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Abstract 
The emergence of the “precision-medicine” paradigm 
in oncology has ushered in tremendous improvements 
in patient outcomes in a wide variety of malignancies. 
However, pancreas ductal adenocarcinoma (PDAC) has 

remained an obstinate challenge to the oncology community 
and continues to be associated with a dismal prognosis 
with 5-year survival rates consistently less than 5%. 
Cytotoxic chemotherapy with gemcitabine-based regimens 
has been the cornerstone of treatment in PDAC especially 
because most patients present with inoperable disease. 
But in recent years remarkable basic science research has 
improved our understanding of the molecular and genetic 
basis of PDAC. Whole genomic analysis has exemplified the 
genetic heterogeneity of pancreas cancer and has led to 
ingenious efforts to target oncogenes and their downstream 
signaling cascades. Novel stromal depletion strategies have 
been devised based on our enhanced recognition of the 
complex architecture of the tumor stroma and the various 
mechanisms in the tumor microenvironment that sustain 
tumorigenesis. Immunotherapy using vaccines and immune 
checkpoint inhibitors has also risen to the forefront of 
therapeutic strategies against PDAC. Furthermore, adoptive 
T cell transfer and strategies to target epigenetic regulators 
are being explored with enthusiasm. This review will focus 
on the recent advances in molecularly targeted therapies 
in PDAC and offer future perspectives to tackle this lethal 
disease. 
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Core tip: The treatment of pancreas ductal adenocarcinoma 
is in an exciting phase due to a tremendous surge in 
knowledge regarding the molecular mechanisms that 
underlie pancreas cancer that has fueled interest in devising 
novel strategies to target signal transduction factors 
downstream to kirsten rat sarcoma oncogene, desmoplastic 
tumor stroma and cancer stem cells. Furthermore, immuno
therapy by utilizing vaccines and immune checkpoint 
inhibitors is gaining momentum. Alluring results from studies 
evaluating molecularly targeted therapies have not only 
proven the feasibility of this approach but are also indicative 
of a paradigm shift in management of pancreatic cancer in 
the near future. 
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INTRODUCTION
Over the past few decades, pancreas ductal adeno­
carcinoma (PDAC) has claimed notoriety by proving to be 
one of the most recalcitrant solid-organ malignancies. As a 
telltale sign of its lethality, PDAC accounts for less than 3% 
of new cancers diagnosed annually in developed nations 
and in the United States, yet it is the fourth leading cause of 
cancer related mortality[1]. Ominously, PDAC is also poised 
to surpass breast, prostate and colon cancers to become 
the second leading cancer related cause of death by 2030[2]. 
Owing to the late stage at presentation, most patients 
with PDAC are not candidates for surgical resection. Even 
patients with early-stage disease who undergo surgical 
resection and adjuvant therapy eventually relapse and 
succumb to it[3,4]. 

Patients with advanced disease have a dismal prognosis 
with 5-year survival rates of less than 5%[5]. Following the 
initial success of gemcitabine in the metastatic setting[6], 
oncologists have traditionally relied upon cytotoxic 
chemotherapy to tackle locally advanced and metastatic 
disease but with limited success. After nearly two decades of 
research to identify optimal regimens for metastatic PDAC, 
the PRODIGE 4/ACCORD 11 and MPACT trials have proven 
the efficacy of combination chemotherapy with meaningful 
increase in overall survival (OS) although accompanied by 
the risk of increased toxicity[7,8]. The median survival for 
patients with metastatic disease still remains less than 1 
year[7,8]. 

MOLECULAR THERAPEUTICS IN PDAC 
The dawn of the era of precision-medicine in oncology 
has led to tremendous gains in understanding various 
molecular mechanisms of PDAC oncogenesis, but 
translating this knowledge to the bedside with targeted 
therapy has been a daunting task. The complex biology 
of PDAC has posed a formidable challenge against succ­
essful targeted interventions (summarized in Table 1). 
However, in recent years several innovative approaches 
have achieved early success to pave the way for 
impactful molecular therapeutic strategies.

GENETIC HETEROGENEITY OF PDAC 
Similar to the adenoma-carcinoma sequence in colon 
cancer, the development of PDAC represents the 
culmination of progressive increments in dysplasia in 
precursor lesions collectively termed pancreatic intra-
epithelial neoplasia (PanIN)[9]. Molecular profiling studies 
in genetically engineered mouse models (GEMM) have 
demonstrated that histological progression of PanINs 

from low to high-grade occurs in tandem with successive 
accumulation of gene mutations such as activation of the 
KRAS oncogene, inactivation of the tumor suppressor 
cyclin dependent kinase-N2A (CDKN2A) gene and the 
eventual inactivation of TP53 and deleted in pancreatic 
cancer 4 (DPC4/SMAD4) genes[10]. All of the same genetic 
alterations also occur in established PDAC but at a higher 
frequency (Table 2). Patients with familial forms of PDAC 
also harbor germ-line mutations in BRCA2 and partner 
and localizer of BRCA2 (PALB2) genes[11,12]. In a sentinel 
genomic analysis of 24 pancreatic tumors, Jones et al[13] 
classified the genetic alterations in PDAC into a core set 
of 12 cellular signaling pathways that encompass an 
incredibly high 63 gene mutations within an individual 
tumor. A recent study of 109 micro-dissected pancreatic 
tumors by whole-exome sequencing corroborated the 
high mutational burden and also identified other novel 
genetic mutations that confer adverse prognosis such 
as MYC amplification[14]. Abnormalities in Wnt and Hed­
gehog signaling, chromatin remodeling and DNA repair 
mechanisms occur at a high frequency in PDAC[14,15]. In 
addition to remarkable variations in genetic abnormalities 
in individual tumors, the realization that PDAC genes 
function through a relatively small number of pathways 
confers a level of genetic heterogeneity that makes 
molecular targeting exceptionally difficult. 

Targeting KRAS and downstream signal transduction 
The four human RAS genes encode for small guanosine 
triphosphatases (GTPases) and under normal circum­
stances cycle between an active GTP-bound and an 
inactive guanosine diphosphate (GDP) bound state[16]. 
Upwards of 95% of PDACs possess activating mutations 
of the KRAS gene, most commonly at the G12 residue[17]. 
Mutant KRAS remains persistently active in the GTP-bound 
state and results in uninterrupted downstream signal 
transduction of growth signals such as rapidly activated 
fibrosarcoma homolog B (BRAF), mitogen activated 
protein kinase (MAPK) and phosphatidyl inositol-3 kinase 
(PI3K)/mammalian target of rapamycin (mTOR)[16].

Despite intensive efforts, direct pharmacologic inhibition 
of KRAS has been unsuccessful because of the high 
binding affinity of the oncoprotein to GTP and inability to 
identify an easily accessible active site within KRAS that 
is susceptible to competitive allosteric inhibition[18]. To 
overcome these difficulties, alternate approaches have 
been attempted but with limited success. Van Cutsem et 
al[19] attempted inhibition of farnesylation, a crucial step 
in post-translational modification of KRAS proteins that 
is essential for membrane anchorage of RAS, using the 
farnesyl-transferase inhibitor tipifarnib in combination with 
gemcitabine. But no improvement in OS was observed 
when compared to gemcitabine plus placebo in patients 
with advanced PDAC. Likewise, other strategies such 
as dislodging KRAS from the plasma membrane and 
preventing interactions with KRAS activating proteins 
have been effective in pre-clinical models but are yet to be 
translated to the clinical setting[20,21]. 

Substantial efforts have also been devoted to inhibition 
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of downstream signal transduction, especially the 
PI3K and MAPK (RAF/Mek/ERK) pathways, as they 
are more amenable to pharmacological inhibition[22-24]. 
Disconcertingly, this strategy has proven unsuccessful 
because inhibition of the MEK pathway resulted in 
feedback activation of the PI3K pathway mediated by the 
epidermal growth factor receptor (EGFR)[25]. To counter 
this Ko et al[26] investigated the effect of dual inhibition of 
EGFR and MEK with erlotinib and selumetinib respectively. 
In this phase Ⅱ non-randomized trial of 41 patients with 
chemotherapy refractory PDAC, 26% had stable disease 
for 12 wk or more and 38% of patients had a greater than 
50% decline in CA 19-9 levels[26]. Though this combination 
approach showed promise, it needs to be validated in 
larger studies. 

Targeting BRCA2 and PALB2
The main role of the tumor suppressor genes BRCA2 
and PALB2 is to repair double stranded DNA breaks by 
homologous recombination. In patients with germ-line 
mutations of these genes, DNA repair occurs by alternate 
means, predominantly by base-excision repair mediated 
by the enzyme poly(ADP-ribose) polymerase (PARP). 
Inhibition of PARP in patients with BRCA mutations 
renders tumor cells incapable of repairing DNA damage 
and cell death ensues. This concept is known as “synthetic 
lethality” and represents a great example of targeted 
therapy in PDAC[27].

In a preclinical study, the PARP inhibitor 3-amino­
benzamide in combination with gemcitabine showed strong 
anti-tumor activity by inducing apoptosis in PDAC cell 
lines[28]. Remarkably, neoadjuvant iniparib plus gemcitabine 
induced a complete pathological response in a patient 

with recurrent PDAC harboring the BRCA2 mutation[29]. In 
a phase Ⅰ study of olaparib plus gemcitabine in patients 
with advanced solid tumors that also included 15 patients 
with PDAC, no differences in efficacy endpoints were noted 
with the combination[30]. However, these patients were 
genetically unselected and were unable to receive full-dose 
gemcitabine due to myelotoxicity attributed to olaparib. 
The role of PARP inhibitors in PDAC might thus be limited 
to patients with BRCA2 mutations. The combination of 
PARP inhibitors with cytotoxic chemotherapy is also being 
investigated (ClinicalTrials.gov identifiers: NCT01585805 
and NCT01296763, Table 3).	

OVEREXPRESSION OF GROWTH-FACTOR 
RECEPTORS ON TUMOR CELLS 
PDAC cells overexpress the EGFR and its ligand trans­
forming growth factor-α (TGF-α)[31]. In transgenic mouse 
models, EGFR signaling mediated by TGF-α has been 
shown to be essential for the onset of ductal metaplasia, a 
precursor lesion that progresses to PanIN and eventually 
to PDAC[32]. EGFR signaling is perceived to be a vital cog 
in mediating the oncogenic effects of KRAS as evidenced 
in mouse models wherein genetic or pharmacological 
inhibition of EGFR signaling eliminates tumorigenesis[33,34]. 
The exact mechanism by which EGFR overexpression 
contributes to the development of PDAC is unclear but 
could be related to induction of the Notch pathway[35]. 
EGFR overexpression is also associated with increased 
propensity for liver metastasis and poor prognosis[36]. 
Paradoxically, despite compelling pre-clinical evidence, the 
EGFR inhibitor erlotinib showed only a marginal clinical 
benefit for patients with advanced PDAC by prolonging OS 
by a mere 2 wk[37]. It is hypothesized that EGFR signaling 
might be essential earlier in tumorigenesis while advanced 
PDAC cells escape EGFR dependence[38]. 

Targeting insulin-like growth factor-1 receptor
PDAC cells also overexpress insulin-like growth factor-1 
receptor (IGF-1R)[39]. IGF-1R signaling promotes 
tumorigenesis by activating PI3K, MAPK, AKT and Rac 
pathways[40]. This results in uncontrolled cellular pro­
liferation, survival and metastasis. Based on exciting and 
positive results from preclinical[41] and early-phase trials[42,43]. 
ganitumab, a fully humanized monoclonal antibody against 
IGF-1R combined with gemcitabine was investigated in 
a phase Ⅲ, double-blind, placebo-controlled randomized 
controlled trial (RCT) as first-line therapy for patients with 
metastatic PDAC[44]. Though the ganitumab-gemcitabine 
combination was safe, the study was terminated early 
based on results of a pre-planned futility analysis which 
revealed no improvement in the primary objective of 
OS, and the reason for lack of efficacy is yet unclear[44]. 
Inhibition of IGF-1R using small interfering RNA (siRNA) had 
an anti-proliferative effect on HPAC and Panc-1 pancreatic 
cancer cell lines invoking the possibility of a novel target for 

Table 1  Barriers to effective molecularly targeted therapy in 
pancreatic ductal adenocarcinoma

PDAC biology Barrier 

Genetic 
heterogeneity

Inability to directly inhibit KRAS 

Convergence of signal transduction pathways 
downstream from KRAS with feedback inhibitory 

loops
Overexpression 
of EGFR, IGF-1R

Escape from growth factor dependence in later 
stages of tumorigenesis 

Desmoplastic 
stroma 

Hypoxic tumor milieu impairs effective drug 
delivery 

Overexpression 
of angiogenic 
factors 

Secretion of angiostatic factors in tumor 
microenvironment 

PDAC stem cells Difficult to eradicate subpopulation of cells capable 
of self-renewal 

Resistance to chemotherapy, radiation 
Low 
immunogenicity

Evasion of host immunity 
Abundance of immunosuppressive cells in tumor 

milieu

PDAC: Pancreatic ductal adenocarcinoma; KRAS: Kirsten rat sarcoma 
oncogene; EGFR: Epidermal growth factor receptor; IGF-1R: Insulin like 
growth factor-1 receptor.
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Table 2  Frequency and consequences of common genetic mutations in pancreatic ductal adenocarcinoma

Mutation category Frequency in PDAC Effects of mutation Consequence 

Gain of function 
KRAS > 95% Continuous transduction of downstream growth signals 

(BRAF/MAPK, PI3K/mTOR) 
Enhanced cell growth and survival 

Loss of function
CDKN2A 95% Disruption of RB1 by CDK4 Uncontrolled cellular proliferation
TP53 75%-85% Impaired DNA damage repair, loss of cell cycle checkpoint 

activation
Chromosomal instability, aneuploidy 

DPC4/SMAD4 50% Loss of inhibition of TGF-β Loss of cell growth inhibition 
BRCA2 6%-17% Impaired DNA damage repair by homologous recombination, 

loss of cell-cycle checkpoint activation 
Genomic instability 

PALB2 1%-3% Impaired BRCA2 function Genomic instability 

KRAS: Kirsten rat sarcoma oncogene; BRAF: Rapidly activated fibrosarcoma homolog B; MAPK: Mitogen activated protein kinase; PI3K: Phosphatidyl 
inositol-3 kinase; mTOR: Mammalian target of rapamycin; CDK: Cyclin dependent kinase; DPC4: Deleted in pancreatic cancer 4; TGF-β: Transforming 
growth factor-β; BRCA2: Breast cancer 2; PALB2: Partner and localizer of BRCA. 

Table 3  Summary of selected ongoing clinical trials evaluating molecular therapies in pancreatic ductal adenocarcinoma (according 
to www.clinicalTrials.gov, accessed July 2015)

Category Clinical trial number PDA setting Medications studied Phase Status Estimated completion 

Tumor suppressor 
genes

NCT01585805 Locally advanced/
metastatic

Gem and Cisplatin ± Veliparib 
vs Veliparib alone

Ⅱ Recruiting 07/2017

NCT01296763 Advanced Irinotecan + Cisplatin + 
Mitomycin C ± Olaparib

Ⅰ/Ⅱ Ongoing, not 
recruiting 

01/2014

Recombinant 
hyaluronidase

NCT01959139 Metastatic FOLFIRINOX ± PEGPH20 Ⅰ/Ⅱ Recruiting 12/2017
NCT01839487 Metastatic Gem + Nab-paclitaxel vs Gem 

+ Nab-paclitaxel + PEGPH20 
Ⅱ Recruiting 04/2016 

Vaccine therapy
NCT02004262 Metastatic Cy + GVAX + CRS-207 vs 

Chemotherapy vs CRS-207 
Ⅱ Recruiting 12/2016

NCT01072981 Adjuvant Chemotherapy vs 
Chemo-radiotherapy ± 

Algenpantucel-L

Ⅲ Ongoing, not 
recruiting

06/2016

NCT01836432 Neoadjuvant FOLFIRINOX ± 
Algenpantucel-L

Ⅲ Recruiting 09/2015

Immune checkpoint NCT02472977 Metastatic Ulocuplumab (CXCR4) and 
nivolumab (PD1)

ⅠB Recruiting 7/2017

CAR-T cell therapy
NCT01897415 Metastatic Autologous redirected RNA 

mesothelin specific CAR-T cells 
I Not recruiting 01/2015

NCT01583686 Metastatic CAR-T cell receptor Ⅰ/Ⅱ Recruiting 12/2018 
Micro-RNA-21 targeted 
therapy

NCT01274455 Locally advanced Gem + Plasmid DNA CYL-02 Ⅰ Not recruiting 12/2013 
Signal transduction 
inhibitors
Janus kinase targeted NCT02119663 Locally advanced/

metastatic 
Capecitabine + Ruxolitinib vs 

Capecitabine + Placebo
Ⅲ Recruiting 06/2017

NCT02117479 Locally advanced/
metastatic

Capecitabine + Ruxolitinib vs 
Capecitabine + Placebo

Ⅲ Recruiting 12/2015

Wnt targeted NCT02050178 Metastatic OMP-54F28 + Gem-Nab-
paclitaxel

Ⅰ Recruiting 12/2016 

NCT01764477 Metastatic PRI-724 + Gem Ⅰ Recruiting 03/2016 
Notch inhibitor NCT01647828 Locally advanced/

metastatic
OMP-59R5 + Gem-Nab-

paclitaxel
Ⅰ/Ⅱ Recruiting 01/2016 

TGF-β inhibitor NCT01373164 Locally advanced/
metastatic

LY2157299 + Gem Ⅰ/Ⅱ Not recruiting 11/2015

PDA: Pancreas ductal adenocarcinoma; Gem: Gemcitabine; FOLFIRINOX: 5-fluorouracil, leucovorin, irinotecan, oxaliplatin; CAR-T: Chimeric antigen 
receptor T cell; TGF-β: Transforming growth factor-β; Cy: Cyclophosphamide.

Narayanan V et al . Molecular therapeutics in pancreas cancer
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future clinical studies[45].

DESMOPLASTIC STROMA 
The stroma of PDAC is characterized by an intense 
fibrotic reaction termed “desmoplasia”[46]. This is 
attributed to collagen, laminin, fibronectin, hyaluronan 
and various other components of the extracellular matrix 
(ECM) secreted by activated pancreatic myofibroblasts 
(stellate cells) in response to stimuli from TGF-β, platelet 
derived growth factor (PDGF) and fibroblast growth 
factors (FGF) produced by the tumor microenvironment 
(TME)[46]. The accumulation of ECM components renders 
the tumor milieu rigid, and the ensuing increase in 
extracellular fluid pressure results in collapse of blood 
vessels in the tumor stroma. The resultant hypoxic peri-
tumoral milieu is thus a significant impediment to the 
effective delivery of chemotherapy to the tumor[47]. 
Furthermore, matrix metalloproteinases (MMP) produced 
in the ECM damages the structural integrity of the ECM 
to self-perpetuate tumor invasion and metastasis[48]. 
The desmoplastic stroma in PDAC represents an ever-
changing compartment that not only functions as a 
mechanical barrier to drug delivery, but also favors 
tumorigenesis and invasion. 

STROMAL TARGETING STRATEGIES 
Pegylated recombinant hyaluronidase
Hyaluronan is a visco-elastic glycosaminoglycan found in 
abundance in normal tissues, notably in joint cartilage[49]. It 
is also found in the stroma of PDAC, where it contributes 
to significantly elevated interstitial fluid pressure (IFP) 
and vascular collapse[47]. In the KPC mouse model, 
enzymatic depletion of hyaluronan with pegylated 
recombinant hyaluronidase (PEGPH20, Halozyme, 
San Diego, CA) rapidly normalized the IFP and hence 
restored normal vascular caliber[50]. Importantly, co-
administration of PEGPH20 and gemcitabine resulted in 
an 83% increase in survival and a dramatic decrease 
in metastatic burden in mice, owing to the enhanced 
delivery of gemcitabine to the tumor[50]. Based on the 
encouraging results from a phase Ⅰb trial that combined 
PEGPH20 with gemcitabine[51], this strategy is now 
being investigated in phase Ⅱ trials in combination with 
conventional chemotherapy regimens for metastatic 
PDAC (ClinicalTrials.gov identifiers: NCT01959139 and 
NCT01839487, Table 3). Initial reports demonstrate that 
patients with high hyaluronan expressing tumors have 
greater clinical benefit[52]. 

Nanoparticle albumin-bound (nab)-paclitaxel with 
gemcitabine
Though cytotoxic agents are not considered to be within 
the realm of targeted therapy, nab-paclitaxel might be 
an exception. In a small yet novel study, the combination 
of nab-paclitaxel and gemcitabine was administered to 
16 patients in a neo-adjuvant fashion[53]. The effects 
on tumor stroma were determined by endoscopic 

ultrasound (EUS) elastography and examination of 
surgically resected tumor specimens. Not only was 
there a significant decrease in tumor stiffness on EUS 
elastography, but also a decrease in cancer associated 
fibroblasts (CAF) and significant disruption of the intense 
collagen architecture[53]. Similarly, stromal disruption was 
also noted in a patient-derived xenograft mouse model 
treated with the same combination[54]. In this study, 
genetically engineered mice bearing tumors received 
nab-paclitaxel, gemcitabine or the combination of the 
two. The intra-tumoral concentration of gemcitabine was 
nearly 3-fold higher in mice treated with nab-paclitaxel 
plus gemcitabine than in those receiving gemcitabine 
alone. The exact mechanism of action of nab-paclitaxel 
in depleting tumor stroma has not been elucidated, but 
could be mediated by secreted protein acidic and rich in 
cysteine (SPARC) - a matrix glycoprotein and marker of 
activated fibroblasts[55] proposed to be a crucial driver of 
PDAC invasiveness[54,56,57]. 

Targeting myofibroblasts/stellate cells
Though the anti-inflammatory properties of 1,25(OH)2D3 

have been well established[58], the finding that activated 
myofibroblasts (also known as stellate cells) overexpress 
the vitamin D receptor (VDR) was an unexpected finding[59]. 
The VDR plays an important role in the transcriptional 
regulation of activated myofibroblasts by converting them 
back to their quiescent state[59]. This is substantiated by a 
preclinical study in mouse models in which calcipotriol, a 
VDR agonist resulted in stromal depletion, facilitated intra-
tumoral delivery of gemcitabine and caused reduction 
in tumor volume[59]. Unlike other therapies that focus on 
stromal ablation, reprogramming the stroma using vitamin 
D analogs might be a useful adjunct to PDAC therapy.

Hedgehog pathway inhibition 
The hedgehog (Hh) signaling cascade activates the Gli 
family of receptors when the sonic Hh ligands bind to its 
receptor Patched1 that in-turn relieves the repression on 
Smoothened1 (Smo)[60]. This paracrine signaling is vital 
for the proliferation of the desmoplastic stroma in PDAC[60]. 
IPI-926 is a powerful inhibitor of Smo, which when 
administered in combination with gemcitabine to KPC mice 
resulted in increased mean vessel density in the stroma and 
increased intra-tumoral concentration of gemcitabine[61]. 
However, when the combination of gemcitabine with 
IPI-926 resulted in worse progression free survival (PFS) 
and OS compared to gemcitabine plus placebo in a phase 
Ⅱ trial that had to be terminated early[62]. More recent 
studies have shown a possible protective effect of the 
stroma, which when depleted resulted in a more aggressive 
and hypervascular phenotype[63,64]. The incongruity in 
outcomes between pre-clinical and clinical trials is a fine 
example to exemplify the complexity of targeting the TME 
in PDAC.

ANGIOGENESIS
Tumor cells can activate quiescent endothelial cells through 

Narayanan V et al . Molecular therapeutics in pancreas cancer
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an “angiogenic switch” which causes overexpression 
of pro-angiogenic factors, chiefly vascular endothelial 
growth factor (VEGF)[65]. VEGF and its two high-affinity 
tyrosine kinase receptors namely flk-1/KDR and flt-1 
are overexpressed in PDAC and associated with disease 
progression[66]. VEGF enhances MAPK phosphorylation 
in pancreatic cancer cell lines, and PD9805 an inhibitor 
of MAPK inhibits the proliferative effects of VEGF[67]. In 
contrast to pancreatic cancer cell lines, actual pancreatic 
tumors have a much lower microvessel density compared 
to normal pancreatic tissue[68]. Unsurprisingly, anti-
angiogenic therapy directed against circulating VEGF using 
bevacizumab in combination either in combination with 
gemcitabine alone or with gemcitabine and erlotinib has 
been unsuccessful[69,70]. Likewise, VEGF receptor targeted 
agents such as axitinib and aflibercept have not improved 
outcomes either[71,72]. As explained previously, the des­
moplastic stroma contributes significantly to altered 
vasculature. Additionally, the abundance of angiostatic 
factors such as angiostatin and endostatin that are 
secreted in the TME also explains the discordance between 
VEGF overexpression and lack of clinical benefit with VEGF 
inhibition[46,73]. 

TUMOR STEM CELLS 
Cancer stem cells (CSC) constitute a very small proportion 
of pancreatic tumors (< 1%), but have the potential 
for unlimited proliferation[74]. They were identified in 
PDAC using a xenograft model of immunocompromised 
mice and proven to have a 100-fold higher tumorigenic 
potential compared to non-tumorigenic cancer cells[74]. 
A distinct population of CD133+ PDAC stem cells also 
predicts propensity to metastasis[75]. Moreover, cancer 
stem cells are extremely resistant to chemotherapy and 
radiation[76,77], attributed to the overexpression of the early 
developmental sonic hedgehog (SHH) pathway[78]. The 
self-renewing nature of CSCs poses a significant challenge 
in molecular therapeutics of PDAC. 

Targeting CSCs in PDAC 
Data emerging from preclinical studies have demonstrated 
that it is indeed possible to target and eliminate CSCs. 
Salinomycin, an antibiotic with a greater than 100-fold 
efficacy against CSCs compared to paclitaxel, inhibited the 
growth of CD133+ pancreatic CSCs and the effects were 
synergistic with gemcitabine, which curbed the growth 
of non-CSC cells[79]. Pancreatic CSCs also overexpress 
epithelial cell adhesion molecule (EpCAM) and this feature 
has been the focus of immunotherapy directed against 
CSCs[80]. MT110 is a bi-specific T cell engaging antibody 
(BiTE) that simultaneously targets EpCAM on CSCs and 
T cell-CD3 complexes on T cells to effectively eliminate 
the highly tumorigenic CSCs both in vivo and in vitro 
in a mouse model of PDAC[80]. Natural agents such as 
isoflavones, 3,3’-diindolylmethane (DIM) and curcumin 
analogues have also garnered attention because of 
their inhibitory effects on CSCs through cell-signaling 

molecules and microRNAs (miRNA)[81]. Pancreatic CSCs 
also overexpress Nodal and Activin belonging to the TGF-β 
superfamily and pharmacological inhibition or knockdown 
of their receptor activin-like 4 and 7 (Alk 4/7) reversed 
gemcitabine resistance in an orthotopic mouse model and 
dramatically reduced their tumorigenicity[82]. In addition to 
newer agents, the anti-neoplastic effects of the timeworn 
drug metformin are also attributed to its activity against 
pancreatic CSCs[83]. Results from these preclinical studies 
await clinical translation. 

IMMUNE BIOLOGY OF PDAC 
The immune system serves as an innate defense against 
tumorigenesis and metastasis. To counteract immune-
surveillance, tumors develop adaptive mechanisms and 
PDAC is adept at immune evasion because of its inherently 
low immunogenicity[84,85]. The lack of anti-tumor effector 
T lymphocytes in preclinical mouse models of PDAC 
compared to a very high proportion of immunosuppressive 
cells such as regulatory T cells (Tregs), tumor-associated 
macrophages and myeloid derived suppressor cells tips the 
balance in favor of tumorigenesis[85]. Tumor and stromal 
cells also secrete several inflammatory mediators, notably 
TGF-β and interleukin 10 (IL-10) which down-regulate T 
cell and antigen presenting cell (APC) proliferation in the 
PDAC microenvironment[86,87]. Despite the purported low 
immunogenicity of PDAC, the presence of CD4+ helper T 
cells and CD8+ cytotoxic T cells (CTL) in resected pancreatic 
tumors was associated with longer OS, suggestive of a 
definite immune response against PDAC[88]. Though it has 
been a challenging endeavor to devise effective strategies 
to harness the host’s immune system against PDAC, 
results of recent vaccine trials and immune checkpoint 
inhibitors in PDAC have been quite encouraging. 

VACCINE THERAPY 
Immune mediated anti-tumor response occurs in two 
steps; first, tumor associated antigens (TAA) are pre­
sented by APC, notably dendritic cells to effector/CTL, 
which in turn recognize antigenic epitopes bound to major 
histocompatibility (MHC) molecules. Next, concomitant 
binding of co-stimulatory molecules such as B7-1 on APCs 
and CD28 on T cells results in T cell activation. However, 
tumor cells lack the additional co-stimulatory molecules 
and immune evasion ensues[89]. Vaccine-based therapies 
are designed to circumvent immune evasion by delivering 
TAAs to APCs and stimulate a robust cell-mediated 
immune response to attack and eliminate tumor cells. 

Initial vaccine designs for PDAC utilized peptide 
antigens such as mucin-1 (MUC1), carcinoembryonic 
antigen and protein products of KRAS oncogene that 
are capable of binding exact MHC molecules[89]. Because 
peptide vaccines contain only single antigenic epitopes, 
it leads to immune tolerance with minimal and transient 
efficacy[90]. The expansion of proteonomics and gene 
expression based assays has led to the identification of 
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several TAAs that are selectively expressed by pancreatic 
cancer cells and has widened the scope for development 
of whole-cell vaccines that utilize these antigens to trigger 
tumor-specific immunity. Mesothelin is one such example 
of a TAA that is overexpressed in nearly all PDACs (but 
not in normal cells) and is implicated in cell adhesion and 
metastases[91,92]. Mesothelin-specific CD8+ T cell responses 
have been associated with improved OS following vaccine 
therapy[93]. 

Granulocyte-macrophage colony-stimulating factor 
vaccines 
GVAX: GVAX is a whole-cell irradiated allogeneic vaccine 
that is composed of tumor cells from two pancreatic 
cell lines (Panc 10.05 and Panc 6.03) that have been 
genetically modified using a plasmid vector encoding for 
the granulocyte-macrophage colony-stimulating factor 
(GM-CSF) gene[94]. When injected transdermally, high 
GM-CSF secretion at the vaccine site causes mobilization 
and differentiation of APCs, a feature that patients with 
PDAC typically lack. APCs subsequently migrate to 
regional lymph nodes and activate CD4+ and CD8+ T cells 
to mount an effective anti-tumor response[95]. 

Initial trials demonstrated the safety and tolerability of 
GVAX when administered in the adjuvant setting followed by 
conventional chemoradiation. Delayed-type hypersensitivity 
(DTH) reactions and induction of mesothelin-specific CD8+ 

cells correlated with prolonged disease free survival in 
the phase Ⅰ and phase Ⅱ trials respectively[94,96]. Based 
on the favorable results in the adjuvant setting, GVAX 
was studied in the metastatic setting in patients who had 
progressive disease after gemcitabine[97]. In this open-label 
phase Ⅱ study, the combination of GVAX with immune-
modulating dose of cyclophosphamide (Cy) was compared 
to GVAX alone. The rationale for adding Cy was to 
enhance treatment related immune response by inhibiting 
immunosuppressive Tregs. Although OS was better in the 
combination arm compared to GVAX alone, the results 
were not statistically significant (median OS - 4.7 mo 
vs 2.3 mo). CD8+ T cell responses to mesothelin were 
enhanced in the combination arm and associated with a 
trend towards prolonged PFS[97]. Whether metronomic 
Cy plus GVAX will counter immune tolerance mediated 
by Tregs is being evaluated in a randomized clinical trial 
(NCT00727441, Table 3). 

GVAX-prime and CRS-207-boost 
CRS-207 is a live-attenuated strain of Listeria mono­
cytogenes, genetically engineered to secrete mesothelin 
into the cytosol of APCs. In addition to activating effector T 
cells by delivering TAAs directly to the APCs, the cytokine 
mediated inflammatory response that is triggered by 
CRS-207 also serves to recruit more APCs[95]. The synergy 
between GVAX and CRS-207 was demonstrated in a 
phase Ⅰ trial[98] which led to a multi-center, randomized 
phase Ⅱ trial among 90 patients exclusively with PDAC[99]. 
Patients with previously treated metastatic PDAC were 
randomized 2:1 to either 2 doses of GVAX immune 

priming followed by 4 doses of CRS-207 as a boost (arm 
A) or 6 doses of GVAX alone (arm B). All patients received 
Cy to inhibit Tregs. After a median duration of follow-up 
of 6.6 mo, the OS was 6.1 mo in arm A compared to 3.9 
mo in arm B (HR for death, 0.59; 95%CI: 0.36 to 0.91, 
P = 0.02). Toxicity with the combination was minimal 
and included transient fevers, fatigue, lymphopenia and 
elevated liver enzymes. As with previous studies, detection 
of enhanced mesothelin specific CD8+ T cell responses 
was associated with longer OS regardless of treatment 
arm[99]. A larger phase Ⅱb trial is currently underway 
to compare the combination of GVAX plus CRS-207 to 
CRS-207 alone or chemotherapy alone in the metastatic 
setting (NCT02004262, Table 3). 

Algenpantucel-L
Algenpantucel-L (NewLink Genetics Corporation, Ames, 
IA) is an allogeneic vaccine that contains two PDAC cell 
lines (HAPa-1 and HAPa-2) that have been genetically 
engineered to express α(1,3)-galactosyl epitopes 
(α-Gal)[100]. Though human cells lack the α-Gal epitopes, 
the gut flora stimulates antibodies against it. These 
antibodies are the primary mediators of hyperacute 
rejection characterized by rapid organ destruction 
through complement activation within minutes of organ 
transplantation[100]. When these antibodies are coupled 
with tumor cells such as in algenpantucel-L, it promotes 
opsonization and phagocytosis of tumor cells by APCs 
and results in T cell activation. In a phase Ⅱ study of 
70 patients with resected PDAC, algenpantucel-L was 
added to either gemcitabine or 5-fluorouracil based 
chemoradiotherapy[100]. After a median follow-up of 21 
mo, the DFS and OS at 1 year were 62% and 86% 
respectively. Notably, the OS in this trial was better than 
the reported 81% in the sentinel RTOG-9704 trial using 
the same chemoradiotherapy regimen. Patients who 
received a higher dose of 300 million cells/dose fared 
better than those who received 100 million cells/dose with 
regard to both DFS (81% vs 51%) and OS (81% vs 68%) 
at 12 mo respectively, suggesting a strong dose-response 
effect. Apart from mild adverse events such as injection 
site pain and induration the vaccine was well tolerated. 
Phase Ⅲ trials evaluating algenpantucel-L in the adjuvant 
(NCT01072981) and neoadjuvant setting (NCT01836432) 
are ongoing (Table 3). 

Immune checkpoint inhibitors
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is expressed 
on the surface of activated T cells and down-regulates 
immune activation by competitively inhibiting the binding 
of CD28 to B7-1 and turning off the intracellular signaling 
cascade of B7-1[101]. Monotherapy with ipilimumab (Yervoy, 
Bristol-Myers Squibb Company), an anti-CTLA-4 mAb, 
was ineffective in the treatment of locally advanced or 
metastatic PDAC[102]. However, the combination of GVAX 
with ipilimumab showed striking clinical and immunological 
synergy in previously treated patients with advanced 
PDAC[103]. Compared to single-agent ipilimumab, patients 
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in the combination therapy arm had better OS at 1 year 
(27% vs 7%) although the study was not powered 
to detect differences in OS. Significantly however, 
combination therapy was not associated with increased 
adverse events, despite the higher dose of ipilimumab (10 
mg/kg) used in this study. Increase in peak mesothelin-
specific T cells and enhancement of the T cell repertoire 
was associated with longer OS[103]. Most responders in this 
study required at least 12 wk of therapy, thus underscoring 
the need for selecting patients with early stage disease in 
future trials to evaluate delayed responses often seen with 
immunotherapy. 

Programmed cell death ligand-1 (PD-L1) and its 
receptor PD-1 are expressed on the cell surface of tumor 
cells as well as activated T cells. This receptor-ligand 
interaction down-regulates CD4+ and CD8+ T cells and 
is a natural immune checkpoint to prevent excessive 
immune mediated tissue damage[104]. PD-L1 expression is 
up regulated in PDAC cells and results in a blunted T cell 
response against the tumor[104]. Blocking the interaction 
between PD-1 and PD-L1 successfully augmented anti-
tumor immune responses in vitro and formed the basis 
for investigating the efficacy of BMS-936559, an anti-
PD-L1 mAb in various solid tumors[105]. Durable responses 
were noted in patients with melanoma, non-small cell 
lung cancer and renal-cell carcinoma but disappointingly 
no responses were seen in 14 patients with PDAC[105]. 
The resistance to PD-L1 inhibition in PDAC is due to the 
high expression of fibroblast activation protein (FAP) 
by carcinoma-associated fibroblasts (CAF) in the tumor 
stroma[106]. These FAP+ CAFs produce chemokine (C-X-C 
motif) ligand 12 (CXCL12) that binds with chemokine 
receptor 4 (CXCR4) to prevent T cells from infiltrating the 
tumor and causing local immunosuppression. Inhibition 
of CXCR4 by AMD3100 in a GEMM of PDAC caused 
cancer regression synergistically with PD-L1 inhibition[106]. 
Therefore it might be feasible to overcome tumoral 
immunosuppression through a combined approach. A 
clinical trial to test this hypothesis has recently opened 
to enrollment as a phase Ⅰ study of ulocuplumab (anti-
CXCR4) and nivolumab (anti-PD1) (NCT02472977, Table 
3). Since these immune-modulating agents are not 
cancer T cell specific and can cause activation of other 
quiescent T cell populations, autoimmune toxicities occur 
frequently[107]. Hence future studies will also need to 
focus on effective management of these toxicities. 

CD40 agonist therapy 
CD40 belongs to the tumor necrosis factor receptor 
superfamily and is expressed by multiple APCs including 
dendritic cells, B cells and macrophages[108]. Activated 
CD40 plays a crucial role in the priming and activation of 
tumor-specific T cells, but also mediates T cell independent 
antitumor immunity by activating macrophages[108]. 
CP-870, 893 is a CD40 agonistic mAb that potentiates anti-
tumor immunity by these aforementioned mechanisms. 
In the initial pre-clinical study CP-870, 893 when admini­
stered in combination with gemcitabine in the KPC mouse 
model caused rapid regression of tumors mediated by 

T cell-independent macrophage infiltration[109]. Notably, 
depletion of tumor stroma was also noted and attributed 
to the effect of stromal infiltrating macrophages. In a 
phase Ⅰ trial conducted subsequently, 22 patients with 
previously untreated advanced PDAC were administered 
CP-870, 893 with gemcitabine[110]. The radiological 
response rate (19% vs 9.4%) and median OS (8.6 mo 
vs 6.8 mo) were better than expected with single agent 
gemcitabine. The addition of gemcitabine is postulated to 
cause antigenic release akin to that of a vaccine with co-
stimulation of APCs by CD40 agonist therapy[111]. Apart 
from transient cytokine release syndrome and depletion of 
B cells, none of the auto-immune toxicities seen with the 
immune check-point inhibitors were noted[110]. 

FUTURE STRATEGIES 
Adoptive T cell transfer 
Stemming from the successes in hematological malig­
nancies notably acute lymphoblastic leukemia[112], 
adoptive T cell transfer is an exciting new paradigm that 
holds tremendous promise in PDAC. This therapeutic 
strategy involves ex vivo genetic engineering of T cells 
collected from patients to produce chimeric antigen 
receptors (CAR) capable of recognizing mesothelin 
expressed on PDAC cells[113,114]. Infusion of CAR-T cells 
back to the patient results in immediate recognition of 
tumor cells and obviates antigen processing and HLA 
expression. In preclinical studies, CAR-T cells exhibited 
potent anti-tumor activity[115]. Beatty et al[116] have also 
reported a marked decline in ascitic fluid malignant cell 
burden in a patient with metastatic PDAC, in addition to 
transient decline in [18F] fluorodeoxyglucose uptake on 
positron emission tomography (PET) scan after infusion 
of CAR-T cells. CAR-T cell therapy is a subject of active 
research in PDAC and studies are ongoing (ClinicalTrials.
gov identifiers: NCT01897415 and NCT01583686, Table 
3). 

Targeting epigenetic regulators
Epigenetics is the study of changes in gene expression 
by mechanisms other than changes in the DNA code. 
Histone modification by acetylation or methylation, 
DNA methylation and miRNA expression are the main 
mechanisms of epigenetic regulation[117]. Histone acety­
lation by histone acetyltransferase promotes trans­
criptional activity but histone deacetylases (HDAC) 
repress transcription of tumor suppressor genes and 
are overexpressed in PDAC[118]. HDAC inhibitors serve 
to abrogate the transcriptional repression and impair 
tumorigenesis by playing a crucial role in differentiation, 
cell-cycle inhibition and apoptosis in tumor cells[117]. 
Multiple HDAC inhibitors such as hydroxamic acid 
derivatives (vorinostat), cyclic peptides (romidepsin), 
short-chain fatty acids (valproic acid) and benzamides 
have been studied, but results in PDAC have been 
disappointing[119,120]. However, the recognition that 
miRNAs play an important role in PDAC has resulted in 
increased attention towards exploiting them as potential 
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therapeutic targets[121]. Acting at the post-transcriptional 
level, these non-coding RNAs play a crucial role in 
apoptosis, differentiation and proliferation. Aberrant 
overexpression of multiple miRNAs, particularly miRNA-21 
has been demonstrated in PDAC and its inhibition by 
Lentiviral vectors has shown promising antitumor effects 
in preclinical studies[121,122]. MiRNA targeted therapy 
especially in combination with chemotherapy is in its early 
stages and expected to gain momentum in the future 
(ClinicalTrials.gov identifier: NCT01274455, Table 3).

Targeting signal transduction
As described previously, targeting signaling pathways 
downstream from KRAS has been unsuccessful so far. 
However, there is renewed interest in targeting the 
effects of Janus kinase/signal transducer and activator 
of transcription (JAK/STAT) signaling pathway after its 
importance in PDAC and associated cachexia became 
apparent[123,124]. The addition of the JAK inhibitor rux­
olitinib to capecitabine in patients with refractory 
metastatic PDAC in a phase Ⅱ trial showed OS benefit 
for a subgroup of patients with elevated levels of 
C-reactive protein[125] and has formed the rationale 
for phase Ⅲ trials evaluating ruxolitinib in metastatic 
PDAC (ClinicalTrials.gov identifiers: NCT02119663 and 
NCT02117479, Table 3). Global genomic analysis data 
also revealed alterations in genes in the Wnt/Notch and 
TGF-β signaling pathways in all PDACs[13]. Ongoing clinical 
trials to evaluate the efficacy of specific inhibitors of 
these pathways are currently underway (ClinicalTrials.gov 
identifiers: NCT02050178, NCT01764477: Wnt inhibitors, 
NCT01647828: mAb against Notch, NCT01373164: Oral 
anti TGF-β receptor type 1, Table 3).

CONCLUSION
As evinced in this review, with improved understanding of 
the biology, genetic basis and molecular mechanisms that 
initiate and propagate PDAC carcinogenesis, the focus has 
shifted from identifying effective cytotoxic chemotherapy 
regimens to molecularly targeted therapies. These efforts 
have been further burnished by significant strides in the 
field of onco-immunology that now allows for cautious 
optimism that effective therapeutic options for PDAC are 
finally within reach. 
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