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Abstract  
Diabetic retinopathy is a leading cause of blindness 
among working-age adults. Despite many years of 
research, treatment options for diabetic retinopathy 
remain limited and with adverse effects. Discovery of 
new molecular entities with adequate clinical activity for 
diabetic retinopathy remains one of the key research 
priorities in ophthalmology. This review is focused on 
the therapeutic effects of cannabidiol (CBD), a non-
psychoactive native cannabinoid, as an emerging and 
novel therapeutic modality in ophthalmology based on 
systematic studies in animal models of inflammatory 
retinal diseases including diabetic retinopathy - a retinal 
disease associated with vascular-neuroinflammation.  
Special emphasis is placed on novel mechanisms which 
may shed light on the pharmacological activity ass
ociated with CBD preclinically. These include a self-
defence system against inflammation and neurodeg
eneration mediated by inhibition of equilibrative nucleo
side transporter and activation of adenosine receptor by 
treatment with CBD.
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INTRODUCTION
During the past decade, it has become clear that infla­
mmation is a key feature in diabetes that leads to long-
term complications in specific organs, in particular the 
eye and kidney. In the eye, the major complication is 
diabetic retinopathy, a leading cause of  blindness in the 
Western world affecting three-fourths of  diabetic patients 
within 15 years after onset of  the disease[1,2]. Many dia­
betic patients are referred to an ophthalmologist for 
ev­aluation and treatment only after visual complications 
have already occurred. The recommended treatment for 
diabetic retinopathy has been laser photo-coagulation 
but the procedure also destroys neural tissues. Therefore, 
there is a great need for the development of  new non-
invasive therapies. These visual complications are most 
likely associated with oxidative stress and inflammation. 
Our research in diabetic retinopathy has focused on 
delineating the inflammatory and neurodegenerative 
processes involved. We have identified new non-invasive 
receptor-based therapies for mitigating the retinal damage 
associated with diabetes. This review is focused on the 
therapeutic effects of  cannabidiol (CBD) on animal mod­
els of  diabetic retinopathy. Special emphasis is placed on 
novel mechanisms described in recent studies of  retinal 
models which help to explain some of  the pharmacolo­
gical effects observed with CBD.

DIABETIC RETINOPATHY (DR)
DR is a chronic ocular disorder that, if  untreated, will 
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lead to legal blindness. In the United States, over 20 mi­
llion adults (or 10% of  the total population) currently 
have diabetes. Of  this group, over 12 000 patients will be 
diagnosed with new-onset blindness annually, making it 
one of  the leading causes of  legal blindness in Americans 
within the age group of  20-74[3]. Type Ⅰ diabetics usually 
have high incidence of  retinopathy although retinopathy 
occurs in almost all patients with diabetes for 20 years 
or more[1]. The earliest detectable signs of  retinopathy 
are categorized as nonproliferative diabetic retinopathy 
(NPDR). NPDR is clinically subdivided into mild, 
moderate and severe categories. Loss of  retinal pericytes 
and alterations in retinal blood flow are preclinical 
changes that are often non-detectable by physical exam[4,5]. 
Retinal venous dilation and microaneurysms are the first 
alterations detectable by ophthalmoscopy. Following 
these alterations, intraretinal hemorrhage and exudation 
may occur. These may then lead to macular edema, 
which, if  untreated may lead to irreversible vision loss 
and blindness. As hyperglycemia persists, the disease 
progresses to moderate and severe NPDR which presents 
with hemorrhages and venous beading, suggesting 
decreased retinal circulation and dilated capillaries[6].  

Proliferative diabetic retinopathy (PDR) is the next 
stage when proliferation of  new blood vessels begins. 
Approximately 50 percent of  patients with severe NPDR 
progress to PDR within one year[7]. This stage is char­
acterized by the onset of  ischemia-induced new vessel 
proliferation from the optic nerve head as well as in the 
retina. These new vessels are fragile and tend to bleed 
easily resulting in vitreous hemorrhage. If  untreated, the 
neovascularization will undergo fibrosis and contraction 
leading to traction retinal detachments. Additional comp­
lications may include neovascular glaucoma due to spro­
uting of  new vessels on the iris and in the trabecular mesh­
work of  the anterior chamber[8]. 

DR is a vascular-neuroinflammatory disease
The early signs of  diabetic retinopathy in experimental 
diabetic models include vascular inflammatory reactions 
due to oxidative stress, pro-inflammatory cytokines, and 
the consequent binding of  leukocyte adhesion molecules 
CD18 and intercellular adhesion molecule 1 (ICAM-1)[9].  
These reactions lead to breakdown of  the blood-retinal 
barrier (BRB) function, vascular occlusion and tissue 
ischemia, which in turn leads to neuronal cell death[9-14].  
However, diabetes could also directly affect metabolism 
within the neural retina leading to neuronal cell death. 
Whether diabetes affects vascular or neural retina first, 
both microglial and macroglial cells are activated[15]. The 
function of  activated macroglia in transporting[16] and 
metabolizing glutamate may be impaired[17] (unpublished 
observations). This leads to glutamate accumulation[18-20]. 
Glutamate excitotoxicity occurs via activation of  N-me­
thyl-D-aspartic acid (NMDA) and non-NMDA receptors, 
to directly or indirectly induce calcium influx and the 
release of  superoxides, leading to neuronal cell death[21]. 
This is followed by neuro-inflammation, during which 

activated microglial cells migrate toward dying neurons 
and release inflammatory cytokines to further exacerbate 
the damage[22]. These findings suggest that pharmacolo
gical interventions that reduce oxidative stress and inflam
mation might be effective neuroprotectants for diabetic 
retinopathy[20,23].

Microglia in DR
Normally quiescent microglia become activated during 
early diabetes[24-27]. Cytokines such as interleukin (IL)-1β, 
IL-6, g-interferon, and tumor necrosis factor-α (TNF-α) 
have been shown to directly activate microglia[28,29].   
Activated microglia release (or promote the release of) 
glutamate, reactive oxygen species (ROS), IL-1β, IL-3, 
IL-6, TNF-α, vascular endothelial growth factor (VEGF), 
lymphotoxin, matrix metalloproteinases (MMPs) and 
nitric oxide (NO)[15,30]. The cytokines IL-1β, IL-6, TNF-α, 
and lymphotoxin alter expression of  vascular cell adhesion 
molecules to recruit lymphocytes and macrophages to 
injury sites[31]. Lymphotoxin, TNF-α, NO and ROS can 
directly kill cells[32,33]. VEGF, NO and MMPs can weaken 
the BRB, thus enhancing the infiltration of  leukocytes into 
the retina. It remains unclear why diabetes would incite 
microglia activation in the retina but research on retinal 
microglia activation may provide substantial insights 
into the pathogenesis of  DR[34]. Cultured microglia 
have been used extensively to study microglial behavior. 
Treatment of  microglia or macrophage-like cells with 
advanced glycation end-products (AGE) or Amadori-
albumin[35,36], high glucose[37] or with endotoxins such as 
lipopolysaccharide (LPS) has been used as a model to 
simulate inflammation[38-40].  

ROLES OF ADENOSINE RECEPTORS (ARs) 
AND NUCLEOSIDE TRANSPORTERS IN 
INFLAMMATION
Adenosine, an endogenous purine nucleoside, has been 
proposed to modulate a variety of  physiological responses 
by stimulating specific extracellular receptors[41-43]. ARs 
have been classified as A1, A2A, A2B, and A3 receptors[44]. 
Under stress and ischemia conditions, the local tissue con­
centrations of  extracellular adenosine are increased due 
to the release of  adenosine itself, or of  AMP, which is 
metabolized extracellularly to adenosine. This increased 
adenosine can protect against excessive cellular damage 
via a negative feedback mechanism[45] (unpublished 
observations). Adenosine released at inflamed sites exhi
bits anti-inflammatory effects through A2AAR[46]. Sub-
threshold doses of  an inflammatory stimulus that caused 
minimal tissue damage in wild-type mice were sufficient to 
induce extensive tissue damage and more prolonged and 
higher levels of  pro-inflammatory cytokines in knock-out 
mice that lacked the A2AAR (A2AAR -/- mice)[47]. A2AAR 
agonist treatment blocked the inflammation, functional 
and histological changes associated with diabetic neph­
ropathy in wild-type diabetic mice, whereas it had no 
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effect on the A2AAR -/- diabetic mice[48]. A2AAR, a Gs-
protein-coupled receptor, can increase levels of  immu­
nosuppressive cAMP in microglia or other immune 
cells[49]. Stimulation of  the A2AAR decreases leukocyte 
adhesion and blocks the associated release of  oxygen free 
radicals[50]. Adenosine released can activate endothelial 
adenosine receptors, leading to increases in intracellular 
cAMP and resealing of  the endothelial junctions thereby 
promoting vascular barrier function[51]. Moreover, A2AAR 
activation induces the synthesis and release of  nerve 
growth factor thereby is neuroprotective[52].

Although adenosine and its agonists are protective 
in animal models of  inflammation, their therapeutic 
application has been limited by systemic side effects such 
as hypotension, bradycardia, and sedation[53]. Moreover, 
adenosine usually disappears very rapidly in physiological 
or inflammatory conditions due to rapid reuptake and 
subsequent intracellular metabolism[54]. Endogenous 
adenosine levels at inflamed sites are reported to increase 
further because of  the increased need for energy supplied 
by ATP, which is metabolized to AMP and adenosine 
ultimately[55]. In addition, the activity of  5’-nucleotidase, 
which metabolizes AMP to adenosine, is reported to 
increase in inflammatory conditions[56]. It is therefore 
assumed that prevention of  adenosine uptake into the 
cells and its subsequent metabolism can selectively enh­
ance extracellular concentrations of  adenosine at inflamed 
sites, resulting in an anti-inflammatory effect[57]. Protective 
or ameliorating effects of  adenosine uptake inhibitors in 
ischemic cardiac and cerebral injury, organ transplantation, 
seizures, thrombosis, insomnia, pain and inflammatory 
diseases have been reported[58]. Preclinical and clinical 
results indicate the possibility of  therapeutic application 
of  adenosine uptake inhibitors[58,59].  

Adenosine reuptake and degradation
Adenosine disappears rapidly in physiological or inf­
lammatory conditions due to rapid reuptake via nuc­
leoside transporters (NTs) and subsequent intracellular 
metabolism[54]. There are two subtypes of  NTs: Con­
centrative NTs which are dependent on the presence of  
extracellular sodium, and equilibrative NT (ENTs). In 
the microglial cells, the majority of  adenosine transport 
is not affected by sodium removal suggesting ENTs are 
the primary transporters functioning in these cells[60]. 
ENTs are further classified into two subtypes on the 

basis of  their sensitivities to inhibition by the drug S-(4-
nitrobenzyl)-6-thioinosine [nitrobenzylmercaptopurine 
riboside (NBMPR)]. NBMPR-sensitive ENTs bind 
NBMPR with high affinity and have the functional des
ignation equilibrative sensitive (ENT1). NBMPR-insen­
sitive transporters are designated ENT2. Dipyridamole, an 
inhibitor for both ENT1 and ENT2[61], is used clinically 
as a coronary vasodilator and a platelet aggregation 
inhibitor[62,63]. Dipyridamole plus aspirin improves retinal 
vasculature patterns in experimental diabetes[64]. 

Role of ENT1 in adenosine function in diabetes
ENT1 plays an integral role in adenosine function in 
diabetes by regulating adenosine levels in the vicinity 
of  adenosine receptors. It was reported that adenosine 
uptake by ENT1 in human aortic smooth muscle cells 
(HASMCs) was increased by hyperglycemia[65]. To pro­
vide insight into mechanisms by which ENT1 was modu­
lated by hyperglycemia, kinetic studies of  adenosine 
transport and [3H]NBMPR binding were performed[65]. 
The results show that Vmax (representing the number 
of  ENT1) of  adenosine transport in high glucose (HG)-
treated HASMCs was increased without affecting Km 
(representing the affinity of  ENT1). Similarly, Bmax 
(representing the number of  ENT1) of  the high-affinity 
[3H]NBMPR binding was increased without affecting 
Kd (representing the affinity of  ENT1). Consistent with 
these observations, HG increased mRNA and protein 
expression of  ENT1. Pathologically, the increase in 
ENT1 activity in diabetes may affect the availability of  
adenosine in the vicinity of  adenosine receptors and, 
thus, alter vascular functions in diabetes. Pharmacological 
intervention of  ENT1 activity may prove to be effective 
therapeutics in diabetes. Current studies are in progress to 
elucidate the effect of  hyperglycemia on the function and 
expression of  ENT1 in the retinal microglial and vascular 
endothelial cells.

CANNABINOIDS AND CANNABINOID 
RECEPTORS
The best-known cannabinoids from marijuana are (-)-∆9- 
tetrahydrocannabinol (THC), cannabinol (CBN), and 
(-)-cannabidiol (CBD) (Figure 1)[66]. THC, but not CBN 
or CBD, is known to exert psychotropic effects[67,68].  
Cannabinoids are also known to be therapeutic with 
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Figure 1  The best-known cannabinoids from marijuana. (-)-D9-tetrahydrocannabinol (THC), but not cannabinol or (-)-cannabidiol (CBD), is known to exert 
psychotropic effects.
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properties of  anti-inflammation[69,70] and anti-oxidation[71]. 
Cannabinoids produce their biological effects by acting 
through at least two receptors. Receptor CB1 (cloned) 
is responsible for psychoactivity and is expressed in the 
brain[72] and retinal neurons[73,74]. Receptor CB2 (cloned) 
is expressed in immune cells[75] and cerebral microglial 
cells[76], but also in the retina[77]. These receptors are 
coupled to Gi/o proteins to inhibit adenylyl cyclase 
activity and immediate early gene signaling pathway(s)[78]. 
Receptor CB1 is also coupled through Gi/o proteins to 
inhibit voltage-sensitive calcium channels[79] and activate 
potassium channels[80].  

CBD has very low affinity to either CB1 or CB2[81,82]. 
This low affinity of  CBD for CB1 accounts for its 
inability to produce the subjective “high” and cognitive 
effects that are characteristic of  marijuana and THC. 
CBD is very effective as a scavenger of  ROS. The antio­
xidative effect of  CBD is superior to a-tocopherol and 
ascorbate in vitro and in vivo[71] due to its ability to sca­
venge ROS and block NADPH oxidase[40]. CBD also has 
potent anti-inflammatory actions and have been shown 
to decrease inflammatory cytokines in arthritis[83] and in 
diabetes[12], prevent cerebral damage during ischemia[84] 
and to prevent cerebral infarction[85]. CBD is well tolerated 
when chronically administered to humans[86] and has been 
approved for the treatment of  inflammation, pain and 
spasticity associated with multiple sclerosis in patients 
since 2005[87]. CBD attenuates high glucose-induced 
endothelial cell inflammatory response and barrier disru
ption in human coronary endothelial cells[88]. It also 
decreases the incidence of  diabetes in non-obese diabetic 
mice[89] and is neuroprotective and BRB-preserving in 
streptozotocin-induced diabetes[12]. Most recently, CBD 
has been shown to decrease retinal inflammation by 
blocking ROS and TNF-α formation, p38 MAP kinase 

activation and microglial activation[40]. Current data in the 
effects of  intraocularly introduced CBD in diabetic animal 
model are consistent with its anti-inflammatory activity 
(unpublished observations). 

CBD enhances AR-mediated anti-inflammation
It has recently been shown that nanomolar concentrations 
of  CBD or THC could inhibit uptake of  adenosine by 
ENT1 in murine microglia, RAW264.7 macrophages[60] 
and in rat retinal microglia[39]. CBD synergistically enha­
nces adenosine’s TNF-α suppression upon LPS treat­
ment. Moreover, in vivo treatment with a low dose of  
CBD decreases TNF-α production in serum in the LPS-
treated mice; this effect is reversed by treatment with an 
A2AAR antagonist and abolished in A2AAR -/- mice[60]. 
Similar results are observed in the rat retina[39]. These 
studies demonstrate that CBD has the ability to enhance 
adenosine signaling through inhibition of  uptake and 
provide a non-cannabinoid receptor mechanism by which 
CBD can decrease endotoxin-induced inflammation. 
Current data suggest that CBD inhibits diabetes-induced 
retinal inflammation by the same mechanism (unpublished 
observations). A hypothetical pathway illustrating how 
CBD works to reduce retinal inflammation in diabetes is 
shown in Figure 2.  

CONCLUSION
Recent evidence suggests that local inflammation plays 
a major role in the pathogenesis of  diabetic retinopathy. 
The function of  CBD as an antioxidant to block oxida­
tive stress and as an inhibitor of  adenosine reuptake to 
enhance a self-defense mechanism against retinal inflam
mation represents a novel therapeutic approach to the 
treatment of  ophthalmic complications associated with 
diabetes. This study is important for the development of  
adenosine reuptake inhibitors as a potentially novel and 
effective therapy for diabetic retinopathy. However, the 
therapeutic values of  these agents should be confirmed 
by clinical trials. Furthermore, depending on the differ­
ence in the genetic make-ups for the metabolism and 
pharmacological target of  CBD, it may be important to 
consider CBD as a personalized medicine, i.e. adjusted 
dosages according to individual’s genetic make-ups, to 
offer significant advantages over traditional clinical app
roaches[90].
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