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Abstract
Acute hepatic failure (AHF) is a severe liver injury 
accompanied by hepatic encephalopathy which 
causes multiorgan failure with an extremely high 
mortality rate, even if intensive care is provided. 
Management of severe AHF continues to be one of 
the most challenging problems in clinical medicine. 
Liver transplantation has been shown to be the most 
effective therapy, but the procedure is limited by 
shortage of donor organs. Although a number of 
clinical trials testing different liver assist devices are 
under way, these systems alone have no significant 
effect on patient survival and are only regarded as a 
useful approach to bridge patients with AHF to liver 
transplantation. As a result, reproducible experimental 
animal models resembling the clinical conditions are 
still needed. The three main approaches used to create 
an animal model for AHF are: surgical procedures, toxic 
liver injury and infective procedures. Most common 
models are based on surgical techniques (total/partial 
hepatectomy, complete/transient devascularization) 
or the use of hepatotoxic drugs (acetaminophen, 
galactosamine, thioacetamide, and others), and very 
few satisfactory viral models are available. We have 
recently developed a viral model of AHF by means 

of the inoculation of rabbits with the virus of rabbit 
hemorrhagic disease. This model displays biochemical 
and histological characteristics, and clinical features 
that resemble those in human AHF. In the present 
article an overview is given of the most widely used 
animal models of AHF, and their main advantages and 
disadvantages are reviewed.
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INTRODUCTION
Acute or fulminant hepatic failure (AHF) is a severe 
liver injury accompanied by hepatic encephalopathy 
which causes multiorgan failure with an extremely 
high mortality rate, even if  intensive care is provided. 
Management of  severe AHF continues to be one of  the 
most challenging problems in clinical medicine[1]. Liver 
transplantation has been shown to be the most effective 
therapy, but the procedure is limited by shortage of  
donor organs combined with the disadvantage of  
needing immunosuppressant treatment[2,3]. Survival 
rates are substantially improved today compared with 
the mortality rate that approximated 100% when the 
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syndrome was first described nearly five decades ago. 
Nonetheless, survival has plateaued in recent years, 
prompting us to consider whether major new advances 
in disease understanding are needed to further improve 
the overall outcome[4].

Since 1970, when Trey and Davidson[5] introduced 
the term fulminant hepatic failure, various authors have 
suggested different classifications aimed to establish 
prognosis and adequate therapeutic strategies. These 
classifications are fundamentally based on time elapsed 
from onset of  clinical symptoms or jaundice to the 
development of  encephalopathy[6-9]. The causes of  AHF 
are varied and in many patients remain unknown. A 
6-year study (1992-1998) carried out in Spain into the 
causes of  AHF indicated that the basic etiopathogenic 
agents of  AHF were viral hepatitis (39%), unknown 
cause (30%), toxins or drugs (21%) and others (10%)[10]. 
Acute viral hepatitis constitutes a frequent cause of  
AHF[7,11,12]. The viruses causing hepatitis A, B and E 
are capable of  producing AHF, which is rarely seen 
with hepatitis C virus. The hepatitis B virus is the main 
causal agent worldwide, responsible for 70% of  all cases 
of  viral origin[13]. The hepatitis E virus causes AHF 
principally in women in their third term of  pregnancy. 
Other viruses involved comprise the herpes virus, 
varicela-zoster, cytomegalovirus, Epstein-Barr virus, 
human herpes type 6, adenovirus and paramyxovirus, 
mainly in the setting of  immunosuppression[14]. Non-
steroidal anti-inflammatory analgesic and anti-bacterial 
drugs are among the pharmaceuticals which most 
frequently trigger AHF[7,15-17]. Other less common 
causes of  AHF include pregnancy, veno-occlusive 
disease, Budd-Chiari syndrome, Wilson’s disease, 
hemochromatosis, tumoral metastases, sepsis, ischemia 
and hepatic transplant failure[18,19].

Etiologies also vary worldwide with considerable 
differences apparent between Western countries and 
the developing world. In Europe and North America 
a large proportion of  cases are due to acetaminophen 
and to idiosyncratic drug reactions[20], whereas reports 
from emerging countries in Asia and Africa feature 
viral illnesses, particularly hepatitis B and E[17]. The 
resulting clinical picture is remarkably similar across 
the different etiologies, reflecting common patterns of  
response of  the innate immune system and the resulting 
inflammatory response[21]. Determining etiology is 
important for two reasons: specific antidotes or therapies 
may be indicated once the diagnosis is known, and 
knowing the cause provides a reasonably valid guide to 
predicting outcome.

The AHF syndrome occurs as a result of  the functional 
failure of  a large part of  the hepatic parenchyma, and 
severity is proportional to the level of  hepatic damage. 
AHF provokes profound physiological alterations 
characterized by encephalopathy, hemodynamic changes 
and coagulopathy, with frequent development of  cerebral 
edema and renal failure[14,22,23]. Diagnosis is based on 
biochemical and hematological data indicating hepatic cell 
hypofunction. Although prolonged prothrombin time not 
corrected by vitamin K and impairment of  factor V are 

widely used, research into prognostic indexes remains an 
open field of  investigation[24].

The pathophysiology of  AHF is an area of  great 
interest. It is evident that a relationship must exist 
between different pathogenic factors, such as bacteria 
toxins, cytokines, free radicals and other components 
of  the inflammatory system which cause local lesions[25]. 
It seems that the endothelium is the first to release 
vasoactive agents which affect local and distal blood 
flow in the critical phase of  the disease, with nitric 
oxide, prostacyclins and endothelins being essential 
components of  the response[26]. Hyperbilirubinemia 
is general ly conjugated and jaundice is an early 
indicator which progresses rapidly. Severe coagulation 
problems arise as a result of  a variety of  mechanisms. 
Consumption of  factor V indicates hepatic damage 
regardless of  vitamin K levels. Renal failure occurs 
in 30%-75% of  cases, and is associated with a poor 
prognosis. Thrombocytopenia is also common[27]. An 
increase in the plasma concentration of  aromatic amino 
acids (AAA) and normal or slightly elevated values 
for branched amino acids (ACR) are typical findings 
in patients with AHF. In fact, a fundamental clinical 
parameter for AHF is the Fischer index, that is, the 
ACR/AAA molar ratio, which decreases as the severity 
of  hepatic symptoms develops[28]. An increase in the 
amino acids phenylalanine and tyrosine, and a decrease 
in the Fischer index have been reported in both surgical 
models[29] and models using galactosamine[30]. 

Intracranial hypertension is a major cause of  morbidity 
and mortality of  patients suffering from fulminant hepatic 
failure. The etiology of  this intracranial hypertension is not 
fully determined, and is probably multifactorial, combining 
a cytotoxic brain edema due to the astrocytic accumulation 
of  glutamine, and an increase in cerebral blood volume 
and cerebral blood flow; in part due to inflammation, to 
glutamine and to toxic products of  the diseased liver[31]. 
Cerebral edema is a potential life-threatening complication 
in patients with AHF who progress to grade Ⅲ/Ⅳ 
encephalopathy[26]. The current view on the pathogenesis 
of  cerebral edema is that hyperammonemia plays a main 
role. High arterial ammonia concentrations have been 
proposed as a predictor of  brain herniation and mortality 
in patients with AFL[32-34]. Moreover, arterial ammonia 
concentration, ammonia delivery to the brain, and its 
metabolic rate are higher in patients with high intracranial 
pressure, and increased arterial ammonia correlates with 
increased cerebral flow[35]. Recent work has also suggested 
free radical formation occurring at a mitochondrial level 
as being the potential mediator of  cellular dysfunction as 
opposed to ammonia per se[36].

Research into the molecular mechanisms of  hepatic 
regeneration has aroused wide-spread interest[37,38]. 
Although l i t t le is st i l l known about the hepatic 
regenerative process, it is clear that cellular loss and 
damage in the liver are accompanied by a lack of  
regenerative activity[39]. Plasma levels of  hepatocyte 
growth factor (HGF) and transforming growth factor 
(TGF)-β rise[40]. An increase in the activity of  the 
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fibrinolytic system, responsible for the activation of  
both HGF and TGF-β, is also observed[41]. It has been 
reported that the serum of  people affected by AHF has a 
negative effect upon culture cell growth when compared 
with a control serum, due to cell proliferation inhibition 
rather than to an increase of  apoptosis[42]. Recent studies 
using various animal models have shown that the over-
expression of  calpastatin, an endogenous inhibitor of  
calpain, helps prevent further liver damage when hepatic 
regeneration is compromised[43]. 

Knowledge concerning the pathophysiological basis 
of  the AHF hemodynamic alterations, immunological 
dysfunction, and multiorgan failure is still very rudimentary. 
It is therefore crucial to investigate the molecular basis 
of  AHF in more depth[44]. Furthermore, although many 
AHF treatment options have been proposed and applied 
in recent years, only hepatic transplantation is widely 
accepted among clinical specialists. However, the lack of  
donors combined with the high costs, technical difficulties, 
viability issues and the disadvantage of  needing life-long 
pharmacological immunosuppressant treatment following 
surgical intervention (with the added complication that 
the immunosuppressant agents used themselves produce 
side effects in the kidneys, liver and other organs), mean 
that liver transplantation is not always an option. For these 
reasons, other therapeutic options to bridge patients to 
recovery or stabilization have to be considered. Artificial 
liver support, intended to remove protein-bound toxins and 
water-soluble toxins without providing synthetic function, 
and bioartificial liver support systems, using hepatocytes 
in an extracorporeal device connected to the patient's 
circulation, are being tested, and molecular adsorbent 
recirculating systems (MARS)[45] or cell-based therapies 
are increasingly the focus of  attention[46,47]. These systems 
improve clinical and biochemical parameters and can be 
applied safely to patients[48], but their effectiveness and 
viability have not yet been conclusively demonstrated[38]. 
In terms of  clinical applications, functional studies using 
animal models are absolutely crucial.

ANIMAL MODELS OF AHF
Knowledge of  the pathophysiology and treatment 
of  AHF are limited by the lack of  satisfactory animal 
models. Many attempts have been made to develop a 
suitable model which can be replicated, using a wide 
variety of  species and approaches, from surgical models 
to the use of  hepatoxic drugs (Table 1). However, to date 
a simple model which accurately reproduces the pattern 
of  human AHF has not been reported, and the models 
currently in use present significant limitations[49,50]. 

An ideal model would present well-defined clinical 
and biochemical criteria, and, as in the case of  the King’s  
College AHF prognostic criteria[11], be capable of  
providing an accurate prognosis. However, none of  the 
models which have been developed until now meet these 
requirements. Furthermore, the clinical and biochemical 
criteria used to indicate the existence of  AHF in animal 
models often have very little in common with those used 
in clinical practice. However, given the current state of  

knowledge concerning AHF and the difficulties involved 
in carrying out research on patients, animal models have 
a fundamental role to play in future studies despite their 
limitations. Therefore, although progress is being made, 
research in this field must continue, with the aim of  
developing a reliable and suitable animal model, capable 
of  accurately reflecting the human clinical syndrome and 
presenting a minimum of  disadvantages[51].

Ideal AHF models, according to criteria widely 
accepted (Table 2)[49-54], would benefit from complying 
with a series of  requirements including that the model 
should be reversible, ie that some animals would survive 
the process if  a suitable treatment were administered, 
and that the results obtained can be replicated, i.e. that 
death occurs at recognised intervals and that the extent 
of  hepatic damage can be measured and standardised. 
Furthermore, death would need to be a result of  hepatic 
damage, i.e. the complications produced following damage 
would need to accurately reflect the typical human clinical 
picture and death should be the direct result of  the liver 
damage produced. Therefore, the untreated animals 
should die with signs of  progressive hepatic failure within 
a recognised period of  time. In addition, the animal used 
would need to be of  a size permitting sufficient samples 
of  blood and tissue to be taken during treatment. Finally, 
all the methods used should represent the lowest possible 
health risk for personnel participating in the research. 
An additional criterion could be the use of  a conscious 
animal model to evaluate the development of  hepatic 
encephalopathy, since this is an essential part of  the 
pathology of  AHF[55].

Numerous studies have been carried out in an 
attempt to develop a suitable AHF model. The majority 
of  animal models are based on surgical techniques or 
hepatoxic drugs. Surgical models include the use of  
hepatic ischemia and partial/total hepatectomy, whilst 
chemical models are based on the use of  drugs and toxins 
such as acetaminophen, azoxymethane, concanavalin 
A, galactosamine, halothane, thioacetamide, amatoxin-
endotoxin, etc. Nevertheless, to date, no model accurately 
reflects human AHF, and most demonstrate significant 
limitations.

Surgical models
Surgical models of  AHF can be divided into three 
categories: hepatectomy (total or partial), devascularization 
(total or partial) and models which are a combination of  
the previous two.

Total and partial hepatectomy: Surgical models 
employing total or partial hepatectomy have been 
successfully developed in various animal species following 
the first attempt carried out by Mann on dogs in 1921[56]. 
It has been demonstrated that 95% liver resection in rats 
provides a good AHF model[57], whilst a less than 90% 
hepatectomy is the upper limit for a liver regeneration 
research model in mice, as higher values produce mortal 
hepatic failure[58]. A potentially reversible model using pigs 
has been described which combines partial hepatectomy 
(70%) with porta-caval derivation and produces death 
from AHF after an interval which is sufficiently prolonged 
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to enable studies of  hepatic support measures to be 
carried out. In addition, the animal is of  an appropriate 
size, and the technique does not represent a health 
hazard[59]. 

The partial hepatectomy models are equivalent to 
patients who have undergone large liver resections for 
liver tumors. It has been demonstrated by DNA analyses 
of  rats subjected to various levels of  partial hepatectomy 
that induced AHF is a consequence of  both an increased 
rate of  apoptosis and a reduction in liver regeneration[60]. 
Moreover, models of  partial hepatectomy have been 
used to test the usefulness of  different support systems. 
Thus, intraperitoneal transplant of  syngeneic-bioencap-
sulated bone marrow cells, which can transdifferentiate 
into hepatocyte-like cells in the peritoneal cavity of  90% 
hepatectomized rats, increases the survival rate of  these 
animals[61]. Examination of  the effects of  a series of  al-
logenic hepatocyte transplantations in rats with subtotal 
hepatectomy indicates that intrasplenic hepatocyte trans-
plantation 1 d before liver surgery shows the best results 
in terms of  survival[62]. The usefulness of  an artificial 
liver module having a liver lobule-like structure has been 
recently tested in rats with combined partial hepatec-
tomy and hepatic ischemia, demonstrating that in treated 

rats the increase in blood ammonia was completely sup-
pressed and all animals recovered[63]. 

The clinical equivalent of  liver total hepatectomy is 
the massive liver damage due to liver trauma or a pri-
mary graft failure[51]. Main disadvantages are the absence 
in circulation of  the toxic substances and inflammatory 
factors which play a role in the pathogenic mechanisms 
of  AHF. Advantages are related to replicability and its 
usefulness in the in vivo study of  artifical support devices 
in the absence of  toxic products eliminated or produced 
by the damaged liver. Despite the disadvantages indi-
cated, total hepatectomy has been used on rats to study 
hepatic regeneration[64], and with pigs as a replicable 
model for testing the effectiveness and function of  vari-
ous temporary support device systems[65,66]. A new surgi-
cal model for hepatectomy in pigs, requiring prior to en 
bloc hepatectomy a Y-shaped bypass starting with end-to-
side anastomosis between the vena cava and the portal 
vein, followed by anastomosis to the intrathoracic vena 
cava has been recently described. This model permits 
total hepatectomy with minimal blood loss under stable 
circulation without requiring an extracorporeal bypass[67]. 

Devascularization: Complete devascularization of  
the liver may be achieved by portacaval shunt followed 
by occlusion of  the hepatic artery, and in most cases 
also occlusion of  the common bile duct and accessory 
hepatic vessels[68,69]. Depending on the time of  temporary 
occlusion of  the hepatic artery the model is more or 
less reversible. These techniques have been successfully 
used to induce a reproducible hepatic failure in pigs, 
which could be useful in the study of  different artificial 
and/or bioartificial hepatic support devices[70,71] or 
to test the effects of  antioxidant molecules such as 
N-acetylcysteine[72]. For example, a reproducible model 
has been developed using dwarf  pigs for the study of  
reversible devascularization through hepatic artery ligation 
and porto-caval anastomosis, where intracranial pressure 
was monitored in addition to other classic parameters 

Table 2  Main criteria for an AHF animal model (according to 
Terblanche and Hickman (1991)

Reversibility Suitable treatment may reverse and improve 
survival

Reproducibility Reproducible end-points are required to 
standardize the model

Death from liver failure Should reflect biochemical, histological and 
clinical changes including death from AHF

Therapeutic window Time for treatment should be available 
between insult and death

Adequate animal size Size large enough to allow blood and tissue 
analysis to take place serially

Minimal hazard to 
personnel

Minimum risk for operators and associated 
staff
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Table 1  Main AHF animal models in different species

Animal model Species Advantages/disadvantages

Surgical
   Total/partial hepatectomy Pig, dog, rabbit, rat, mouse Hepatic encephalopathy; reproducible/no reversibility; no long-term survival
   Total/partial devascularization Pig, dog, rabbit, rat Hepatic encephalopathy; reproducible/no reversibility; no long-term survival
Chemical
   Acetaminophen Pig, dog, rabbit, rat, mouse Hepatic encephalopathy; no hazard/non-reproducible; variable interval between 

damage and death; species and age variability
   Amanitin Pig Hepatic encephalopathy; specific toxic effects; large animal
   Azoxymethane Mouse Hepatic encephalopathy; reproducible/small size; hazard
   Carbon tetrachloride Pig, rabbit, rat, mouse Hepatic encephalopathy/non reproducible; extrahepatic toxicity; small time window 

before death
   Concanavalin A Rat, mouse Hepatic encephalopathy/small size
   Galactosamine Pig, dog, rabbit, rat, mouse Hepatic encephalopathy; biochemical markers/non-reproducible; hazard; variable 

interval between damage and death; species differences
   Lipopolysaccharide Rat, mouse Hepatic encephalopathy/non-reproducible; small size; hazard; small time window 

before death
   Thioacetamide Rabbit, rat, mouse Hepatic encephalopathy; reproducible; large time window before death/hazard
Viral
   Rabbit hemorrhagic disease Rabbit Hepatic encephalopathy; reproducible; no hazard
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indicative of  AHF. This model provides an 8-h therapeutic 
window, enabling tests on different bioartifical support 
systems to be carried out[73]. In fact, with the use of  a 
similar model in pigs, albumin dialysis using the molecular 
adsorbents recirculating system (MARS) has been 
reported to attenuate extracellular brain ammonia and 
lactate levels[74]. Hepatic devascularization in pigs has also 
allowed the demonstration that endothelium-dependent 
hyperpolarization of  vascular smooth muscle contributes 
to the development of  hyperdynamic circulation in 
AHF[75].

A model using total clamping of  the portal triad 
in dogs demonstrated that the damage caused by 
ischemia-reperfusion as a consequence of  the surgical 
procedure was reduced following administration of  a 
bradykinin β2 receptor antagonist[76]. Dogs were also 
used in another AHF model employing porto-caval 
derivation combined with bile duct ligation, in order to 
test a new system of  bioartificial liver by inoculation of  
hepatocytes. This model was configured by inoculating 
porcine hepatocyte spheroids into the cell circuit of  a 
hollow fiber bioreactor[77]. Recently a new pig model has 
been developed in which a 75%-80% liver resection is 
combined with an ischemia period[78].

Studies carried out on survival time, technical ease, 
safety and reproducibility of  AHF surgical models 
have reported that devascularization was more useful 
for studying the development and treatment of  AHF 
caused by ischemia and related side effects, whilst 
partial hepatectomy was the most suitable technique for 
studying liver deficiency status and AHF treatment via 
bioartifical support devices[79].

Chemical models
The use of  chemical agents such as acetaminophen, 
thioacetamide or galactosamine may reproduce a 
number of  important AHF clinical characteristics, such 
as hypoglycemia, encephalopathy, and increased blood 
levels of  hepatic enzymes, and hepatotoxic chemical 
agents are still frequently used as a model for AHF. 
However, repeated administration or a support therapy 
may be required in some models. In addition, intracranial 
hypertension, one of  the main characteristics of  human 
AHF, is absent in some chemical models whilst in 
other cases, an increase in toxins involved in hepatic 
encephalopathy and cerebral edema in human AHF 
cannot always be demonstrated[49].

Acetaminophen: Acetaminophen (paracetamol) is 
a commonly used drug which can produce hepatic 
damage. In fact, it is the drug most frequently used 
to commit suicide in the United Kingdom despite the 
existence of  the antidote acetylcysteine. Acetaminophen 
overdoses are the number one causes of  AHF in USA, 
United Kingdom, and most of  Europe, accounting for 
nearly 50% of  USA cases[13]. Acetaminophen toxicity is 
dose-dependent, but its effects can be exacerbated by 
fasting, cytochrome P-450 inducer drugs and especially 
by alcohol. Studies on both hepatocyte cultures and mice 
have shown that c-jun kinases (JNK) play a major role in 

the toxic effect of  the drug[80]. More recently, it has been 
shown that apoptosis signal-regulating kinase 1 (ASK1), 
a member of  the mitogen-activated protein kinase 
kinase kinase family, is activated by acetaminophen 
overdose in mice, most likely via a mechanism involving 
thioredoxin-ASK1 dissociation, and that it plays a 
role in acetaminophen-induced liver injury through 
JNK activation[81]. The fact that JNK inhibition is not 
protective in acute carbon tetrachloride-mediated or 
anti-Fas antibody-mediated hepatic injury, suggests 
specificity for the role of  JNK in the pathogenesis of  
acetaminophen-induced liver failure, thereby identifying 
JNK as an important therapeutic target in the treatment 
of  acetaminophen hepatotoxicity[82].

The results of  numerous studies with animal models 
using acetaminophen to induce AHF have produced 
heterogeneous results due to the existence of  significant 
variations in the hepatic detoxifying metabolism of  
the drug related to species and age[83,84]. Under normal 
conditions, acetaminophen hepatic metabolism is 
produced by glucuronidation and sulfation reactions, 
with formation of  metabolites which are later excreted 
through the kidney. When an excess of  the drug is 
present, normal detoxifying pathways are saturated and 
the drug is metabolized through cytochrome P-450 to 
N-acetyl-p-benzoquinoneimine which, unless conjugated 
with glutathione, is thought to interrupt mitochondrial 
calcium flux and to induce cell damage by the formation 
of  hydroxyl radicals, nitrites, and nitrates, leading to 
apoptosis and cell necrosis[85]. Therefore, in order to 
potentiate acetaminophen toxicity, inducers of  the 
cytochrome P-450 systems such as phenobarbitone and 
3-methylcholanthrene, glutathione depletion induced 
by the glutathione synthetase inhibitor buthionine 
sulfoximine or a combination of  both systems are 
used[84,86]. 

Other important aspects which have not been 
standardized in acetaminophen models, and which 
produce variable results, include the optimal drug dose, 
the most suitable method of  administration and the 
necessity or not of  induction of  the cytochrome P-450 
system[86,87]. Lack of  standardization is the origin of  some 
of  the major disadvantages of  these models, specifically, 
their lack of  reproducibility and the variable interval 
between inducing damage and the death of  the research 
animals[49,52]. Furthermore, in some rodents significant 
differences have been found in concentrations of  the 
main coagulation factors compared to those found in 
human AHF[88].

Acetaminophen-induced animal models of  AHF are 
widely used to improve our insight into the metabolic 
and physiological derangements of  AHF and to facilitate 
the development of  new therapeutic modalities. Thus, 
implantation of  encapsulated lentivirally immortalized 
human hepatocytes rescue mice from lethal doses 
of  acetaminophen, confirming that lentiviral vectors 
represent tools of  choice for immortalization of  non-
dividing primary cells and that immortalized human 
hepatocytes are promising reagents for cell-based 
therapy of  acute liver failure[89]. More recently, it has 
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been found that adult-derived mononuclear bone 
marrow fraction is capable of  significantly increasing 
the survival rate of  rats with acetaminophen-induced 
AHF[90]. Research has also shown that acetaminophen-
induced hepatocellular damage is associated with 
increased circulating catecholamines, which may 
contribute to the pathophysiology of  acetaminophen-
induced hepatotoxicity by compromising hepatic 
perfusion, and that toxicity may be abolished by the use 
of  α(1) antagonists[91].

Galactosamine: D-galactosamine is a molecule which, 
when metabolized via the galactose pathway in the liver, 
causes serious metabolic alterations and hepatic necrosis 
through depletion of  different uridine intracellular 
mediators[49], and has therefore been used to develop 
AHF models. In one of  the first models using rabbits[92], 
death occurred between 21 and 44 h, following a coma 
lasting on average 2.6 h, with histologic and biochemical 
findings compatible with AHF. Furthermore, it was 
possible to show that in this same species, hepatotoxin 
did not cross the hematoencephalic barrier[93]. More 
recently, galactosamine has been used on anesthetized 
dogs. This model also displays the characteristic effects 
of  human AHF, such as an increase in blood levels 
of  liver enzymes, bilirubin, ammonium or lactate and 
the associated coagulopathy, hypoglycemia, coma and 
increase in intracranial pressure[94]. However, the effects 
were not the same in dogs without anesthesia, probably 
due to the added effect of  the anesthetic. A reproducible 
model has been developed with pigs which, because of  
their size, are suitable for the assessment of  different 
support systems designed for treating AHF in humans[95]. 
Significant differences in galactosamine sensitivity 
across different species exist. Furthermore, the interval 
between damage caused and death is not uniform, the 
agent is expensive to use in large-scale models, and lastly, 
it carries health risks[50].

Galactosamine models have been used to investigate 
the renal damage which accompanies AHF[96] and the liver 
metabolic pathways involved[97]. In addition, the potential 
protective effects of  substances such as the chimeric 
protein hyper-IL-6[98] or 1,6 diphosphate fructose have 
been investigated in rats[99]. Cardiotrophin 1 may improve 
the outcome of  D-galactosamine-induced AHF through 
its effects on anti-apoptosis and cell repair[100]. Blocking 
of  N-methyl-D-aspartate receptors prevents ammonia-
induced death[101] and also prevents or delays death of  rats 
by galactosamine-induced AHF[102]. Moreover, this model 
has been used to identify the contribution of  cytosolic 
polypyrimidine tract-binding protein to the mechanisms 
of  hyperinsul inemia by stabi l izat ion of  mRNA 
encoding insulin and its secretory granule proteins[103]. 
D-galactosamine models have also allowed testing of  
different extracorporeal hepatic support devices[104] and 
bioartificial systems, including hepatocytes transfected 
with the human gene interleukin-1 receptor antagonist 
in rats[105], the use of  a nonwoven fabric bioreactor 
containing porcine hepatocytes[47], or the study of  the 

potential effects of  cerebrospinal fluid drainage and 
cranial decompression in rats[106].

A combination of  D-galactosamine and lipopolysac
charide has also been widely used to induce AHF in 
rats. This model has allowed the demonstration of  the 
potential therapeutical role of  vascular endothelial growth 
factor[107]. Using this approach, evidence for a direct link 
between tumour necrosis factor (TNF)-α and Fas/FasL 
in mediating hepatocyte apoptosis has been provided[108], it 
has been reported that type Ⅰ inositol 1, 4, 5-triphosphate 
receptors increase in the kidney[109], and it has been 
demonstrated that transcription factor early growth 
response (Egr)-1 plays an important role in acceleration 
of  hepatic inflammation, apoptosis, and subsequent 
mortality in acute liver injury[110]. Research with this model 
has also found that the expression and activity of  both 
leukotriene C4 synthase and microsomal glutathione-S-
transferase are up-regulated, being partly responsible for 
cysteinyl leukotriene hepatic accumulation[111], and that 
a combination of  5-hydroxyindole acetic acid, glucose, 
β-hydroxybutyrate, and phosphate concentrations in the 
plasma is a potential marker for AHF, as well as for the 
early prognosis of  AHF[112]. Studies using SP600125, a 
small molecule JNK-specific inhibitor have confirmed 
the role of  JNK as a critical apoptotic mediator in 
galactosamine/lipopolysaccharide-induced AHF[113]. Very 
recently it has been demonstrated that in mice challenged 
with D-galactosamine and lipopolysaccharide, deficiency 
of  uncoupling protein-2, which plays a role in liver cell 
death through its involvement in the production of  reactive 
oxygen species and adenosine, provides protection under 
endotoxemic stress conditions, underlining the significant 
role of  the bioenergetic status in critical illness[114].

Carbon tetrachloride: Carbon tetrachloride has been 
widely used to induce chronic liver damage, especially 
as a model of  primary hepatic cirrhosis. Nevertheless, 
its use to induce AHF has been very limited due to low 
reproducibility and wide variation between species[50,115]. 
The mechanism of  action is produced in the endoplasmic 
reticulum by formation of  reactive intermediates through 
isoenzymes of  cytochrome P-450[116]. This mechanism 
also involves significant alterations to mitochondrial 
calcium homeostasis and is dose-dependent[117]. 

A relatively uniform model was developed using 
pigs which induced coma and death between 12 and 
52 h through a combination of  pretreatment with 
phenobarbital and a 2-h interruption of  arterial blood 
flow followed by intragastric administration of  the 
toxin[118]. The administration of  carbon tetrachloride 
in rats has been shown to simultaneously induce both 
severe damage processes and hepatic regeneration[119]. 
Depending on the dose administered, exposure time, 
the presence of  exacerbating agents, or the age of  the 
organism affected, regeneration can occur and lead to 
the total recovery of  the damaged liver[120,121]. 

Rats have been used for the study of  intrasplenic 
transplant of  hepatocytes[122], and to investigate the 
mechanisms involved in compensatory liver regeneration 
which avoids progressive toxic damage[43]. Carbon 
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tetrachloride-induced AHF has also allowed the 
demonstration in rats of  the therapeutical efficacy of  
Gabexate mesilate, a synthetic protease inhibitor[123], 
the sulfated polysaccharide extracted from brown algae 
fucoidan[124], or naringenin-loaded nanoparticles[125], but 
not of  granulocyte colony stimulating-factor[126]. 

Criticisms of  these models include the fact that 
carbon tetrachloride mainly affects the central zone 
of  the hepatic acinus, and the characteristic massive 
necrosis of  human AHF is not present. Furthermore, 
carbon tetrachloride is not completely metabolized in 
the liver and some of  the non-metabolized toxin affects 
and damages other organs, especially the lungs and 
kidneys[52]. Finally, there is a wide variation in species 
and age sensitivity, basically due to different levels of  
development and effectiveness of  the cytochrome P-450 
detoxifying system[49].

Thioacetamide: Thioacetamide causes hepatocellular 
necrosis following biotransformation by mono
oxygenases[127], and has been used to explore the role 
of  reactive oxygen species[128], and the protective effect 
of  antioxidants such as curcumin[129], pro-regenerative 
substances[130], or the worsening of  encephalopathy 
following long-term treatment with substances such as 
indometazine[131]. Using the thioacetamide model of  
AHF, it has been recently shown that cannabinoids and 
capsaicin improve liver function[132] and that Gingko biloba 
ameliorates hepatic damage most probably due to its 
free radical-scavenging effects[133]. Simvastatin improves 
encephalopathy and survival in thioacetamide-treated rats, 
an effect that is offset by N(G)-nitro-L-arginine methyl 
ester (L-NAME), a non-selective inhibitor of  nitric oxide 
synthase (NOS), which supports the role of  nitric oxide 
in liver damage and encephalopathy[134]. Moreover, the 
fact that L-NAME administration, but not L-canavanine 
(specific inhibitor of  inducible NOS), had detrimental 
effects on the severity of  hepatic damage and motor 
activities in thioacetamide-treated rats, suggests that 
constitutive NOS activities play a major protective role[135].

Azoxymethane: Azoxymethane administration induces 
in mice alterations similar to those encountered in 
human AHF[136]. In fact, it has been shown that mice 
present decreased locomotor activity followed by loss 
of  righting and corneal reflexes, are hyperammonemic, 
and develop spontaneous hypothermia and brain amino 
acid profiles typical of  AHF in other species including 
humans. These findings demonstrate that azoxymethane 
treatment affords a reproducible model which may be 
suitable for the study of  the cerebral complications of  
AHF[137]. Induction of  AHF in C57BL/6J mice by using 
azoxymethane has recently allowed the observation 
that altered expression of  zonula occludens-2 precedes 
increased blood-brain barrier permeability, suggesting 
that zonula occludens-2 may play an important role in 
the pathogenesis of  brain edema in AHF[138].

Concanavalin A: A single injection of  concanavalin A 
has also been proposed as a model of  AHF as it induces 

hepatocellular destruction[139] through mechanisms which 
appear to involve participation of  immune cells, including 
macrophages and activated CD4+ T cells[140]. The use of  
this animal model has demonstrated that suppressor of  
cytokine signaling-1 (SOCS1) plays an important negative 
role in fulminant hepatitis and that forced expression 
of  SOCS1 is therapeutic in preventing the disease[141]. 
In concanavalin A-treated mice it has been reported 
that TNF-α levels are not affected by adiponectin, 
whereas IL-10 production is increased. Therefore, 
adiponectin might play a role in the control and limitation 
of  inflammation in the liver, and a contribution has 
been suggested for IL-10 in adiponectin-mediated 
hepatoprotection[142]. siRNA delivery for osteopontin, 
which has been implicated in various helper T cell type 1 
immunity-mediated diseases, has therapeutic potential in 
concanavalin A-mediated AHF[143].

Other models: AHF has also been induced through the 
use of  poisons such as the derivative of  Amanita phalloides 
which, although not a frequent cause of  poisoning, 
has well-known effects on humans. In fact, the effect 
of  amatoxins is due to ARN polymerase induction, 
producing cell toxicity in hepatocytes, intestinal mucosal 
cells and kidney tubular cells and they have been used 
in combination with lipopolysaccharide to develop an 
animal model of  AHF using pigs[144]. Models with pigs 
have also been reported which combine amanitine with 
lipopolysaccharide, with the aim of  studying survival 
following orthotopic liver transplant and tacrolimus 
administration[145].

Other models employ parenteral administration of  
Propionebacterium acnes and lipopolysaccharide in mice to 
study the inhibition of  the acquired immune response[146], 
and intraportal administration of  α-amanitine and 
lipopolysaccharide in pigs to study bioartifical liver 
support devices[147].

Intrahepatic upregulation of  the immunoactivating 
molecules CD40 and CD40 ligand (CD40L) are early 
mechanisms for liver cell damage in human and murine 
AHF. The use of  a model based on intrahepatic overex-
pression of  CD40L by adenoviral-mediated gene trans-
fer (AdCD40L) in mice, has led to the demonstration 
that CD40-CD40L interaction can induce liver damage, 
and that CD40L-induced AHF depends on competent 
lymphocytes[148].

Although their use has been limited, various models 
combining drug administration and surgical procedures 
have been described, such as a combination of  70% liver 
resection and endotoxin administration in rats[149], or 
resection of  all of  three hepatic arteries combined with 
intraportal injection of  carbon tetrachloride[150]. 

Viral models
Despite the fact that viral hepatitis is a main cause of  
AHF in many countries, the use of  infective agents to 
develop animal models of  AHF has in general been 
unsuccessful and only the use of  transgenic mice over-
expressing virus B hepatitis proteins (HBV) or BALB/cj 
mice infected with MHV-3[151,152] has shed some light 
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on virus-induced AHF mechanisms. However, these 
murine models display significant limitations as regards 
the absence of  intracranial pressure measurements, or 
the lack of  data concerning toxins involved in hepatic 
encephalopathy and cerebral edema, as well as the small 
size of  the models used which renders testing of  new 
liver support systems impossible[49,50]. 

More recently, our research group has described a 
new animal model of  AHF using experimental infection 
of  rabbits with 104 hemagglutination units of  an isolate 
of  the rabbit hemorrhagic disease virus (RHDV)[153]. 
First reported two decades ago, RHDV is a member of  
the Caliciviridae family which causes an acute and highly 
fatal disease in wild and domestic rabbits[154]. Rabbit 
hemorrhagic disease (RHD) is a viral hepatitis which 
displays surprising clinical, anatomopathological and 
transmission mode similarities to fulminant human viral 
hepatitis B, C, and E[155]. The virus does not replicate in 
any other vertebrate[156] and to date there is no indication 
that it can be transmitted to humans, even among those 
populations most exposed to the virus. 

It has been shown that the viral antigen can already 
be found in hepatocytes at 12 h postinfection (p.i.) and 
that at 36 h and 48 h p.i., it is localised in 60%-80% of  
hepatocytes[157]. RHD is characterized by a high morbidity 
and a mortality rate that approaches 90%[153,158]. Rabbits 
die within 36 to 54 h p.i. with clinical signs characteristic 
of  progressive AHF and coma. In addition, the interval 
between infection and death, in the majority of  animals, 
provides a wide therapeutic window which indicates 
that our model complies with another of  the essential 
prerequisites of  a good AHF animal model, that is, the 
existence of  a sufficiently prolonged interval between 
intervention and death to enable research into various 
treatment methods or liver support technologies. In 
addition, the use of  a medium-sized animal facilitates 
serial collection of  blood samples, and makes easier 
monitoring of  intracranial pressure and biochemical 
alterations produced during the course of  the infection[153].

This model reproduces representative biochemical 
and histological parameters and clinical signs of  hu-
man AHF. Thus, significant increases in blood trans-
aminase and lactate dehydrogenase activities, and in 
blood bilirubin concentrations, are detected. Moreover, 
blood concentration of  aromatic amino acids increases 
significantly, with a decrease in the Fischer index and 
hypoglycemia. Prolonged prothrombin time, a prognos-
tic element in AHF, and exhaustion of  factor Ⅴ and Ⅶ 
are systematic findings. These effects could occur as a 
consequence of  diminished synthesis of  clotting factors 
and the development of  disseminated intravascular co-
agulation[153]. In addition to biochemical and histological 
abnormalities, infected rabbits demonstrate a clinical pic-
ture consistent with AHF. Prostration and side recum-
bency are present at later stages and neurologic symp-
toms (convulsions, ataxia, and posterior paralysis) rapidly 
progress to coma and brain death in the terminal phases. 
In our model, intracranial pressure rises progressively 

in the terminal phases, suggesting a loss of  intracranial 
compliance, and short episodic spikes are also observed. 
The rise in intracranial pressure in RHDV-infected ani-
mals is accompanied by an increase in plasma ammonia 
levels[153].

Histological and immunohistochemical examination 
reveals necrotic areas associated with hemorrhages and 
neutrophil infiltration, and large apoptotic areas with a 
high caspase 3 expression, mainly in the periportal areas 
of  hepatic acini[159]. A significant increase in inducible 
nitric oxide synthase expression and TNF-α activity, 
similar to those reported in AHF[160], are also observed in 
infected rabbits[161]. TNF-α may lead to cell proliferation 
or to apoptosis, and its over-expression correlates with 
both apoptosis and hepatic regeneration in AHF[162]. 
Balance between proliferation and apoptosis may be 
influenced by an excess of  reactive oxygen species 
that, if  not neutralized by glutathione and antioxidant 
enzymes, may cause mitochondrial damage and cytosol 
release of  cytochrome c, causing caspase activation 
and cell death[163]. This also happens in RHDV-infected 
rabbits, which show impaired glutathione levels and 
antioxidant enzyme activities[161], with a marked activation 
of  the apoptotic intrinsic pathway[159]. 

Therefore, RHDV experimental infection induces 
an AHF in rabbits which has a number of  physiological 
and biochemical features seen clinically in humans, is 
highly reproducible, has a long therapeutic window and 
generates intracranial hypertension and an associated-
encephalopathy. Thus, it is the first successful model 
using infective agents and satisfies the criteria applicable 
to an animal model of  AHF. This model could provide a 
useful tool for the study of  AHF and the evaluation of  
new liver support technologies in humans.

CONCLUSION
AHF is a potentially devastating sindrome whose 
treatment has been limited by the lack of  satisfactory 
animal models. The potential disadvantages of  surgical 
models are that they do not offer reversibility or recovery, 
they are difficult to replicate, they depend on surgical 
skill, many of  the clinical and biochemical parameters 
typical of  human AHF are not present, and that they 
do not reproduce an environment complicated by the 
release of  inflammatory mediators and products of  
cell necrosis. Thus, their usefulness is limited to the 
evaluation of  various liver support systems. Models using 
hepatoxins do not suffer from the above limitations, 
but nevertheless they may present disadvantages, such 
as the necessity for adjusting dosage and the potential 
health hazard which in most cases such chemical agents 
represent. As for the only viral model developed to date 
which has proved to be viable, induced RHDV infection 
in rabbits, it is reproducible and presents characteristics 
similar to human AHF. The only limitation is that the 
only susceptible species is the rabbit, although this could 
also be considered an advantage as it does not represent a 
health hazard to researchers.
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