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Abstract
Type 2 diabetes (T2DM) is characterized by insulin 
resistance and β-cell dysfunction. Although, in contrast 
to type 1 diabetes, insulin resistance is assumed to be 
a major pathophysiological feature of T2DM, T2DM 
never develops unless β-cells fail to compensate insulin 
resistance. Recent studies have revealed that a deficit 
of β-cell functional mass is an essential component 
of the pathophysiology of T2DM, implying that β-cell 
deficit is a common feature of both type 1 and type 2 
diabetes. β-cell dysfunction is present at the diagnosis 
of T2DM and progressively worsens with disease 
duration. β-cell dysfunction is associated with worsening 

of glycemic control and treatment failure; thus, it is 
important to preserve or recover β-cell functional mass 
in the management of T2DM. Since β-cell regenerative 
capacity appears somewhat limited in humans, reducing 
β-cell workload appears to be the most effective way to 
preserve β-cell functional mass to date, underpinning 
the importance of lifestyle modification and weight loss 
for the treatment and prevention of T2DM. This review 
summarizes the current knowledge on β-cell functional 
mass in T2DM and discusses the treatment strategy for 
T2DM.
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Core tip: Recent studies have revealed that a deficit 
of β-cell functional mass is an essential component of 
the pathophysiology of type 2 diabetes (T2DM). β-cell 
dysfunction is present at the diagnosis of T2DM and 
progressively worsens with disease duration. β-cell 
dysfunction is associated with worsening of glycemic 
control and treatment failure; thus, it is important 
to preserve or recover β-cell functional mass in the 
management of T2DM. This review summarizes the 
current knowledge on β-cell functional mass in T2DM and 
discusses the treatment strategy for T2DM.
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INTRODUCTION
The number of  patients with diabetes is countinuously 
increasing all over the world. Worldwide, there were 
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382 million patients with diabetes in 2013, which will 
rise to 592 million in 2035[1]. Diabetes is associated not 
only with diabetic microangiopathy such as retinopathy, 
nephropathy and neuropathy, but also with a 2- to 4-fold 
increase in risk of  cardiovascular disease[2,3]. Among the 
people with diabetes, more than 90% have type 2 diabetes 
(T2DM). Therefore, optimal treatment and prevention 
strategies for T2DM are urgently needed.

T2DM is characterized by insulin resistance and β-cell 
dysfunction. Recent evidence suggests an important role 
of  β-cell function in the development and management 
of  T2DM. In this review, the current knowledge regarding 
β-cell dysfunction in T2DM is summarized and its 
critical role in the prevention and treatment of  T2DM is 
discussed.

DEFICITS OF β-CELL FUNCTION AND 
β-CELL MASS IN T2DM
Disposition index: A true assessment of β -cell function
T2DM is characterized by insulin resistance and β-cell 
dysfunction[4,5]. However, since the development of  
an insulin radioimmunoassay, it was found that in 
people with T2DM, plasma insulin concentration is 
rather higher than that in those with normal glucose 
tolerance (NGT), indicating that insulin resistance rather 
than insulin deficiency is central in the pathogenesis 
of  T2DM. Therefore, in contrast to type 1 diabetes, 
obesity, hyperinsulinemia and insulin resistance are often 
emphasized as characteristics of  T2DM, and β-cell 
function in T2DM is often less emphasized or even 
ignored.

However, the higher plasma insulin concentration 
in patients with T2DM is often confounded by a higher 
plasma glucose level, which itself  stimulates insulin 
secretion. Moreover, insulin sensitivity also affects 
insulin secretion. In normal physiological conditions, 
normoglycemia is maintained under a balance between 
insulin sensitivity and insulin secretion, and when insulin 

sensitivity decreases, insulin secretion increases to maintain 
normoglycemia. Thus, insulin secretion should always 
be assessed in relation to insulin sensitivity. Bergman 
and Cobelli have found that this relationship between 
insulin secretion and insulin sensitivity is expressed as a 
hyperbolic curve, and as a result the product of  insulin 
sensitivity and insulin secretion is constant as long as 
normoglycemia is maintained[6,7] (Figure 1). The product 
of  insulin sensitivity and insulin secretion, called the 
disposition index, refers to insulin secretion adjusted by 
insulin sensitivity and reflects true β-cell function in vivo.

Once insulin secretion is not able to sufficiently 
increase to compensate the decrease in insulin sensitivity, 
the insulin sensitivity-insulin secretion relationship 
is shifted to the left and abnormal glucose tolerance 
develops (Figure 1). In this case, the disposition index 
is decreased, indicating that abnormal glucose tolerance 
develops only when β-cells are no longer able to 
compensate decreased insulin sensitivity.

β -cell function in T2DM
When β-cell function is assessed using the disposition 
index, a number of  studies have consistently shown that 
β-cell function is diminished in people with T2DM[4,8,9]. 
Using the disposition index, DeFronzo et al[9] have shown 
that β-cell function is decreased by -80% in patients 
with impaired glucose tolerance (IGT) and is even less 
in patients with T2DM (Figure 2). Importantly, β-cell 
function starts to decline with higher plasma glucose 
levels, even within the range of  normal plasma glucose 
levels[9], which suggests that β-cell function is already 
impaired prior to the development of  IGT.

β -cell mass in T2DM
If  β-cell function is impaired in patients with T2DM, 
what about the β-cell mass? β-cells are located in the islets 
of  Langerhans, which are scattered within the exocrine 
pancreas. Each islet contains -1000 β-cells together 
with other endocrine cells such as alpha cells, delta cells, 
pancreatic polypeptide (PP) cells and epsilon cells, and a 
total of  -1 million islets exist in the pancreas. β-cell mass 
refers to the total mass of  β-cells and is approximately 1 g 
in humans.

Due to the anatomical characteristics of  β-cells 
scattered throughout the whole pancreas, it is difficult to 
visualize β-cells in vivo, and direct measurement of  β-cell 
mass in vivo in humans remains to be established[10,11]. 
Thus, to date, the measurement of  β-cell mass inevitably 
relies on histological analysis of  the pancreas obtained 
surgically or at autopsy.

Since insulin resistance and hyperinsulinemia are 
often emphasized in people with T2DM, β-cell mass in 
people with T2DM is also often assumed to be increased 
or at least not decreased. However, based on histological 
analysis, Butler et al[12] have reported that β-cell mass is 
decreased by -40% and -65% in lean and obese people 
with T2DM, respectively, compared with non-diabetic 
controls matched for age and BMI. Other groups have 
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Figure 1  Insulin secretion-insulin sensitivity relationship. In a physiological 
condition, when insulin sensitivity decreases, insulin secretion increases to 
maintain normoglycemia (1→2), showing a hyperbolic curve. When insulin 
secretion fails to compensate, the hyperbolic curve shifts to the left and 
abnormal glucose tolerance develops (1→3).
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also reported a significant (-30%-40%) decrease in β-cell 
mass in patients with T2DM[13-15]. These findings suggest 
that deficit of  β-cell mass is a common pathophysiological 
feature of  type 1 and T2DM (Figure 3), while the cause 
and degree of  the deficit are different between type 1 and 
T2DM.

Mechanisms of β -cell deficit in T2DM
β-cell mass is regulated by the balance of  newly formed 
β-cells and β-cell loss[16-18]. Butler et al[12] have shown that 
β-cell apoptosis is increased in patients with T2DM, 
whereas neither β-cell replication nor neogenesis is 
decreased, suggesting that increased β-cell loss is the 
main cause of  reduced β-cell mass in T2DM. Various 
mechanisms that induce β-cell apoptosis have been 
proposed such as hyperglycemia (glucotoxicity)[19], fatty 
acids (lipotoxicity)[20], amyloid or islet amyloid polypeptide 
(IAPP, also called amylin)[21-24], oxidative stress[25], 
inflammatory cytokines[26], mitochondrial  dysfunction[27], 
endoplasmic reticulum (ER) stress[28,29] and dysfunction 
of  autophagy[30]. A recent study suggested that several 
mechanisms are simultaneously associated with β-cell 
failure in humans with T2DM[31].

Recently, transdifferentiation of  β-cells to alpha cells 
has been suggested as a mechanism of  β-cell loss in 
a rodent model of  diabetes[32]. This mechanism could 
explain β-cell loss and the reciprocal increase in alpha 
cell mass observed in humans with T2DM[15,31], although 
whether an increase in alpha cell mass occurs in humans 
with T2DM remains controversial[33,34].

Association between β -cell mass and glucose 
metabolism
The deficit of  β-cell mass in patients with T2DM raises 
the next question of  whether the change in β-cell mass 
is associated with the severity of  glucose intolerance. It 
has been reported that there is a reciprocal relationship 
between β-cell mass and fasting plasma glucose level[35], 
suggesting that glucose intolerance develops when the 
β-cell mass decreases by -50% of  the normal level. A 
similar relationship has been observed in rodents[36], pigs[37] 
and monkeys[38]. An increased risk of  the development 
of  IGT or diabetes after hemipancreatectomy has been 
reported in dogs and humans[39-43]. It has also been 
reported that β-cell mass was decreased by -20%-40% in 
patients with IGT and impaired fasting glycemia (IFG)[12,44]. 
We have also reported that there was a significant negative 
correlation between β-cell mass and glycated hemoglobin 
(HbA1c) level in non-diabetic individuals[45], suggesting 
that β-cell mass is related to glucose intolerance even prior 
to the development of  T2DM. A significant correlation 
between β-cell mass and HbA1c was also observed in 
patients with T2DM[31].

Association between β -cell mass and β -cell function
The relationship between β-cell mass and β-cell function 
is more complicated. Whether β-cell dysfunction in 
T2DM is mainly due to a functional defect of  each β-cell 
or due to a defect of  β-cell mass has been extensively 
argued[46]. A close correlation between β-cell function 
assessed by maximum acute insulin response (AIRmax) 
induced by arginine infusion under a hyperglycemic state 
and β-cell mass of  transplanted islets has been reported[47]. 
On the other hand, β-cell dysfunction was markedly 
improved after an overnight β-cell rest by somatostatin 
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Figure 2  Insulin secretion/insulin resistance 
(disposition) index (I/G ÷ IR) during 75g-oral 
glucose tolerance test in individuals with normal 
glucose tolerance, impaired glucose tolerance, 
and type 2 diabetes as a function of the 2 h 
plasma glucose concentration in lean and obese 
subjects. I/G: Insulinogenic index (Insulin 0-30 
min/Glucose 0-30 min); IR: Homeostasis model 
assessment of insulin resistance [HOMA-IR; fasting 
insulin (mU/L) x glucose (mmol/L)/22.5]. Adapted 
from ref.[9]. NGT: Normal glucose tolerance; IGT: 
Impaired glucose tolerance; T2DM: Type 2 diabetes; 
PG: Plasma glucose.
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Figure 3  β-cell mass in patients with normal glucose tolerance, impaired 
fasting glycemia and type 2 diabetes. Adapted and modified from the 
study by Butler et al[12]. NGT: Normal glucose tolerance; IFG: Impaired fasting 
glycemia; T2DM: Type 2 diabetes.
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recognized as hallmarks of  T2DM as well as type 1 
diabetes, β-cell regeneration is considered to be an 
important therapeutic strategy for both types of  diabetes.

Rodent studies show an adaptive change in β-cell 
mass in response to obesity or pregnancy[53-58], suggesting 
the presence of  endogenous β-cell regenerative capacity 
in the postnatal period. However, recent observation 
of  the human pancreas suggests that endogenous β-cell 
regenerative capacity is limited in humans.

We have reported that β-cell mass in obese non-
diabetic individuals is -1.2 g compared with -0.8 g in lean 
non-diabetic individuals, an -50% increase[59], whereas 
β-cell mass increases 3- to 10-fold in response to obesity 
or insulin resistance in rodents[53,54] (Figure 5). This 
striking difference in β-cell regenerative capacity between 
humans and rodents suggests that the results of  rodent 
studies are not necessarily applicable to humans[60,61].

In humans, β-cell mass increases from -37 mg to -1 
g in the first five years of  life, and during this period 
replicating β-cells are often observed[62,63]. However, after 
that, replicating β-cells are rarely seen and β-cell mass 
reaches a plateau. The β-cell mass then remains constant 
during adulthood[13,59,64], suggesting that β-cell turnover 
is limited in humans after the first five years of  life. 
Estimation of  β-cell life using either 14C measurement 
or cellular lipofuscin body content also suggests very 
slow turnover of  β-cells in adult humans[65,66]. Recent 
studies have suggested that there is an increase in β-cell 
neogenesis in humans with obesity, pregnancy and 
IGT[67-70]; however, the extent of  its contribution to β-cell 
mass remains unclear. Limited β-cell regenerative capacity 
has also been observed in monkeys[71,72]. Even in rodents, 
β-cell regenerative capacity significantly decreases with 
aging[54,73,74].

A hypothetical schema of  the change in β-cell fun-
ctional mass during the development of  T2DM is shown 
in Figure 6. The magnitude of  the increased demand for 
insulin due to insulin resistance caused by excess caloric 
intake and physical inactivity exceeds the magnitude of  
β-cell mass expansion, resulting in an increase in β-cell 

infusion[48]. Thus, it remains uncertain whether β-cell 
function in vivo sufficiently reflects β-cell mass in patients 
with T2DM.

Meier et al [49] assessed the relationship between 
β-cell mass and β-cell function in patients who had 
undergone pancreatic surgery and found that there was 
a significant positive correlation between β-cell mass 
and β-cell function, especially postprandial C-peptide 
level, suggesting that C-peptide measurement in clinical 
settings reflects β-cell mass.

Taken together, these results indicate that β-cell 
function and β-cell mass seem to be correlated with 
each other, although on some occasions they can be 
dissociated, and both β-cell function and mass seem to 
decrease during the development of  glucose intolerance. 
Since β-cell function and mass are difficult to separate, 
currently they are referred to as “β-cell functional mass”, 
and it is now certain that β-cell functional mass decreases 
during the development of  T2DM.

Progressive decline in β -cell functional mass in T2DM
A deficit of  β-cell functional mass is not only present 
in patients with T2DM, but it also progressively 
declines with disease duration. In the UK Prospective 
Diabetes Study (UKPDS), β-cell function assessed by 
homeostasis model assessment (HOMA) in patients with 
T2DM was already decreased by -50% at the time of  
diagnosis and progressively declined by -5% annually[50]. 
This also indicates that in patients with T2DM, β-cell 
function starts to decline -10 years prior to the onset of  
the disease. A gradual but significant decline in β-cell 
function assessed by C-peptide level has been confirmed 
in cross-sectional cohort studies of  Japanese patients 
with T2DM[51,52] (Figure 4). Intriguingly, a significant 
negative correlation between β-cell mass and duration of  
T2DM has also been reported[13].

Limited β -cell regenerative capacity in humans
Since deficits of  β-cell function and mass are now 
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Figure 5  Change in β-cell mass with obesity. In mice, β-cell mass increases 
3-fold with obesity. In humans, a 50% increase in β-cell mass has been 
reported in Caucasians, while no increase was reported in Japanese. Adopted 
and modified from ref.[54,59,85].
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workload. In individuals who are susceptible to T2DM, 
increased β-cell workload may lead to β-cell failure 
and the development of  T2DM. In addition, once 
hyperglycemia develops, it also causes β-cell dysfunction 
and apoptosis, which further exacerbate β-cell failure. 
Importantly, because insulin resistance persists, the β-cell 
workload continues to increase, with a reduction in β-cell 
mass. As a result, glucose metabolism progressively 
deteriorates in patients with T2DM. In our retrospective 
cohort, the progressive decline in β-cell function seemed 
to be exaggerated in the presence of  obesity in Japanese 
patients with T2DM[51] (Figure 7). Another Japanese 
cohort showed a decreasing trend in fasting insulin 
level despite an increasing trend in BMI at the first 
clinic/hospital visit of  patients with T2DM during the 
past ten years[75]. Recent studies have shown that even 
metabolically healthy obese individuals are at increased 
risk of  future development of  diabetes, cardiovascular 
events and all-cause mortality[76-78]. Thus, weight loss itself  
may be important to preserve β-cell function and improve 

clinical outcomes.

β -cell functional mass in Asian population
T2DM is characterized by obesity, but the degree of  
obesity differs between ethnic groups[79,80]. In Caucasians, 
most patients with T2DM are obese, and the mean BMI 
of  patients with T2DM is -30 kg/m2. In contrast, the 
mean BMI of  Asian patients with T2DM is -23 kg/m2, 
suggesting that about half  of  patients with T2DM are 
not even overweight (i.e., BMI ≥ 25 kg/m2, the definition 
of  obesity in Asian countries).

The difference in adiposity between Caucasians 
and Asians has been postulated to explain this ethnic 
difference. Visceral adiposity is more apparent in Asians 
compared to Caucasians with the same BMI[81,82], indicating 
that Asians have a lower capacity for subcutaneous 
fat deposition and are more vulnerable to visceral fat 
accumulation compared with Caucasians. Nonetheless, a 
meta-analysis of  studies examining the insulin sensitivity-
insulin secretion relationship in individuals with NGT 
clearly showed that Asians have less insulin secretion with 
higher insulin sensitivity compared with Caucasians[83]. 
Direct comparison of  insulin sensitivity and insulin 
secretion between Japanese and Caucasians showed that 
most of  the difference in insulin secretion between the 
two ethnicities can be explained by the difference in 
BMI between the two[84]. Since the incidence of  T2DM 
is comparable between the two ethnicities despite the 
different degree of  obesity[1], it is plausible that the lower 
degree of  obesity in Asians could be attributable to the 
lower β-cell functional capacity in this population.

We have recently examined the change in β-cell mass 
in Japanese obese nondiabetic individuals (mean BMI 
20.4 kg/m2) compared to age- and sex-matched lean 
individuals (mean BMI 28.5 kg/m2)[85]. As a result, in 
contrast to the studies in Caucasians showing a significant 
increase in β-cell mass with obesity[13,59], there was no 
significant increase in β-cell mass in Japanese obese 
individuals (Figure 5). Another Japanese study also 
confirmed our findings[86]. These studies suggest that 
Asians have less β-cell regenerative capacity compared 
with Caucasians, which is probably derived from both 
genetic and environmental factors, and the lower β-cell 
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functional capacity in Asians may contribute the different 
phenotype of  T2DM between the two ethnicities. Because 
of  the limited capacity of  β-cell regeneration in Asians, 
excess β-cell workload could be induced in individuals 
with less obesity compared with Caucasians, which may 
lead to β-cell failure and the development of  T2DM.

IMPLICATIONS FOR TREATMENT AND 
PREVENTION OF T2DM
β -cell function and glycemic control
If  a deficit of  β-cell functional mass is a hallmark of  
T2DM, what is the clinical consequence? In UKPDS 
and A Diabetes Outcome Progression Trial (ADOPT), 
treatment failure was associated with a progressive decline 
in β-cell function[50,87,88]. In the Treatment Options for 
T2DM Adolescents and Youth (TODAY) study, similar 
results were observed in adolescents with T2DM, and 
in this study baseline β-cell function was associated with 
treatment efficacy[89]. In our retrospective cohort analysis, 
we found that a lower baseline C-peptide level was 
associated with poorer glycemic control and the need for 
insulin therapy thereafter[90-93] (Figure 8). In these studies, 
postprandial C-peptide index [i.e., postprandial serum 
C-peptide (ng/mL)/plasma glucose (mg/dL) × 100] 
was the best predictor of  future insulin therapy among 
other C-peptide indices such as fasting C-peptide index 
and urinary C-peptide level. Since it was also significantly 
correlated with β-cell mass[49], postprandial C-peptide 
index may be a useful marker of  β-cell function in clinical 
settings.

Thus, poorer β-cell function is associated with poorer 
glycemic control and treatment failure, indicating the 
important role of  β-cell function in the treatment of  
T2DM.

β -cell function and glycemic variability
Furthermore, β-cell function is associated with glycemic 
variability. In patients with T1DM, it has been reported 
that lower β-cell functional capacity is associated with 

greater glycemic variability[94-96].
We and others have reported that serum and urinary 

C-peptide levels are negatively correlated with glycated 
albumin (GA) to HbA1c ratio in patients with T2DM[97-99] 
(Figure 9). Since albumin is more susceptable to glycation 
than is hemoglobin[100,101], GA more sensitively reflects 
glycemic variability than does HbA1c[97,102,103]. Thus, the 
inverse association between C-peptide level and GA to 
HbA1c ratio in patients with T2DM indicates that β-cell 
dysfunction is associated with greater glycemic variability 
in not only patients with type 1 diabetes but also those 
with T2DM.

Notably, we found that the relationship between 
postprandial C-peptide index and GA to HbA1c ratio 
in patients with T2DM was comparable to that in those 
with type 1 diabetes[97] (Figure 9B). This suggests that 
the impact of  β-cell dysfunction on glycemic variability 
is irrespective of  the type of  diabetes, again indicating 
the central role of  β-cell function in the pathogenesis of  
diabetes.

Recently, it has been reported that greater glycemic 
variability as well as poorer glycemic control is asso-
ciated with the development of  micro- and macro-
angiopathy[104-107]. Thus, it should be stressed that greater 
glycemic variability and poorer glycemic control due to 
β-cell dysfunction may result in increased risk of  diabetic 
complications.

Treatment strategy for T2DM
Since β-cell dysfunction is associated with poor glycemic 
control in patients with T2DM, preservation and recovery 
of  β-cell functional mass is an important therapeutic 
strategy for T2DM. Moreover, the current issues in the 
treatment of  T2DM summarized in Table 1 are, to put it 
simply, all associated with either excess or insufficiency 
of  insulin supplementation[108]. Thus, the recovery of  
physiological insulin secretion in patients with T2DM is 
also a key to resolving these issues.

To preserve or recover β-cell function, a reduction in 
excess β-cell workload appears to be the most effective 
strategy to date. In ADOPT, better glycemic control was 
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obtained with metfomin or rosiglitazone monotherapy 
compared with glyburide in patients with T2DM[87]. 
Thus, therapy should be focused on improving insulin 
sensitivity to reduce β-cell workload.

A proposed treatment strategy for T2DM is shown 
in Figure 10, as also described previously[108,109]. It is 
emphasized that, to reduce β-cell workload, lifestyle 
modification and weight reduction remain the most 
important therapy at any stage of  T2DM. Although 
lifestyle modification failed to reduce the incidence 
of  cardiovascular disease in the Action for Health in 
Diabetes (Look AHEAD) trial[110], it has been reported 
that lifestyle modification improved cardiovascular risk 
factors, reduced the need for and cost of  medication, 
reduced the rate of  sleep apnea and urinary incontinence, 
improved well-being and depression symptoms, and 
increased the rate of  diabetes remission[111-116]. In a cohort 
analysis of  the ADDITION-Cambridge study, it has 
been reported that healthy behavioral changes after the 
diagnosis of  T2DM were associated with a significant 
reduction in risk of  cardiovascular events[117], suggesting 
that early lifestyle intervention may be important to 
improve cardiovascular outcome.

Metformin is currently positioned as first-line therapy 
in most guidelines for the treatment of  T2DM[118,119]. 
Since metformin is effective in lean patients as well as 
obese patients with T2DM[120,121], it should be used in 
both lean and obese individuals unless contraindicated. 

Its efficacy in reducing HbA1c (by -1.5%), low risk of  
hypoglycemia, favorable effect on body weight and low 
cost also support metformin as a first-line drug.

Thiazolidinediones (TZDs) have also been shown to 
reduce β-cell workload and maintain glycemic control 
in the long term[87,88]. Rosiglitazone has been shown to 
increase low-density lipoprotein (LDL) cholesterol and the 
risk of  coronary heart disease in patients with T2DM[122], 
and its use has been suspended or strictly restricted in 
Europe and United States[123,124], although recently the 
US Food and Drug Administration has lifted most of  its 
restrictions[125]. On the other hand, pioglitazone has been 
shown to suppress the progression of  atherosclerosis and 
reduce the risk of  cardiovascular disease[126-129]. However, 
TZDs often induce weight gain and edema due to fluid 
retention, and are contraindicated in patients with heart 
failure[118]. Recent studies have also shown an increase in 
risk of  bone fracture in women[130] and risk of  bladder 
cancer[131-133] in patients treated with pioglitazone. The risk 
of  bladder cancer may be dose dependent. In addition, 
since low-dose pioglitazone also reduces the risk of  weight 
gain and edema, it may be preferable to use pioglitazone 
at lower doses, especially in women. Pioglitazone should 
also be used with caution in postmenopausal women with 
osteoporosis because of  the increased fracture risk.

α-glucosidase inhibitors (AGIs) delay the absorption 
of  carbohydrate from the small intestine, and thereby 
reduce postprandial hyperglycemia, resulting in reduced 
β-cell workload in a postprandial state. AGIs have 
also been reported to reduce the progression to T2DM 
in patients with IGT[134,135]. Improving postprandial 
hyperglycemia by AGIs may also improve the cardio-
vascular outcome[136-138]. Therefore, although the redu-
ction in HbA1c by AGIs is relatively small (-0.5%), their 
use is also considered in patients with T2DM, especially 
those with postprandial hyperglycemia. The major side 
effect of  AGIs is gastrointestinal disturbance such as 
flatulence, diarrhea and abdominal pain. In Japan, AGIs 
are the only medication indicated for patients with IGT. 
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Figure 9  Correlation between postprandial C-peptide index and glycated albumin to HbA1c ratio in patients with type 2 diabetes (A) and type 1 diabetes 
(B). In Figure 9B, the data of patients with type 1 diabetes are superimposed on the data of those with type 2 diabetes (gray circles and dotted line). Reproduced with 
permission from ref.[97]. PCPRI: Postprandial C-peptide index; GA: Glycated albumin.
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Table 1  Current issues in treatment of type 2 diabetes

Issue Cause

Hypoglycemia Excess insulin
Weight gain Excess insulin
Concern of increased risk 
of malignancy and/or 
atherosclerosis

Excess insulin, especially peripheral 
hyperinsulinemia

Postprandial hyperglycemia Insufficient insulin in postprandial 
state, especially in portal vein
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Thus, AGIs are also considered for the treatment of  
T2DM at the early stage of  the disease, if  tolerated.

On the other hand, the use of  insulin secretagogues, 
which increase β-cell workload, may be somewhat 
limited. Sulfonylureas (SUs), while remaining among 
the most highly prescribed drugs for the treatment of  
T2DM, increase the risk of  hypoglycemia and weight 
gain, resulting in a high rate of  treatment failure[87]. 
These issues of  SUs may be derived from their non-
physiological augmentation of  insulin secretion from 
β-cells.

Incretin drugs include dipeptidyl peptidase-4 (DPP-4) 
inhibitors and glucagon-like peptide-1 receptor agonists 
(GLP-1RAs). Both drug types reduce HbA1c mainly 
through an increase in insulin secretion, but also through 
suppression of  glucagon secretion[139]. GLP-1RAs also 
slow gastric emptying and reduce appetite, resulting in 
weight loss. The most important characteristic of  incretin 
drugs is probably that the enhancement of  insulin 
secretion occurs in a glucose-dependent manner. Thus, 
the action of  incretin drugs as insulin secretagogues is 
more physiological than that of  SUs, thereby resulting in 
a low risk of  hypoglycemia and weight gain with incretin 

therapy[140-142]. Whether this physiological enhancement 
of  insulin secretion results in long-term maintenance of  
glycemic control remains to be elucidated. Although an 
increase in β-cell mass with incretin therapy has been 
reported in rodent studies[143,144], this effect has not been 
confirmed in humans[145-147]. Since incretin therapy is 
usually well tolerated without serious adverse effects, the 
use of  incretin drugs is rapidly increasing[148].

Glinides, short-acting insulin secretagogues, enhance 
early-phase insulin secretion, thereby reducing post-
prandial hyperglycemia[149]. Since a defect in early-phase 
insulin secretion is a hallmark of  glucose intolerance[150], 
the enhancement of  early-phase insulin secretion with-
out prolonged hyperinsulinemia by glinides is more 
physiological, unlike the action of  SUs, and is assumed 
to increase β-cell workload as well as the risk of  hypo-
glycemia to a lesser degree compared with SUs.

Thus, the use of  insulin secretagogues may be limited 
because of  an increase in β-cell workload as well as 
increased risk of  hypoglycemia. Since incretin enhances 
insulin secretion in a more physiological manner and is 
also expected to improve β-cell function and/or mass, 
incretin drugs could be used at any stage of  T2DM. 
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Figure 10  Proposed concept of treatment strategy for type 2 diabetes in relation to functional β-cell mass. α-glucosidase inhibitor is partly approved for use 
in patients with impaired glucose tolerance in Japan. Medications not approved in Japan are not included in the figure. Since currently no single therapy or agent 
can cure and even manage type 2 diabetes (T2DM), an effective combination of current medications in addition to lifestyle modification aiming at reduction in β-cell 
workload is important to preserve or recover β-cell function. Adopted and modified from ref.[108,109]. IGT: Impaired glucose tolerance.
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On the other hand, SUs may be used rather to enhance 
incretin action at only a minimal dose. To recover 
physiological insulin secretion, a combination of  an 
incretin drug and a glinide may also be useful.

Insulin has been shown to improve β-cell function 
in patients with IGT and T2DM[151-153]. Since initial 
intensive insulin therapy has been shown to preserve 
β-cell function thereafter[152], insulin therapy should be 
considered as early as possible in patients with T2DM. 
Insulin therapy is also the most effective medication 
to reduce HbA1c[118]. However, the increased risk of  
hypoglycemia, weight gain and non-physiological insulin 
delivery (i.e., systemic vs portal), in addition to the fear 
of  injections, limit its use. Insulin therapy to overpower 
insulin resistance without eliminating excess calories may 
worsen ectopic lipid overload[154].

A sodium-glucose cotransporter 2 (SGLT2) inhibitor 
has recently been approved in several countries including 
United States, EU and Japan. SGLT2 inhibitors suppress 
reabsorption of  glucose by SGLT2 in the proximal renal 
tubule and increase glucose excretion in urine (-60-80 
g glucose/d)[155]. As a result, SGLT2 inhibitors not only 
decrease HbA1c, but also reduce body weight and blood 
pressure and improve the lipid profile. The action of  
SGLT2 inhibitors is independent of  insulin. Thus, the 
efficacy of  SGLT2 inhibitors seems to be regardless of  
β-cell function. SGLT2 inhibitors show a low risk of  
hypoglycemia but increase the incidence of  bacterial 
urinary tract infections and fungal genital infections 
especially in women. A higher risk of  hypotension has 
also been reported[156]. SGLT2 inhibitors may be suitable 
for obese patients with T2DM and metabolic syndrome; 
however, their longer term safety including cardiovascular 
and cancer risk and efficacy remain unknown[156,157].

Nonetheless, since currently no single therapy or agent 
can cure or even manage T2DM, an effective combination 
of  current medications in addition to lifestyle modification 
aiming at reduction of  β-cell workload is important to 
preserve or recover β-cell function.

Finally, marked weight reduction by bariatric surgery 
such as gastric bypass or sleeve gastrectomy has been 
reported to markedly improve glycemic control and even 
achieve remission of  T2DM in severely obese T2DM 
patients[158,159]. This also suggests the importance of  
reducing β-cell workload, although change in incretin 
secretion has also been proposed as another mechanism 
by which glucose metabolism is improved after gastric 
bypass. On the other hand, it has been reported that 
gastric bypass markedly improved incretin’s effect on 
insulin secretion, but not insulin secretion induced by 
intravenous glucose infusion[160], suggesting limited 
recovery of  β-cell function even with marked weight loss. 
Also, the remission of  T2DM after bariatric surgery is 
associated with residual β-cell function[161,162], indicating 
the importance of  residual β-cell function to manage 
and/or cure T2DM.

Implications for prevention
The progressive decline in β-cell functional capacity 

during the development of  glucose intolerance also 
implies the important role of  preservation or recovery of  
β-cell function to prevent T2DM.

Similarly to the treatment of  T2DM, prevention 
strategies should focus on reducing β-cell workload or 
inducing β-cell rest. These include lifestyle modification 
and/or weight reduction, and use of  metformin or 
TZD. Lifestyle modification, i.e., nutritional therapy and 
increase in physical activity, and weight reduction improve 
insulin sensitivity and thereby reduce β-cell workload. A 
number of  studies have shown the efficacy of  lifestyle 
intervention to prevent the development of  T2DM in 
patients with IGT[163-166]. In the Diabetes Prevention 
Program (DPP), intensive lifestyle modification with 
more than 7% weight loss suppressed the progression 
to T2DM by -58% in patients with IGT[165]. In the same 
study, metformin therapy also reduced the progression 
to T2DM by -31%[165]. TZDs have also been shown 
to effectively suppress the progression from IGT to 
T2DM[167-169]. A significant reduction in the development 
of  diabetes was also observed in patients with IGT 
treated with AGIs[134,135]. In the Outcome Reduction with 
Initial Glargine Intervention (ORIGIN) trial, adding 
basal insulin was also shown to suppress progression 
from IGT to T2DM[151], probably through inducing 
β-cell rest. On the other hand, in the Nateglinide And 
Valsartan in Impaired Glucose Tolerance Outcomes 
Research (NAVIGATOR) trial, nateglinide, a short-
acting insulin secretagogue, failed to show a reduction in 
progression to T2DM in patients with IGT[170], suggesting 
that therapeutic strategies to increase β-cell workload 
may not be effective to prevent deterioration of  glucose 
metabolism.

Importance of empowerment of patients
Although several anti-diabetic agents have been shown to 
effectively prevent the onset of  T2DM, the importance 
of  lifestyle modification remains unchanged, since 
the rapid increase in incidence of  T2DM is certainly 
associated with the change in diet (i.e., westernization) 
and physical inactivity, resulting in increased incidence 
of  obesity. In the NAVIGATOR trial, it has been 
reported that both baseline level and change in daily 
ambulatory activity were associated with a reduced risk 
of  cardiovascular events in patients with IGT[171]. A six-
year lifestyle intervention program for Chinese people 
with IGT showed a significant reduction in the incidence 
of  cardiovascular and all-cause mortality as well as 
diabetes during 23 years of  follow-up[172]. A combination 
of  diet and exercise appears more beneficial than either 
alone in obese older adults[173]. Lifestyle modification may 
improve cardiovascular outcomes even after the onset of  
T2DM[117].

Nonetheless, it is difficult to continue lifestyle modifi-
cation in most patients. Patients’ motivation is one of  
the most important factors in successful patient-centered 
management of  T2DM[118]. Therefore, it is important 
to motivate and encourage them to improve their 
adherence to daily lifestyle modification. In this context, 
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understanding the natural history of  the development of  
T2DM and the importance of  reducing β-cell workload 
to prevent or manage the disease may help to motivate or 
encourage patients to adhere to daily lifestyle changes.

Furthermore, as a whole society, not only patients with 
IGT or T2DM, but the healthy, general population should 
also be educated to motivate or encourage them to pursue 
a healthy lifestyle to prevent diseases associated with 
obesity and physical inactivity, resulting in improvement 
of  quality of  life (QOL). Changing our understanding 
of  T2DM and a “modern” lifestyle may be needed to 
overcome this pandemic burden of  T2DM all over the 
world.

CONCLUSION
This review summarizes the current knowledge of  β-cell 
function and β-cell mass in T2DM. Recent evidence 
has emerged that a deficit of  β-cell function along with 
β-cell mass is a hallmark of  T2DM. Therefore, it is now 
acknowledged that a deficit of  β-cell functional mass is a 
common characteristic of  both type 1 and type 2 diabetes, 
indicating a core pathogenesis of  diabetes. Genome-wide 
association studies have currently detected over 60 genetic 
loci associated with T2DM, most of  which are assumed 
to relate to the β-cell, also indicating the imporance 
of  β-cells in the pathogenesis of  T2DM[174-178]. It is 
important to stress that diabetes never develops unless 
β-cells fail to compensate insulin resistance. In addition, 
β-cell function is related to treatment failure and glycemic 
control, suggesting its critical role in the management of  
T2DM. These findings suggest that recovery of  β-cell 
functional mass is an important therapeutic strategy to 
manage or even cure T2DM. Although, unfortunately, 
currently no treatment strategy or medication to recover 
β-cell functional mass has been established, current 
evidence suggests that reducing β-cell workload is most 
effective to preserve β-cell functional mass. Thus, therapy 
or prevention of  T2DM should focus on this point, and, 
therefore, lifestyle modification and weight loss remain the 
most important therapeutic strategy. Use of  medication 
without lifestyle modification may even result in adverse 
outcomes. From the point of  view of  prevention, we 
need to tackle this pandemic burden of  T2DM as a whole 
society, and correct understanding of  the pathogenesis of  
T2DM may help motivate people to maintain a healthy 
lifestyle.
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