site of  NS3[73]. 
The CARDIF cleavage site at the 508 residue, EREVPC↓
HRPS, presents more similarity with the HCV consensus 
cleavage site, except that there is a histidine residue at 
position P'1 instead of  a serine or alanine[46]. Because of  
this, it is possible to conceive that several cellular substrates 
for NS3/4A exist. However, they may be difficult to 
depict, based solely on sequence examination, if, similarly 
to TRIF and CARDIF, they diverge from the consensus 
NS3/4A cleavage sequence. The highly specific product-
based macrocyclic NS3 protease inhibitor BILN 2061[74] 
and the less toxic new generation of  another class of  
NS3 inhibitors, referred to as electrophilic or serine-trap 
inhibitors, such as VX-950[75] and SCH6[76], probably exert 
their high inhibitory effect on HCV infection, not only 
by preventing HCV expression[77] but also by preventing 
NS3/4A to interfere with IFN induction. 

HCV INFECTION AND THE RIG-I /Cardif/
TBK1/IKKε PATHWAY
The ability of  HCV to inhibit the early events of  IFN 
induction emphasizes the importance of  the IFN 
signalling pathways and may therefore represent one of  
the mechanisms by which this virus compromises the host 
immune response and favours its propagation. Indeed, the 
in vitro propagation of  infectious particles of  HCV genotype 
2a[77-79] and HCV of  genotype 1a[80] is now highly promoted 
by infecting a Huh7 cellular clone that was previously 
isolated for its high susceptibility to HCV replicons[81]. 

The particularity of  this clone, known as Huh7.5, is to 
contain a mutation in the first CARD domain of  RIG-I . 
This mutation does not prevent the binding of  RIG-I  to 
dsRNA but abolishes its ability to activate downstream 
elements and is likely the one responsible for the inability 
of  this clone to induce IFNβ and early ISGs in response 
to a viral or dsRNA stimulus. Indeed, complementation 
of  Huh7.5 cells with a plasmid expressing RIG-I restores 
ISG56 induction in response to SeV or with in vitro 
transcribed HCV dsRNA-containing structures, such as 
its NTRs (non translated regions)[82]. The 5' and 3' HCV 
NTRs were proposed as the HCV elements required 
for RIG-I activation immediately after internalisation of  
the viral genome into the cytosol[82]. This was confirmed 
recently with a study showing the importance of  5' 
triphosphate in blunt-end dsRNA to signals to IFN 
induction and allowing the cell to discriminate between 
self  and non self[83] and with the identification of  5' 
triphosphate RNAs as being the ligand for RIG-I [41,42].

The possibility of  using the JFH1 recombinant virus 
of  genotype 2a to infect cell cultures in vitro now gives 
the possibility to analyse the interaction of  HCV with 
IFN induction pathways in more natural conditions of  
infection. Indeed, specific cleavage of  CARDIF, but 
not of  CARDIF C508A in which the NS3/4A cleavage 
site has been abolished, could be demonstrated after 
transient transfection in JFH1-infected Huh7.5 cells[46]. 
In suppor t of  c leavage of  CARDIF by NS3/4A, 
subcellular redistribution of  endogenous CARDIF from 
the mitochondria to the cytosol could be demonstrated 
in COS cells after transient transfection with NS3/4A-
encoding plasmids, in HCV replicon cells[84], in JFH1-
infected Huh7 cells and in a liver biopsy from a patient 
with chronic HCV infection[84]. Much work is needed yet 
to fully understand the exact relationship between the 
RNA helicase/CARDIF/kinases pathway and the ability 
of  HCV to escape the cellular defense. For instance, the 
NS3/4A inhibitor BILN2061 was shown to restore the 
IFN induction in response to ectopically added CARDIF 
in JFH1-infected cells[85] but definite proof  that the 
NS3/4A inhibitor BILN2061 can restore IFN induction 

Table 1  Sequence of the NS3/4A -mediated cleavages in HCV polyprotein from different genotypes

Name Genotype (GI) NS3/4A NS4A/4B NS4B/5A NS5A/5B Reference

H77 1a (GI: 2316097 ) MSADLEVVT
STWVLVGG

QEFDEMEEC 
SQHLPYIE 

ISSECTTPC
SGSWLRDI

ADTEDVVCC 
SSYSWTGA 

Kolykhalov et al, 1997

HCV-N 1b (GI: 23957856) MSADLEVVT
STWVLVGG

REFDEMEEC 
ASHLPYIE

INEDCSTPC 
SGSWLRDV

EAGESVVCC 
SMSYTWTG

Beard et al, 1999

JFH1 2a (GI: 13122261) MQADLEVMT
STWVLAGG

EAFDEMEEC  
ASRAALIE

ITEDCPIPC
SGSWLRDV 

EEDDTTVCC 
SMSYSWTG 

Kato et al, 2001

NZL1 3a (GI: 514395) MSADLEVTT
 STWVLLGG 

QQYDEMEEC 
SQAAPYIE 

INEDYPSPC
SDDWLRTI

SEEQSVVCC 
SMSYSWTG 

Sakamoto et al, 1994

ED43 4a (GI: 2252489) MSADLEVVT
STWVLVGG 

QQFDEMEEC 
SKHLPLVE

INEDCSTPC
STPCAESW

SGSEDVVCC 
SMSYSWTG

Chamberlain et al, 1997

SA13 5a (GI: 3660725) MSADLEVIT
STWVLVGG

QQFDEMEEC 
SASLPYMD

IGEDYSTPC
DGTWLRAI

SDEDSVVCC 
SMSYSWTG 

Bukh et al, 1998

6a33 6a (GI: 57791993) MSADLEVIT
STWVLVGG 

QQFDEMEEC 
SRHIPYLAE

VNEDTATPC
ATSWLRDV 

SDQDDVVCC 
SMSYSWTG

Zhou et al, 2004

The sequence of the junction between the non structural proteins NS3 and NS4A (NS3/4A) , NS4A and NS4B (NS4A/4B), NS4B and NS5A (NS4B/5A) and NS5A 
and NS5B ( NS5A/5B) is given for 6 different HCV genotypes. The gene accession number (GI) for each is given in the Genotype column. For each sequence, the 
space indicates the NS3/4A-cleavage site. The consensus cleavage site is given in the text.
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in HCV-infected cells remains to be established. JFH1 was 
reported to infect Huh7 cells with a viral progeny reaching 
similar levels to those obtained from Huh7.5 cells, after a 
lag of  7 d. This delay was first explained by the ability of  
JFH1 to induce an antiviral response in the Huh7 cells, 
but not in the Huh7.5 cells where the RIG-I pathway is 
defective and cannot recruit the downstream CARDIF 
adapter[79]. In a follow-up study, however, it was shown 
that JFH1 fails to induce IFNβ in the Huh7 cells, as well 
as early ISGs, such as ISG15 or ISG56, from the onset of  
infection. Interestingly, these authors could demonstrate 
that JFH1 was blocking IFNβ induction upstream of  
the TBK1/IKKε kinases, presumably through CARDIF 
cleavage. However, overexpression of  CARDIF in those 
infected-cells could not restore dsRNA-induced IFN-β 
promoter activity and RIG-I overexpression could only 
partially restore it. A current hypothesis is that, in addition 
to cleaving CARDIF through its NS34A protease activity, 
HCV infection also provokes RIG-I inactivation through 
a process independent of  NS34A. This suggests the 
existence of  a RIG-I dependent signaling pathway that 
could by-pass CARDIF to trigger IFNβ expression, 
and thus represents an additional threat for the virus[85]. 
In support of  this, in a recent study, we showed that 
expression levels of  RIG-I (and of  the other RNA 
helicases MDA5 and LGP2) were down-regulated in liver 
biopsies from HCV chronically-infected patients. In these 
biopsies, the expression levels of  IKKε-, but not those of  
TBK1, were also down-regulated[86]. Interestingly, IKKε, 
when overexpressed, can provoke inhibition of  HCV 
expression in a replicon system and we demonstrated 
that its antiviral action can occur rapidly, in the absence 
of  IFN induction, through the action of  one or several 
genes induced through activation of  IRF3, NF-κB and 
c/EBPδ[70,86]. RIG-I  belongs to the genes induced by 
IKKε and it is possible to hypothesize that HCV chronic 
infection thrives in an environment with low RIG-I and 
IKKε expresssion and/or activity. In line with the down-
regulation of  IKKε, decreased expression of  the NF-κB 
RelA subunit, one of  IKKε susbtrates, was found to be 
associated with enhanced fibrosis progression in the liver 
of  patients with chronic hepatitis C[87].

CONCLUSIONS
The recent identification of  different partners from the 
TLR- and RNA helicase-IFN inducing pathways, coupled 
with the possibility of  using cell culture systems infected 
with recombinant HCV, now allows rapid progress in 
the comprehension of  the relative importance of  these 
pathways in cellular defence and in their ability to interfere 
with HCV propagation.
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