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Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by 
either actual or potential tissue damage or even resemble that unpleasant exper-
ience. For years, science has sought to find treatment alternatives, with minimal 
side effects, to relieve pain. However, the currently available pharmacological 
options on the market show significant adverse events. Therefore, the search for a 
safer and highly efficient analgesic treatment has become a priority. Stem cells 
(SCs) are non-specialized cells with a high capacity for replication, self-renewal, 
and a wide range of differentiation possibilities. In this review, we provide 
evidence that the immune and neuromodulatory properties of SCs can be a 
valuable tool in the search for ideal treatment strategies for different types of pain. 
With the advantage of multiple administration routes and dosages, therapies 
based on SCs for pain relief have demonstrated meaningful results with few 
downsides. Nonetheless, there are still more questions than answers when it 
comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an 
evolving field that merits further investigation towards the development of SC-
based analgesic therapies, and this review will approach all of these aspects.
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Core Tip: Since the discovery of stem cells (SCs), they have emerged from a distant dream into a routine therapeutic 
approach depending on the field. Nowadays, the use of SCs in pain management is mainly based on their anti-inflammatory 
capacities, releasing neurotrophic factors and providing cellular support to replace damaged neural cells. Evidence supports 
that SCs can influence nociceptor neuron sensitization building a foundation for the application of these versatile cells in the 
treatment of neuropathic and inflammatory pain.

Citation: Silva MDVD, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, 
Casagrande R, Verri Jr WA. Stem cells and pain. World J Stem Cells 2023; 15(12): 1035-1062
URL: https://www.wjgnet.com/1948-0210/full/v15/i12/1035.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i12.1035

INTRODUCTION
Pain is a major cause of suffering and disability, and can be characterized as a distressing experience that usually signals 
the presence of injury or disease, generating complex physiologic and emotional responses[1]. According to the Global 
Pain Index Study by GlaxoSmithKline released in 2020, interviews with 19000 individuals around the world indicate that 
34% of the globe’s population is in pain every day[2]. Consistently, United States’s National Center of Health and 
Statistics revealed that 20.4% of adults suffered from chronic pain in 2019, and indicated the three major consequences of 
the condition were: Decreased quality of life, opioid dependence, and poor mental health[3]. This alarming scenario 
highlights the urgency to pinpoint the physiopathological mechanisms underlying pain and how they interconnect with 
other systems, which are essential to developing and improving the availability of therapeutic approaches. In this review, 
we highlight the stem cell (SC)-based therapies aiming to reduce pain. Despite the existence of review articles on SCs and 
specific types of pain, we observed that there is a gap in the literature regarding comprehensive review articles in this 
topic approaching various types of pain, the mechanisms of action of SC-based analgesic therapies, and pre-clinical and 
clinical articles. Therefore, the present review article aims to fill this gap. Data supports that SC-based approaches will 
revolutionize the field of pain treatment of varied etiologies as we will discuss.

GENERAL VIEW OF PAIN MECHANISMS AND DEFINITIONS
According to the International Association for the Study of Pain (IASP), pain can be defined as “an unpleasant sensory 
and emotional experience associated with, or resembling that associated with, actual or potential tissue damage”[4]. The 
mechanisms underlying the physiology of pain are extremely complex, involving at least two types of neurons; one 
whose cellular bodies are in the dorsal root ganglia (DRG) and axons projecting to peripheral tissues and the spinal cord, 
which are specialized in the perception of potentially harmful stimuli, and then neurons which are present in the spinal 
cord and in the cortex of the brain, responsible for interpreting the harmful stimuli[5] (Figure 1).

To fully comprehend the pain-related states that can affect the human body, it is imperative to define their source or 
the causal initiators. The present review will divide pain scenarios as: (1) Inflammatory pain, which involves the presence 
of inflammation as the primary cause of pain and is responsible for nociceptor neuron activation and plasticity to induce 
chronic pain[4]; (2) Pathogen-induced pain, a painful state caused by microbial pathogens that directly activate pain-
related receptors, which also involves inflammation, but with the presence of a microorganism initiating the process[6]; 
and (3) Neuropathic pain (NP), a consequence of damage to the nervous system and extensive tissue repair, leading to 
residual nerve-healing pain[7].

Usually, pain begins with the recognition of possible damage or potentially harmful molecules. When facing a noxious 
stimulus, our body is able to respond, at cellular and molecular levels, through the immune and nervous system in an 
attempt to neutralize and repair the damage caused by such stimulus[8]. The immune system and nervous system are 
responsible for mediating the inflammatory process, generating edema, heat, redness, pain, and loss of function 
depending on the intensity of those cardinal signs of inflammation[9,10].

For an inflammatory response to occur, the harmful agent must cause tissue damage in the host, or possess molecules 
that are recognized by immune cells or neurons to trigger either a pro-inflammatory cascade or neurogenic inflammation, 
respectively[9]. After recognition, a complex cell signaling process begins, inducing vascular alterations to recruit 
leukocytes that will reach the primary inflammatory foci by diapedesis[10]. Several molecules secreted by immune cells (
e.g., cytokines, chemokines, prostanoids) as well as receptors present in their cell membranes and molecules expressed by 
the pathogen itself are capable of activating nociceptors[9,11]. Nociceptors consist of a subset of sensory neurons, which 
innervate peripheral tissues (e.g., joints, skin, respiratory and gastrointestinal tract) and have a role in sensing nociceptive 
stimuli that will be interpreted in the cortex as pain with all its affective and cultural aspects[12].

https://www.wjgnet.com/1948-0210/full/v15/i12/1035.htm
https://dx.doi.org/10.4252/wjsc.v15.i12.1035
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Figure 1 Pain mechanism. Representative diagram of anatomical levels involved in the steps of pain from detection of stimulus up to its interpretation and 
modulation. Starting from the left to the right sides of the figure. The initiation of pain processing starts with the sensing of a noxius stimulus on the skin. This stimulus 
is detected by nociceptors (whose cellular bodies are in dorsal root ganglia and axons that project to the peripheral tissues and spinal cord) and then relayed to the 
spinal cord before ultimately reaching the brain (depicted by the ascending pathways in pink). In the brain, the stimulus is interpreted and converted into the sensation 
of pain. Subsequently, descending pathways (represented in blue) become active, limiting nociceptive input at the spinal cord level. It is crucial to emphasize that glial 
cells play a significant role in the transmission and modulation of pain. They are activated by neuropeptides released by neurons as well as inflammatory molecules 
released by immune cells. The recognition of these molecules, whether they are pro-nociceptive or anti-nociceptive, can stimulate glial cells to alter their behavior and 
contribute to the persistence of the stimulus by releasing nociceptive molecules. Nociceptive neurons can also interact with immune cells that release molecules 
capable of activating and sensitizing these neurons as well as cause neurogenic inflammation. Varied pathogens (e.g., bacteria, parasites, virus) present virulence 
factors that can activate nociceptor neurons. For a further in-depth understanding of pain mechanisms in varied conditions we recommend the following review 
articles[125,174-177].

These stimuli (e.g., inflammatory molecules, pathogen virulence factors) can activate receptors present in nociceptors 
triggering the phosphorylation of ion channels controlled by ligands [transient receptor potential (TRP) channels] or 
modify sodium channels controlled by voltage [Voltage-gated sodium (Nav) channels]. Those stimuli, therefore, cause 
changes in the ion channels facilitating and/or inducing nociceptive neuron depolarization resulting in their sensitization 
to mechanical and thermal stimulation as well as neuronal firing to transduce the nociceptive information, respectively[9,
13]. It is important to stress that the expression of these channels can also be increased due to chronic stimulus, so that 
neurons that initially express low levels of an ion channel or cytokine receptor start to express them at higher levels[14].

Another important fact, as touched on above, is that the receptor/ion channel activation and pattern of expression can 
lead to pain sensitization. According to IASP, pain sensitization is defined as increased responsiveness of nociceptors to 
their normal or subthreshold afferent, and can be divided as hyperalgesia, characterized by increased pain due to a 
noxious stimulus, or allodynia, a painful response to normally innocuous mechanical or thermal stimuli[15]. Thus, the 
modifications of what is expressed by nociceptive neurons, and modulating their activation state and responsiveness to 
stimuli are plastic changes potentially leading to chronic pain.

The functions of the TRP ion channels are related to thermal and mechanical perception[16]. For example the TRP 
cation channel subfamily V member 1 (TRPV1), involved in heat hypersensitivity and activated by capsaicin; TRP 
melastatin 8 (TRPM8), involved in cold hypersensitivity; and TRP ankyrin 1 (TRPA1), involved in hypersensitivity to 
chemical and mechanical stimulation[17]. Furthermore, Nav channels (Nav1.7, Nav1.8 and Nav1.9) are directly 
responsible for neuronal depolarization, and their expression and activation state can also be modulated during inflam-
mation, infection, and nerve lesions leading to acute and chronic pain[18].
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HOW CAN PAIN BE QUANTIFIED IN ANIMAL MODELS?
As this review will approach in great part pre-clinical data using animals, it is important to briefly discuss how “pain” is 
quantified in animal models. The usage of the term pain to define the quantification of nociceptive behavior in animal 
models is not widely accepted, because pain assessment involves an emotional component that is often lost in the 
evaluation of animal responses in most tests. On the other hand, simplifying the terminology by using the word pain, 
facilitates the understanding by the non-specialized reader about what is under discussion. As an essential physiological 
mechanism that helps to guarantee the integrity of the organism, pain triggers behavioral responses, for example, moving 
the hand or paw from a noxious stimulus that can cause tissue damage[19]. In fact, there are subjective components 
associated with the painful sensation that can only be assessed in humans, since there are variations in the quality and 
intensity of pain experienced by different individuals for similar injuries, influenced by culture, sex, age, personal 
experiences, comorbidities and genetic factors[20].

There are different methods to analyze the presence of pain, as well as methods to quantitate it. Most laboratory 
studies use experimental rodent models, thus, the methodologies are focused on the evaluation of behaviors that can be 
quantified, such as paw withdraw, paw flinching, paw licking, and abdominal contortions[21], with or without the 
combination of other methodologies (i.e., place preferences to temperatures or even self-administration of treatment).

Nociceptive assessment methods can be divided into stimulus-evoked and non-stimulus-evoked (spontaneous) 
behaviors. Spontaneous pain occurs regardless of the presence of an additional evoking stimulus and can be assessed 
using grimace scales, burrowing assays, gait analysis and weight-bearing methods[21]. Pain evoked by a stimulus can be 
described as hyperalgesia or allodynia[22]. This parameter is evaluated according to the type of stimulus, being 
subdivided into mechanical, heat and cold stimuli. Methods that assess pain evoked by mechanical stimuli seek to assess 
nociceptive sensitivity to a mechanical stimulus (i.e., mechanical pressure on the paw), normally using the von Frey 
filament method (allodynia indicator), electronic pressure meter test (hyperalgesia indicator), and Randall & Sellito tests 
(which use increasing pressure or constant pressure over time, assessing hyperalgesia). The analysis of pain evoked by 
temperature stimuli seeks to assess thermal nociception, either by a heat source (i.e., hot plate, Hargreaves test, tail flick), 
cold (i.e., cold plate, cold plantar assay and acetone application/evaporation test) or both (i.e., temperature place 
preference)[21].

Furthermore, behavioral tests are usually analyzed in conjunction with data obtained from cellular and molecular 
experimental approaches. For instance, neuronal function, activity, and phenotype can be assessed in vivo and in vitro 
using electrophysiology studies, intracellular calcium levels, immune staining of neuronal populations and their markers 
of activation and/or function, release of neuropeptides, cytokines and neurotransmitters, patterns of mRNA, protein and 
lipid profiles, and optogenetics. Additionally, it is also possible to study the contribution of non-neuronal cells in the 
nociceptive processes by staining glial immune and parenchymal cells, phenotype markers, and quantitating their 
production of mediators and functions. Thus, behavioral assays can be accompanied by a great variety of non-behavioral 
methods to demonstrate a specific hypothesis[23,24].

SCS: TYPES AND SOURCES
SCs are non-specialized cells with a high capacity for replication and self-renewal that have a wide range of differen-
tiation possibilities[25]. These cells are present in all stages of life (embryonic, fetal, and adult), they give rise to differen-
tiated cells in organs[26] and are involved in the development, maintenance, repair and renewal of tissues[27].

SC can be categorically divided into five distinct groups (totipotent, pluripotent, multipotent, oligopotent, and 
unipotent) according to their ability to differentiate, which varies according to the origin and derivation of the cell[26]. 
Totipotent SC, also called omnipotent, are the cells in the most undifferentiated stage and are found at the beginning of 
development (i.e., fertilized oocyte)[28]. Pluripotent SC are cells that differentiate from the three germ layers (ectoderm, 
endoderm and mesoderm)[29]. These cells can be generated through somatic cell reprogramming and are called induced 
pluripotent SC (iPSC)[26]. Multipotent SC are found in most tissues and have the ability to differentiate into varied 
tissues, such as adipose, bone, cartilage, and muscle[30]. Within this group, mesenchymal SC (MSC) are the most 
important cells as will be discussed[26]. Oligopotent SC (i.e., hematopoietic SC) are cells capable of self-renewal, forming 
two or more cell lineages in the same tissue[31]. Finally, unipotent SC are cells capable of self-renewal and differentiation 
into only one specific cell type[26] (Figure 2).

Although it might seem that specialization could mean restriction in some tissue types, totipotent SC have virtually no 
boundaries for differentiation, whereas pluripotent SC demonstrate some degree of specialization. As for the multipotent 
subgroup, MSC have the advantage of originating in different tissues. MSC have a differentiation rate compatible with 
the potential application as a pain treatment, particularly for inflammatory and autoimmune diseases[25,32,33].

In addition to classification according to their ability to differentiate, SC can also be classified according to their origin, 
forming four distinct groups (embryonic, fetal, adult and induced). Embryonic SC (ESC) are pluripotent SC derived from 
the blastocyst after fertilization (5 to 6 d)[34]. Similar to pluripotent SC, ESC differentiate into the three germ layers or 
remain in an undifferentiated stage[29,35]. Fetal SC are cells that remain in tissues in a quiescent state until local stimulus 
induces their proliferation and differentiation into specific cells of the tissues in which they are located[26]. Adult SC are 
cells derived from the three germ layers and the placenta[26] and depend on specific signals to enter cell division[36]. 
These cells are important resources in the cell repair and healing processes, as they help to maintain tissue homeostasis by 
replacing senescent or damaged cells[36]. Finally, iPSC are pluripotent SC produced from the genetic reprogramming of 
adult somatic cells[26], developing a state similar to ESC, both in morphology, proliferation and gene expression[37].
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Figure 2 Types of stem cells: Different types and characteristics. Representative scheme of the different subtypes of stem cells and their main 
characteristics. SC: Stem cells; MSC: Mesenchymal stem cell; iPSC: Induced pluripotent stem cell.

Currently, MSC are the main subset of SC used in therapeutic approaches, as they can be isolated from any source of 
human tissue and reprogrammed. MSC have the advantage of being derived from the patient and, therefore, are 
adequate for the donor/patient, minimizing the possible ethical issues that could arise from the use of cells from a third-
party donor[38,39].

In this review, we discuss recent studies that illustrate the advantages and disadvantages of SC technology to treat 
painful conditions. Although SC studies have become a popular field of research, there are still a lot of unanswered 
questions regarding the possible application of SC in pain treatment as well as data supporting their therapeutic benefit.

HOW CAN SC TREATMENT BE USED IN PAIN MANAGEMENT?
Currently, analgesic treatment strategies include acetaminophen, nonsteroidal anti-inflammatory drugs, antidepressants, 
antiepileptics, local anesthetics, and opioids; and their use is closely linked to significant side effects such as: High renal 
and hepatic toxicity, headaches, mood swings, constipation, nausea, weight gain and even dependence[40]. Furthermore, 
these drugs have limited efficacy (Table 1). The statistical measurement for this effectiveness is the number needed to 
treat (NNT), which is the number of people who must be treated with a given drug for the desired effect to be observed in 
one person. Thus, the closer the NNT is to 1 the higher the treatment efficacy is[41]. Along with concerning adverse 
effects, the present scenario highlights the need of additional options to control and treat painful conditions[40].

In this context, the use of SC as a therapeutic approach for pain treatment has great potential due to their unique 
properties. In general, the use of SC for pain treatment is based on their ability to: (1) Modulate the inflammatory process, 
switching the pro-inflammatory profile into a pro-resolving state; (2) Interacting directly on the peripheral nervous 
system, promoting changes on neuronal excitability of primary afferent nociceptor neurons; and (3) Acting on the central 
nervous system (CNS), via alteration of neuronal excitability in the spinal cord and brain (Figure 3). These mechanisms 
will be discussed in detail throughout the following paragraphs.

The first mechanism of action of SC to control pain is to modulate the inflammatory process. SC can shape the activity 
of neutrophils, macrophages, B cells, T cells, natural killer (NK) cells and dendritic cells[42] (Figure 3). In innate 
immunity, SC regulatory action is based on their ability to produce soluble human leukocyte antigen G5 [capable of 
inhibiting NK cell-mediated cytolysis and interferon-gamma (IFN-γ) secretion][43]. Another important point is that SC 
are able to increase the production of interleukin-10 (IL-10), an important cytokine involved in the polarization of M2 
macrophages, inducing tissue repair effects[44]. In adaptive immunity, the effects of SC actions involve increased nitric 
oxide (NO) production (suppressing T cell activity)[45], reduced prostaglandin E2 (PGE2) levels[46] and increased 
indoleamine 2,3-dioxygenase (IDO) activity[47]. Furthermore, it has also been described that treatment with SC increase 
the expression of IL-4 (by type 2 helper cells)[46] and IL-10[44].

On the other hand, SC can also produce soluble mediators to shape the inflammatory response. SC can be stimulated 
by inflammatory cytokines such as IFN-γ, IL-1α, IL-1β and tumor necrosis factor alpha (TNF-α)[45,48]. However, in 
response to those inflammatory cytokines, SC produce transforming growth factor-beta (TGF-β) and IL-10, which are 
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Table 1 Painkillers and numbers needed to treat

Drug Drug class NNT Ref.

Acetaminophen 650 mg + oxycodone 10 mg NSAID + opioid 2.7 Gaskell et al[178], 2009

Acetaminophen 500 mg + ibuprofen 200 mg NSAID combination 1.6 Moore and Hersh[179], 2013

Aspirin 1200 mg NSAID 2.4 Bandolier Extra[180], 2003

Codeine 60 mg Opioid 16.7 Maxwell and Bateman[181], 2007

Diclofenac 100 mg NSAID 1.8 Gaskell et al[178], 2009

Ibuprofen 400 mg NSAID 2.5 Lyngstad et al[182], 2021

Morphine 10 mg (intramuscular) Opioid 2.9 Bandolier Extra[180], 2003

Naproxen 500 mg NSAID 2.7 Derry et al[183], 2009

Oxycodone 15 mg Opioid 4.6 Gaskell et al[178], 2009

NSAIDs: Nonsteroidal anti-inflammatory drugs; NNT: Number needed to treat.

Figure 3 Analgesic mechanisms of stem cells depending on the route of administration and targets/tissues. This scheme summarizes the 
mechanistic changes caused by stem cell (SC) treatment that resulted in analgesia. The explanation of analgesic mechanisms of SC treatments in the cerebral 
cortex, spinal cord, dorsal root ganglia, intravenous and local treatment (intra articulary) (indicated by the syringes) can be observed by up and down arrows plus the 
changed parameter. ATF3: Activating transcription factor 3; CGRP: Calcitonin gene-related peptide; IB4: Isolectin B4; NMDAR: N-methyl-D-aspartate receptor; NGF: 
Nerve growth factor; PGP9.5: Protein gene product 9.5; VEGF: Vascular endothelial growth factor; TGF: Transforming growth factor; IL: Interleukin.

anti-inflammatory and analgesic cytokines[49,50].
Added to their anti-inflammatory capabilities, SC become promising potential candidates to reduce peripheral sensit-

ization of afferent sensory neurons[51] (Figure 3). SC can decrease the production of cytokines (IFN-γ[46], IL-2[46], IL-17
[52] and TNF-α[46]) capable of sensitizing nociceptors and leading to hyperalgesia. SC can also increase the level of 
cytokines capable of decreasing nociception such as IL-4[46] and IL-10[53,54]. On the other hand, treatment with SC can 
increase the level of molecules indirectly linked to the promotion of hyperalgesia, such as NO (has a dual role in pain)[45,
55], PGE2[46,56] and IDO[47,57].
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These data provide evidence that the applicability of treatment in inflammatory conditions directly depends on the 
inflammatory microenvironment, which can be positively influenced by SC both by decreasing molecules linked to 
nociceptive sensitization and by increasing molecules indirectly linked to reducing pain (Figure 3). However, specific 
cellular targets and the source of soluble mediators were not fully investigated in the experimental settings. We envisage 
that the field would present a huge evolution if the studies focused not only in quantitating the modulation of soluble 
mediators, but also investigating the cellular targets and interactions explaining the activity of SC.

In addition to their action on the neuroimmune axis (DRGs and the immune system), an interesting fact that has not 
been explored much is that SC have a key structural similarity with primary afferent nociceptive sensory neurons. 
Primary afferent nociceptive sensory neurons and bone marrow-derived mesenchymal stromal cells express the TRPM8 
receptor. Recent studies demonstrate that the influence of this receptor on neurons involves the detection of cold temper-
atures (18-23 °C), and that TRPM8 inhibition reduces pain[58]. In addition, this channel is also capable of modulating cell 
differentiation in SC, as its activation increases osteogenic differentiation in human bone marrow MSC[59].

The use of SC in pain treatment is also based on the ability of these cells to act on the CNS since they have the ability to 
desensitize the CNS by inhibiting glutamate-related pathways (reduction of NMDAR expression and TGF-β1 secretion)
[60]. Furthermore, SC can decrease central sensitization, via reduced glial cell activity, once again contributing to the 
attenuation of hyperalgesia[61] (Figure 3), these points will be discussed in further details in the following topics.

SC IN THE TREATMENT OF INFLAMMATORY DISEASES AND INFLAMMATORY PAIN
The number of articles investigating the relationship between pain and SC is still small, so this section was divided into 
two parts: (1) The use of SC to treat inflammatory diseases. This part is of interest in terms of the perspective of 
application to inflammatory pain since inflammatory mediators can induce nociceptor sensitization mechanisms; and (2) 
Articles that analyze the analgesic activity of SC treatment.

SC in the treatment of inflammatory diseases without the assessment of pain
In this topic we will present the mechanisms behind the ability of SC to modulate the inflammatory response, and the 
most recent discoveries involving SC and inflammation. Reducing pain is a potential outcome since inflammation was 
reduced in these studies, however, this specific disease symptom was not tested.

As previously discussed, the inflammatory process is composed of a series of signals. Through the release of inflam-
matory molecules (cytokines, leukotrienes, and prostanoids), which are used for cellular communication, tissue resident 
immune cells start the inflammatory response process. Examples of these inflammatory molecules include, for instance, 
IL-1β, IL-5, IL-6, IL-17A, TNF-α, nerve growth factor (NGF), LTB4, 5-HT and PGE2. They have a role in the recruitment 
and activation of leukocytes and some can also activate receptors expressed by the primary afferent nociceptor sensory 
neurons inducing the activation (causing depolarization) or sensitization (causing an enhancement of response upon 
other chemical, mechanical or thermal stimulation) of these neurons. This neuro-immune interaction is relevant to pain 
and inflammation[62] and we will discuss how SC can interfere with it.

Neutrophils are the most abundant cell type in the blood and large numbers are recruited in acute inflammation[63]. 
SC activity on neutrophils may present two distinct patterns[64]. MSC can suppress hydrogen peroxide production in 
activated neutrophils in vitro. On the other hand, tissue resident glandular MSC seem to play an early role in lipopolysac-
charide (LPS)-triggered inflammation by producing cytokines and chemokines to recruit neutrophils. These polymorpho-
nuclear leukocytes presented an increase in their lifespan, chemokine production and response to LPS stimulation[65]. 
This MSC-dependent response is protective in the sense that LPS stimulation represents part of an infection. On the other 
hand, neutrophils can participate in the induction of pain by producing LTB4 and PGE2, which activate and sensitize 
nociceptor neurons[66,67]. Reactive oxygen species can also activate nociceptor neurons[9].

One of the most important anti-inflammatory mechanisms of SC is to induce a class switch in the pattern of 
macrophages from M1 phenotype to M2 phenotype. This ability was observed in models of osteoarthritis using the 
treatment with exosomes from iPSC and MSC. The M2 macrophage phenotype is involved in tissue repair as well as in 
the resolution phase of inflammation[68]. Upon inducing this macrophage phenotype switch, there is a decrease in the 
production of pro-inflammatory cytokines IL-1β and TNF-α produced by M1 macrophages[68,69]. Interestingly, this 
activity seems to be related to SC-derived PGE2. Contrasting with the hyperalgesic role of PGE2 in inflammation by 
sensitizing primary nociceptive sensory neurons[70], this prostanoid also has other regulatory functions. For instance, 
when dendritic cells are stimulated to produce PGE2 and IL-10, these antigen presenting cells reduce the expression of 
major histocompatibility complex (MHC)-II and CD86, thus, reducing their function of presenting antigens. As a result, 
there is a reduction of lymphocyte proliferation and adaptive immune response[71]. This evidence points to specific roles 
of PGE2 and how somewhat opposing effects can be triggered by this prostanoid depending on the site of production and 
cellular target as well as explain anti-inflammatory activities of SC. Furthermore, PGE2 can induce the production of TSG-
6[72], which is capable of converting the macrophage phenotype from pro-inflammatory to anti-inflammatory[73]. 
Finally, MSC can recruit monocytes and macrophages through the production of chemokines such as C-C motif 
chemokine ligand (CCL)2, CCL3 and CCL12 in inflamed tissue, which contributes to the tissue repair[72,74].

Another characteristic of SC is their ability to interfere with the lymphocytic pattern. In Crohn’s disease patients, it was 
observed that treatment using MSC was able to decrease lymphocyte proliferation, the proportion of CD4+ T cells, and 
decreases the levels of TNF-α and IL-6. The authors also demonstrated an increase in regulatory T cells (Tregs) and IL-10 
production, thus, suggesting that an MSC would shift the T cell population towards an increase of Tregs that produce IL-
10 to limit inflammation and reducing CD4+ T cells[75]. It has also been reported that SC are able to inhibit the prolif-



Silva MDVD et al. SCs and pain

WJSC https://www.wjgnet.com 1042 December 26, 2023 Volume 15 Issue 12

eration of B lymphocytes[76]. The mechanism by which SC can affect these changes in both T and B lymphocytes is not 
fully elucidated. However, Lin et al[77] demonstrated that SC express adhesion molecules vascular cellular adhesion 
molecule-1 and intracellular adhesion molecule 1, which lead to adhesion to lymphocytes indicating a possible SC contact 
dependent regulation of lymphocyte function[78]. In addition, SC release NO, PGE2 and hepatocyte growth factor[79], as 
well as activate the programmed cell death 1 death receptor[80], suggesting that SC could reduce lymphocyte prolif-
eration and survival[81-83].

In addition to its influence on the immune system, it is also interesting to note the opposite. One of the reasons why 
most studies use MSC is due to their ability to evade the immune system explained by their lack of HLA class I and II 
surface markers. Both molecules are necessary for recognition by immune cells, thus, lacking such molecules is an 
essential characteristic to avoid the rejection of the transplanted SC and also leaves open the possibility of transplanting 
cells from one donor to a patient, and not solely autologous transplantation[77]. Despite this characteristic, most human 
studies involving SC and inflammation use MSC in a non-randomized manner. It is also noteworthy that MSC are 
believed to be the only SC with immunoregulatory and regenerative capabilities, in addition to presenting almost all of 
the effects mentioned above in this topic[77].

Application of SC in the treatment of inflammatory pain
Inflammatory pain occurs when afferent sensory neurons detect specific molecules that are able to sensitize or activate 
these neurons, such as cytokines, peptides, and other molecules[84]. Most of these molecules are secreted by immune and 
glial cells, which normally communicate in a controlled and homeostatic manner. In inflammatory diseases, there is an 
imbalance between pro and anti-inflammatory molecules, leading to the activation of membrane receptors in nociceptive 
neurons and the consequent activity of sodium channels and TRP channels resulting in neuronal sensitization and 
activation[9]. Inflammation also leads to neuronal plasticity in which they express higher levels of ion channels, 
additional receptors, and present enhanced activity and response when compared to a non-sensitized neuron. These 
plastic alterations cause the transition from an acute to a chronic pain state[85].

Table 2 summarizes the current literature in which SC treatment was applied to reduce pain; taking as a principle that 
these cells can reduce the production of pro-hyperalgesic molecules. It is noteworthy that studies on the analgesic activity 
of SC in inflammatory pain have been increasing in the last 10 years. Before that, the articles were mainly focused on the 
mechanisms of inflammation control using SC, but not necessarily on pain. Evidence supports that the mechanism by 
which SC reduce thermal and mechanical hypersensitivity is based on three perspectives: (1) Targeting the inflammatory 
response: By having the ability to reduce the secretion of pro-inflammatory cytokines (capable of sensitizing nociceptors) 
such as IL-6, TNF-α and IL-17[69,86,87] as well as increasing IL-4 levels, a cytokine capable of mediating analgesia[88]; (2) 
Modifying cell phenotype: the effects of these cytokines (mentioned in the perspective 1) are also based on the ability of 
SC to induce a change in the macrophages phenotype from M1 to M2 (non-phlogistic macrophage)[88], in addition to 
decreasing CCL2, CCL5 and CXC10 (macrophage recruiting factors)[87]. Additionally, SC participate in the reduction of 
mast cell degranulation, which would result in the secretion of varied molecules with nociceptive activities such as 5-HT, 
histamine, LTB4 and cytokines[89]; and (3) Neuronal and glial effects: The treatment with SC can decrease the expression 
in the spinal cord of calcitonin gene-related peptide (CGRP)[90] and ionized calcium-binding adaptor molecule 1 (IBA-1) 
(marker of glial activation, related to central sensitization)[91] and decrease the activity of immune cells. The current 
understanding is that SC activity occurs through the secretion of TSG-6[92], a soluble chemokine-binding protein. In turn, 
TSG-6 acts through inhibiting the expression of protein kinase C-γ[87] and suppressing the Toll-like receptor 2 (TLR2)/
myeloid differentiation factor-88 adaptor protein (MyD88)/nuclear factor kappa B (NF-κB)[91] signaling pathway. This 
TLR2/MyD88/NF-κB cascade occurs in glial cells in the spinal cord and its activation leads to the production of pro-
inflammatory/hyperalgesic cytokines.

The studies that address treatment in humans do not address possible signaling mechanisms of SC. However, SC 
treatment decreases pain for 6 mo [autologous bone marrow concentrate, one treatment, (0.5-1) × 106 cells][93] to 1 year 
(autologous adipose-derived stromal vascular cells, one treatment, 14 × 106 cells)[90] in knee osteoarthritis patients and 
for 2 years for discogenic back pain patients[93]. Thus, although the analgesic mechanisms of SC in humans remains 
elusive, the data supports the analgesic effect of clinical SC treatment.

SC TREATMENT OF PATHOGEN-INDUCED PAIN
In general, treatment using SC has great analgesic and anti-inflammatory potential. Similarly to sterile inflammatory 
diseases, infections also cause inflammation, however, there is a dual role in which inflammation involves the immune 
response against the pathogen as well as being responsible for tissue damage. Finding the balance between these two 
effects is difficult[94]. Studies involving SC and infections caused by bacteria and viruses are restricted only to the inflam-
matory context of infections. On this topic we will present data that demonstrate a potential analgesic effect in diseases 
caused by SC in bacterial and viral infections.

Bacteria-induced pain
Bacterial infections can commonly cause discomfort and pain[95]. It is believed that pain caused by bacteria and their 
bacterial components can occur in two different manners: The first and most classic one occurs through the activation of 
immune cells, production of pro-inflammatory cytokines, and the consequent nociceptor sensitization by neuronal effects 
of inflammatory molecules[96,97]. The second occurs through the direct activation of nociceptor neurons by bacterial 
virulence components, such as α-hemolysin, capable of forming pores (as its primary activity), thus activating both 
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Table 2 Articles that used stem cells to treat inflammatory pain (stem cell-based treatment of inflammatory pain or in models where 
pain is certainly involved, but was not investigated)

Ref. Stem cell therapy 
design Key findings Pain-related highlights Route of 

administration

Number of 
cells or 
amount of 
extracellular 
vesicles and 
exosomes

Hsueh et al
[69], 2023

iPSC-derived EVs for the 
treatment of rabbit 
articular cartilage OA in 
an in vivo model and an 
in vitro interleukin (IL)-1
β-induced model

Improvement in both in vivo and in 
vitro models of OA by stimulation 
of chondrocytes proliferation and 
decreasing senescence were 
accompanied by: Decreasing of 
TNF-α); IL-6; protein 21 (p21); 
MMP 13; ADAMTS5; and 
increasing of collagen II

Indirect: Specific pain 
receptors/pathways weren’t invest-
igated

i.a. 100 μg iPSC-EV

Gao et al
[184], 2022

Small EVs from iPSC-
derived mesenchymal 
stem-cells ameliorate 
tendinopathy pain by 
inhibiting mast cell 
activation

The treatment was able to decrease 
acute pain in tendinopathy, as well 
as inhibit infiltration of activated 
mast cells and interactions with 
nerve fibers in vivo. In the in vitro 
experiments, the treatment 
decreased mast cell degranulation 
and the expression of pro-inflam-
matory cytokines and genes 
involved in the hypoxia inducible 
factor-1 signaling pathway

Pain behavior was measured by the 
von Frey method. And the weight 
distribution on the knees by SWB; 
immunofluorescence staining of 
tendon sections for tryptase (mast 
cell marker) and PGP9.5 (nerve 
fiber marker) was performed to 
assess the number of activated mast 
cells and the anatomical interaction 
between mast cells and nerve fibers. 
In addition, the SWB and CatWalk 
test was also. carried out

Local injection 
(quadriceps 
tendon)

1 × 109 particles

Yu et al
[185], 2022

Intravital imaging and 
single cell transcriptomic 
analysis for engraftment 
of mesenchymal stem-
cells in an animal model 
of interstitial 
cystitis/bladder pain 
syndrome

The transplanted cells formed a 
perivascular-like structure. They 
were also shown to express cyclin-
dependent FOSe kinase-1 which 
played a key role in modulating the 
migration, engraftment and anti-
inflammatory functions of 
multipotent MSCs, which 
determined their therapeutic 
potency in vivo

In vivo two-photon intravital 
microscopy and single-cell 
transcriptome analysis were used to 
assess the effects of stem cell 
treatment on interstitial 
cystitis/bladder pain syndrome

Injected into the 
outer layer of the 
anterior wall and 
dome of the 
bladder

106

Zhang et al
[186], 2022

EVs derived from MSCs 
alleviate neuroinflam-
mation and mechanical 
allodynia in interstitial 
cystitis rats by inhibiting 
NLRP3 inflammasome 
activation

SC treatment decreased suprapubic 
mechanical allodynia and frequent 
urination in rats with interstitial 
cystitis. It also decreased glial cell 
activity as well as neuroinflam-
mation in the spinal cord. 
Furthermore, the treatment was 
able to decrease the activation of 
NLRP3 inflammasomes and the 
TLR4/NF-κB signaling pathway

Behavioral test (von Frey) was 
performed to measure allodynia 
and western blot and immunofluor-
escence for protein related to 
inflammation and central sensit-
ization analysis: CD9, CD63, CD81, 
ALIX, TNF-α, IL-1β, IL-6, IBA-1, 
GFAP, NLRP3, Caspase-1, IL-18, 
TLR4, p65 NK-κB, phospho-p65 
NK-κB (western blot). NLRP3, 
neuron-specific nuclear protein, 
GFAP and OX-42 labeling 
(immunofluorescence)

i.t. 20 μg

González-
Cubero et al
[86], 2022

EV and soluble fractions 
of adipose tissue-
derived MSCs secretome 
induce inflammatory 
cytokines modulation in 
an in vitro model of 
discogenic pain

There was a decrease in the 
expression of IL-6, IL-8 and IL-17

Indirect method: The authors 
measured the regulatory capacity of 
EVs on the inflammatory molecules 
IL-1α, IL-1β, IL-6, IL-8, IL-17, nerve 
growth factor, brain-derived 
neurotrophic factor, IFN-γ, NF-κB 
and TNF and MMP-1, MMP-2, 
MMP-3, MMP-13 and ADAMTS-5

In vitro model 1 × 106

Stem cells are capable of secreting 
TSG-6. This article demonstrated 
that i.t. administration of this 
protein leads to a decrease in 
mechanical allodynia and heat 
hyperalgesia. In addition to 
inhibiting neuroinflammation in 
the spinal cord (IBA-1), the protein 
administration inhibited the 
activation of the 
TLR2/MyD88/NF-κB pathway in 
the dorsal horn of the ipsilateral 
spinal cord by the secretion of TSG-

Yang et al
[91], 2020

Anti-inflammatory 
protein TSG-6 secreted 
by bone marrow MSCs 
attenuates neuropathic 
pain by inhibiting the 
TLR2/MyD88/NF-κB 
signaling pathway in 
spinal microglia

The activation of the 
TLR2/MyD88/NF-κB signaling 
pathway was evaluated by western 
blot and by immunofluorescence. 
Mechanical allodynia and heat 
hyperalgesia were observed by 
behavioral tests

i.t. 5 × 106
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6 and reduced the production levels 
of pro-inflammatory cytokines, 
such as IL-1β, IL-6 and TNF-α

Zhang et al
[187], 2019

MSCs exosomes alleviate 
temporomandibular 
joint OA by attenuating 
inflammation and 
restoring matrix 
homeostasis

It was observed that the treatment 
led to repair of the temporo-
mandibular joint, along with a 
reduction in inflammation and 
pain. Treatment increased IL-1β-
impaired sulfated glycosa-
minoglycan synthesis and 
suppressed IL-1β-induced nitric 
oxide and MMP13 production. 
These effects were partially 
abrogated by inhibitors of 
adenosine receptor, protein kinase 
B, ERK and adenosine 
monophosphate activated protein 
kinase phosphorylation

Mechanical hyper-nociception was 
assessed using the von Frey 
microfilament. The expression of 
inflammatory mediators and other 
components was measured using 
quantitative polymerase chain 
reaction

i.a. 100 μg

Ebbinghaus 
et al[88], 
2018

A promising new 
approach for the 
treatment of inflam-
matory pain: Transfer of 
stem cell-derived 
tyrosine hydroxylase-
positive cells (mouse 
model)

It has been demonstrated that the 
administration of endogenous 
tyrosine hydroxylase positive cells 
(iTH+) cells, prior to the induction 
of antigen-induced arthritis, was 
not sufficient to suppress the 
disease. However, the treatment 
was able to decrease pain behavior 
evoked by inflammation, largely 
due to the production of IL-4 
induced by iTH+ cells. 
Furthermore, the treatment was 
able to reduce the levels of pro-
inflammatory molecules, in 
addition to increasing the number 
of M2 macrophages in dorsal root 
ganglia

Inflammatory molecules were 
quantified, such as: IFN-γ, IL-2, IL-
4, IL-6, IL-10, CCL3, CCL5, CXCL1, 
CXCL2, CXCL10, and CXCL12. 
Additionally, pain-related behavior 
tests and IBA-1 and arginase 1 
labeling in the dorsal root ganglion 
via immunofluorescence was 
performed

i.v. 106

Ichiseki et al
[92], 2018

I.a.-injected MSC 
stimulate anti-inflam-
matory molecules and 
inhibits pain related 
protein and chondrolytic 
enzymes in a monoiodo-
acetate-induced rat 
arthritis model

The treatment was able to inhibit 
central pain sensitization 
(decreased expression of CGRP in 
the spinal cord) and increase the 
secretion of TSG-6 by stem cells, an 
anti-inflammatory factor and 
cartilage protector

For the evaluation of central sensit-
ization, CGRP staining was 
performed by immunofluorescence. 
And the histochemical technique 
was also used for the evidence in 
the joint of ADAMTS5 and TSG-6

i.a. 5.0 × 106

Fodor and 
Paulseth
[90], 2016

Adipose derived stromal 
cell injections for pain 
management of OA in 
the human knee joint

After 3 mo of treatment, patients 
showed improvement in WOMAC 
and VAS scores, which were 
maintained for 1 yr. ROM and TUG 
improved until the third month. All 
patients achieved full activity with 
decreased knee pain and no 
infections or adverse effects 
reported

Patients were evaluated by 
following scores on the WOMAC, 
VAS pain scale, ROM, TUG, and 
magnetic resonance imaging

i.a. 14.1 × 106 
nucleated 
stromal 
vascular 
fraction cells 
per knee

Pettine et al
[93], 2016

Treatment of discogenic 
back pain with 
autologous bone 
marrow concentrate 
injection with minimum 
two-year follow-up 
(humans)

Stem cell treatment reduced visual 
analog scale and Initial Oswestry 
Disability Index scores. In addition 
to reducing pain in patients. The 
treatment proved to be effective for 
up to 2 yr after the injection

Pain was assessed using scores 
provided by patients

Intradiscal 
injection

(0.5-1) × 106

Durand et al
[89], 2015

Persistent visceral 
allodynia in rats exposed 
to colorectal irradiation 
is reversed by MSC 
treatment

Induced a time-dependent 
reversion of the visceral allodynia 
and a reduction of the number of 
anatomical interactions between 
mast cells and PGP9.51 nerve fibers

Spinal sensitization (was available 
for labeling of phospho-ERK 
neurons), colonic neuroplasticity (as 
increased density of substance P1 
nerve fibers); s, visceral sensitivity 
was evaluated by studying the 
contraction of the abdominal 
muscles in response to colorectal 
distension

i.v. 1.5 × 106

Early transplantation of 
MSC after SCI relieves 
pain hypersensitivity 
through suppression of 
pain-related signaling 
cascades and reduced 
inflammatory cell 

The treatment was able to decrease 
thermal and mechanical hypersens-
itivity. Improvements in pain were 
mediated by suppression of PKC-γ 
and p-CREB expression in dorsal 
horn neurons. The authors also 
reported a decrease in the levels of 

Mechanical allodynia and thermal 
sensitivity were recorded. In 
addition, immunofluorescence was 
performed on spinal cord sections, 
labeling for: PKC-γ or p-CREB, 
GFAP, cD11B and phospho-protein 
38. For immunoblot analysis, 

Watanabe et 
al[87], 2015

Injection into the 
middle of the 
contusion site, 
identified as the 
middle point of 
the laminectomy 
area

2.0 × 105
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recruitment pro-inflammatory cytokines  
(TNF-α, IL-6), mediators of early 
secondary vascular pathogenesis 
(MMP9) and macrophage 
recruitment factors (CCL2, CCL5 
and CXCL10). All in addition to 
increased levels of a microglial 
stimulating factor GM-CSF)

components of the mitogen-
activated protein kinase family, 
inflammatory mediators (TNF-α, IL-
6, MMP-9), macrophage recruiting 
factors (CCL2, CCL5, and CXCL10) 
and GM-CSF (a microglial 
stimulating factor) were analyzed

Emadedin et 
al[188], 2012

Intra-articular injection 
of autologous MSC in six 
patients with knee OA 

The treatment was able to improve 
scores related to pain, the 
functional status of the knee and 
the distance covered up to six 
months after the injection

VAS which is a subjective 
assessment that represents the 
patient’s perception of the current 
pain state with a higher score 
reflecting more severe pain. 
Functional status of the knee was 
assessed by WOMAC OA index. 
This index evaluates pain, joint 
stiffness, physical and social 
function of patients with OA of the 
knee

i.a. (20-24) × 106

iPSC: Induced pluripotent stem cells; OA: Osteoarthritis; IL: Interleukin; TNF-α: Tumor necrosis factor alpha; p21: Protein 21; MMP: matrix 
metalloproteinase; ADAMTS5: A disintegrin and metalloproteinase with thrombospondin motifs 5; i.a.: Intra-articular; EV: Extracellular vesicle; SWB: 
Static weight bearing; PGP9.5: Protein gene product 9.5; CDK1: Cyclin-dependent FOSe kinase 1; MSC: Mesenchymal stem cells; NLRP3: NOD-like 
receptor protein 3; i.t.: Intrathecal; TLR: Toll-like receptor; NF-κB: Nuclear factor kappa B; IBA-1: Ionized calcium-binding adapter molecule 1; GFAP: Glial 
fibrillary acidic protein; CD: Cluster of differentiation; IFN-γ: interferon-gamma; TSG-6: Tumor necrosis factor alpha-stimulated gene 6; MyD88: Myeloid 
differentiation primary response 88; ERK: Extracellular signal-regulated kinase 1; iTH+: Tyrosine hydroxylase positive cells; CCL: C-C motif chemokine 
ligand; CXCL: C-X-C motif chemokine ligand; DRG: Dorsal root ganglion; i.v.: Intravenous; CGRP: Calcitonin gene-related peptide; WOMAC: Western 
Ontario and McMaster Universities Arthritis Index; VAS: Visual Analogue Scale; ROM: Range of motion; TUG: Timed ascent and descent; PKC-γ: Protein 
kinase C gamma; GM-CSF: Granulocyte-macrophage colony stimulating factor; p-CREB: Phospho cyclic AMP response element binding protein; p-p38: 
Phospho-protein 38.

Nav1.8+ and TRPV1+ neurons[98,99]; or by LPS, which is capable of activating TLR4 expressed by neurons or be sensed 
by TRPA1 (at lower doses) and even TRPV1 (at higher doses)[100,101]. Thus, bacteria can induce nociceptor sensory 
neuron sensitization indirectly by activating immune cells that will produce nociceptor sensitization molecules or directly 
by activating neuronal receptors and triggering nociceptor depolarization by forming membrane pores[96].

As discussed in the topic “SC in the treatment of inflammatory diseases and inflammatory pain”, the effects of SC 
activity on bacterial infections have two main characteristics. The first is that treatment with SC can increase phagocytic 
activity and neutrophil survival in bacterial infections[102,103]. Second, SC treatment can attenuate exacerbated immune 
responses, as seen in a murine model of endotoxemia induced by LPS, the administration of MSC by the intraperitoneal 
route is capable of reducing the severity of the disease, mainly by reducing the levels of IL-1β, IL-6, IL-8 and TNF-α and 
increasing IL-10 in the plasma, as well as reducing the recruitment of neutrophils in the liver[104].

Despite demonstrating great analgesic potential by reducing the levels of cytokines causing hypersensitivity and 
increasing bacterial clearance, no articles were found that investigated a possible decrease in pain in models that use 
bacteria and SC treatment. This fact highlights a gap in the literature and potential field to be explored.

Viral infection-induced pain
In general, viral infections can cause pain. Depending on the type of virus and site of infection, an inflammatory process 
begins, characterized by the high release of inflammatory mediators. The detection of these mediators can occur through 
the central or peripheral nervous system[11]. A recent study demonstrated that most of the symptoms of intranasal H1N1 
infection (reduction in food intake, water intake, and mobility during early-stage infection and improved survival) come 
from the detection of PGE2. This prostanoid activates EP3 receptors, which are expressed in both the hypothalamus and 
circumventricular organs, as well as in nerve endings in the nasopharynx[105]. It has also been demonstrated that the 
herpes simplex virus 1 can also infect the neurons present in the DRG, and the persistence of the virus leads to the 
recruitment of leukocytes to the region, TNF-α secretion and neuronal hypersensitivity[106]. While the pain caused by 
Chikungunya virus depends on its envelope protein E2 activation of TRPV1+ nociceptor sensory neurons[107].

As discussed earlier, SC have a high anti-inflammatory capacity. This characteristic is also observed against viruses 
since treatment with SC can decrease the levels of cytokines[108] that sensitize nociceptors. An interesting fact about SC is 
that these cells have IFN-responsive genetic machinery. Therefore, upon detecting the presence of the signal produced in 
viral infections (flavivirus, dengue and Chikungunya virus), they express genes related to IFN-induced transmembrane 
proteins, which prevents the contamination of these cells[109]. In murine models, treatment with MSC reduces the levels 
of IL-1α, IL-6, TNF-α and IFN-γ in response to H9N2 infection[110]. It has also been described that the administration of 
extracellular vesicles derived from MSC was able to reduce the viral load in lung epithelial cells of pigs infected with 
H1N1/H7N2/H9N5[111]. Recent evidence demonstrates that extracellular cells derived from MSC have the in vitro 
capacity to inhibit the replication of the Influenza virus and severe acute respiratory syndrome coronavirus 2[112]. It is 
also important to report that recently a number of clinical studies have been carried out in humans using MSC treatment 
in coronavirus disease (results not yet reported)[113-117]. Despite the potential of SC treatment to reduce pain and the 
fact that viral infections can cause pain, there is a gap in the literature of studies investigating the analgesic effectiveness 
of SC in the treatment of viral infection-triggered pain.
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SC-BASED TREATMENTS FOR NP
Studies involving inflammation and pain are still somewhat restricted when compared to the volume of articles that 
study NP and treatment using SC. On this topic, we will present an overview of the mechanisms involved in the 
development of NP and then explain the mechanisms underpinning SC therapy.

What mechanisms are involved in the development of NP?
To fully comprehend the mechanisms that modulate NP, it is essential to understand how our body processes the 
external and internal stimuli that can lead to nociceptive alterations. Pain sensation is the product of higher brain center 
perception and can be influenced by a number of factors like attention, affective dimensions, autonomic variables, 
immune variables, and hormones[118].

In normal tissue, pain is triggered by intense or noxious stimuli that leads to the activation of high threshold 
transmembrane ion channels, a process defined as nociceptive pain. These ion channels present on nociceptor neurons 
convert mechanical, thermal or chemical stimuli - that can vary from pinpricks and light touch to vibrations, indentations, 
gravity and sound waves - into biochemical regulated electrical signals that are directed to the brain through the 
generation and conduction of action potentials, characterizing mechanotransduction[119].

NP, on the other hand, occurs when a pathological process leads to nerve damage, and the healing process of the 
nervous system results in maladaptation observed by the lower unbalanced threshold of neuronal activation that can 
involve numerous pain-related processes, from the detection by the nociceptor neuron to the acknowledgement of 
nociceptive signaling by the brain[120]. NP comprises peripheral neuropathy, postherpetic neuralgia, trigeminal 
neuralgia, nerve root pain, and phantom limb pain; and can be caused by lesions or diseases involving the primary 
afferent sensory neurons of the somatosensory nervous system, including peripheral fibers (Aβ, Aδ and C fibers) and 
CNS neurons[121-123].

The extensive modulatory possibilities that can unravel during the healing process of nervous tissue make evident the 
importance of neuroplasticity, a phenomenon that can be defined as the ability of the nervous system to adapt its 
responses according to intrinsic or extrinsic stimuli by reorganizing its structure, functions, or connections after injuries. 
Thus, neuroplasticity is a key factor in the development of NP[124].

NP typically arises from an incorrect healing process due to an imbalance between neuroimmune interactions, glial 
cells, and neurotrophic factors. Briefly, a nervous system lesion triggers inflammatory and repair responses that are not 
always successful. Unsuccessful nerve repair will lead to plastic changes causing the sensitization of nociceptive neurons, 
sympathetic sprouting forming basket structures that explain sympathetic maintained chronic pain, incorrect formation 
of novel synapses causing the stimulation of second order neurons upon touch (causing allodynia). Maladaptive tissue 
repair can also involve the activation of glial cells that further stimulate nociceptive neurons causing retrograde sensit-
ization and boosting second order nociceptive signaling to the brain when a nervous fiber is sectioned. Cellular events 
occur at the site of injury and in the neuronal soma corresponding to the area in the DRG. These cellular events include, 
for instance, local immune cell signaling via purinergic P2 receptors-ATP signaling[125]. Nerve damage is, therefore, an 
initiating event, but it is not the sole orchestrating factor. Neuronal plastic changes include the alteration of ion channel 
properties, affecting spinal and brain sensory signaling, shifting pain perception so that normal innocuous stimuli can 
result in pain by facilitating neuronal depolarization upon thermal and mechanical stimulation as a result of nociceptor 
neuron sensitization owing to increased membrane excitability. Spontaneous neuronal firing can also be observed[119,
125,126].

The regeneration process can be divided into five steps: (1) Fluid phase; (2) Matrix phase; (3) Cellular migration phase; 
(4) Axonal phase; and (5) Myelination phase[127]. After injury, neuronal genetic expression is altered to induce the 
release of neurotrophic and angiogenic factors like NGF, brain-derived neurotrophic factor, glial cell-derived neuro-
trophic factor (GDNF), vascular endothelial growth factor-A and angiopoietin-1[128], and to upregulate the expression of 
their corresponding receptors. These growth factors support the axonal lengthening of the injured nerve from its 
proximal fragment, as the damaged axons in the distal nerve fragments undergo degeneration, a process known as 
Wallerian degeneration[127]. Infiltrating macrophages and Schwann cells also take part by clearing myelin debris and 
retro feeding the secretion of neurotrophic and pro-angiogenic factors, enabling the formation of connective tissue 
bridging the nerve clefts, as Schwann cells create an endoneurial tube that guides the axonal regeneration process starting 
from a growth cone located at the Ranvier’s node[129].

The accurate balance between compensatory and decompensatory reactions of the nervous system when facing neural 
damage is of the utmost importance, because many of the changes that occur in response to neural injury are potentially 
adaptive, such as the removal of cell and myelin debris, regulation of receptors that counterbalance the loss of input, and 
appropriate signaling in order to dampen ion fluxes and metabolic stress after the acute injury[130]. Among the adaptive 
modifications, we can also cite anti-apoptotic signaling to prevent neuronal cell death, induction of axonal growth and 
sprouting, synaptic remodeling, and remyelination[131].

A defining characteristic that is often present in NP is the absence of an identifiable stimulus upon spontaneous pain. 
Such abnormal sensitization can be generated at any anatomical level related to the nociceptive sensory experience: (1) 
The site of the injury that induced the NP in the first place and underwent maladaptive healing - or neuroma - where the 
regenerated axon can get misdirected and become unable to reach the desired target[132]; (2) Cell death of the corres-
ponding DRG neurons; (3) Alterations in gene regulation and expression of the surrounding intact afferent fibers; (4) 
Central sensitization and altered connectivity in the spinal cord of low-threshold large myelinated afferents via synaptic 
facilitation and loss of inhibition at multiple levels of the neuraxis; and (5) Voltage-gated channel-related generation of 
spontaneous ectopic activity in nociceptors, a mechanism whose importance is supported by the effectiveness of 
nonselective sodium channel blockers as local anesthetics[133]. Increased synaptic strength enables previously sub-
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threshold inputs to activate nociceptive neurons, reducing their threshold and enhancing their responsiveness, which 
results in the expansion of their receptive fields. In addition, phenomena like conduction slowing or blocking, reduced 
inhibition, inappropriate connectivity, altered processing of both nociceptive and innocuous afferent input, abortive 
growth, neuronal loss, and glial scarring can be decisive factors underlying the pathogenesis of NP and the onset of 
spontaneous pain[126,134].

It is important to note that once NP is generated, the sensory hypersensitivity tends to persist for prolonged periods, 
even though the original initiator factor may have long since disappeared[126]. The complexity and abundance of factors 
involved in the central and peripheral nervous system modifications, make the treatment of NP challenging and 
expensive[51].

The use of SC as a therapy for NP
Given the fact that current treatments for NP are not fully effective, there is a need for improving NP treatment. Among 
the characteristics that stand out in the use of SC for NP is the ability of these cells to migrate to the injured site and repair 
damaged cells, even when administered systemically[135]. Most literature reports address SC treatment in the context of 
NP models, in which strategies are based on replacing damaged nerve cells and induce the production of neurotrophic 
factors. In addition, SC inhibit apoptosis and degeneration processes, and increase the survival of both injured and 
uninjured nerves[136] (Table 3). Furthermore, the mechanisms of action of SC modulating NP vary according to the 
stimulus in question (disease model/condition), since each disorder presents its own alterations that can be classified as 
peripheral and/or central, we will follow this rationale in the next sections.

Peripheral nervous system-related analgesic mechanisms of SC
The peripheral actions of SC focus on their anti-neuro-inflammatory capacity and their neuroprotective potential and 
ability to promote growth. SC anti-neuro-inflammatory capacity (described in the previous topics) includes the ability to 
reduce the levels of pro-inflammatory cytokines IL-1β, IL-6[137] and TNF-α[87]. These cytokines are extremely important 
in peripheral sensitization, because they are capable of sensitizing nociceptors and increase the expression of TRP and Na 
channels, consequently leading to mechanical and thermal sensitization[9]. In addition to reducing the production of 
hyperalgesic cytokines, SC can increase IL-10 levels in NP models[137], which also explains the decrease in the pro-
inflammatory cytokine production[138] and induction of the class switch of macrophages from an M1 to an M2 profile. 
M1 macrophages are responsible for proinflammatory responses, overexpress CD80, CD86, and CD16/32 which are 
essential for activating lymphocytes and thus adaptive immunity. Moreover, M1 phenotype macrophages are capable of 
secreting pro-inflammatory cytokines[139]. In contrast, M2 macrophages express chemokines CCL17 and CCL22 that 
mediate the control of Treg cell biology[140], mannose receptor (CD206) that induces endocytosis[141], as well as anti-
inflammatory responses and contribute to the repair of damaged tissues by the phagocytosis of debris[138]. Moreover, 
M2 macrophages can be manipulated in vitro to produce an opioid-mediated analgesic effect, demonstrated by its 
complete blockade by the opioid receptor antagonist naloxone methiodide in an in vivo model of chronic constriction 
injury (CCI) of the sciatic nerve induced NP[142]. Although there is no data on SC and microglia polarization, considering 
the activity of SC to polarize macrophages towards a M2 profile, if this activity is also true for microglia polarization to an 
M2 profile, this would be an important analgesic mechanism in NP. M1 microglia are actively involved in NP by 
producing mediators that sensitize nociceptors[143].

SC are also able to directly interact with the DRG neurons through GDNF production[144]. GDNF is of great 
importance for studies where there is neuronal damage, such as in sciatic nerve injury[136]. Since the administration of 
GDNF is capable of decreasing pain-related behaviors, due to its inhibitory action on the molecules such as activating 
transcription factor 3 - marker of neuronal injury and IB4 (a noceptive neuron marker of a neuronal population that do 
not express CGRP, and that downregulate NGF and receptor tyrosine kinase)[145,146].

The actions of SC on DRG neurons also affect the production of neuropeptides related to pain signaling. In models of 
CCI-induced NP, SC treatment was able to decrease nociceptive behavior by releasing TGF-β1, which activates neuronal 
TGF-β1R[147], as well as reducing the production of hyperalgesic cytokines IL-1β and TNF-α[148].

CNS-RELATED ANALGESIC MECHANISMS OF SC
The actions of SC treatment targeting mechanisms in the CNS environment are based on three hypotheses: (1) Desensit-
ization of the CNS; (2) Inhibition of glial cells; and (3) Reduction in apoptosis and autophagy[149].

The SC mechanisms that are dependent on: (1) Desensitizing the CNS in NP mainly involve the downregulation of 
glutamate neurotransmission. After the damage of peripheral neurons, glutamate is released in the spinal cord as well as 
N-methyl-d-aspartate (NMDA) and an increase of its receptor (NMDAR) expression is seen. This mechanism aims to 
maintain the transmission of the captured noxious signal to the cerebral cortex, where it will be interpreted as pain[150]. 
Treatment with SC decreases the CNS expression of NMDAR, interrupting the maintenance of nociceptive signaling
[150]. In addition, SC can secrete TGF-β1, which inhibits the signaling carried out by glutamate that would otherwise 
stimulate nociceptive signaling by the activation and proliferation of microglia and astrocytes in NP. TGF-β1 also reduces 
the expression of proinflammatory cytokines in the CNS in NP, thus, reducing neuroinflammation and nociceptor neuron 
sensitization[147].

Second, glial cells play a key role in central sensitization. As previously explained, after the detection of noxious stimuli 
by nociceptors, primary sensory afferent neurons secrete neuropeptides in the spinal cord dorsal horn, where central 
signaling takes place. If the noxious stimulus persists, glial cells can be activated by these neuropeptides (CGRP and 
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Table 3 Articles that used stem cells for neuropathic pain treatment (stem cell-based treatment of neuropathic pain)

Ref. Stem cell therapy 
design Key findings Pain-related highlights Delivery route

Number of 
cells or 
amount of 
extracellular 
vesicles and 
exosomes

Gao et al
[189], 2023

Huc-MSCs-derived 
exosomes attenuate 
neuropathic pain by 
inhibiting activation of 
the 
TLR2/MyD88/NF-κB 
signaling pathway in 
the spinal microglia 
by targeting radical S-
adenosyl methionine 
domain containing 2

Huc-MSCs-derived decreased 
protein levels of TLR2, MyD88, 
and p-p65 that were significantly 
upregulated in the CCI group in 
model rats

The protein levels of TLR2, MyD88, p65, 
and p-p65 were examined by western 
blotting

i.t. 5 μg

Miyano et al
[190], 2022

I.v. administration of 
human MSCs derived 
from adipose tissue 
and umbilical cord 
improves neuropathic 
pain via suppression 
of neuronal damage 
and anti-inflammatory 
actions in rats

Both the mechanical threshold 
and the differences in weight 
bearing of the right and left hind 
paws improved significantly. In 
addition, the authors also 
reported a decrease in the ATF-3 
and IBA-1 in DRG. The authors 
also reported that the treatment 
significantly improved the partial 
sciatic nerve ligation-induced 
decrease in the level of myelin 
basic protein in the sciatic nerve

Was performed by von Frey and dynamic 
weight bearing. Also, the authors did 
I against ATF-3, IBA-1, myelin basic 
protein, NeuN, neurofilament (NF) 200

i.v. 5 × 106

González-
Cubero et al
[191], 2022

Application of 
adipose-derived MSCs 
in an in vivo model of 
peripheral nerve 
damage

Rat sciatic nerve damage models 
both ex vivo, on TNF-induced 
Schwann cells, and in vivo using 
biomaterial implants containing 
TNF. Upregulation of c-Jun and 
downregulation of early growth 
response protein 2 myelin-
associated transcription factors 
were induced by TNF-related 
damage, but the addition of ASCs 
or ASC-conditioned medium 
(secretome) were able to revert 
the profile

qPCR, western blot, and confocal 
microscopy were chosen to quantify nerve 
healing-related protein expression and 
production in vivo and ex vivo. The sciatic 
functional index was calculated to assess 
nerve regeneration, but no pain-specific 
mechanisms were investigated

Sciatic nerve ex vivo 0.5 × 106 
cells; in vivo 4 × 
106 ASCs

An et al
[192], 2022

Immortalized bone 
MSCs with inducible 
galanin expression 
produce controllable 
pain relief in 
neuropathic rats

hTERT-BMSCs/Tet-on/GAL 
cells were able to induce 
controllable pain relief by spared 
nerve injury of sciatic nerve 
under the transcriptional control 
of doxycycline

To determine the analgesic efficacy acted 
through GalR1, GalR2, and phospho-
protein kinase Mζ expression levels in 
spinal dorsal horn were analyzed by 
western blot assay

Subarachnoid 
space

106

Lee et al
[193], 2022

MSCs spheroids 
alleviate neuropathic 
pain by modulating 
chronic inflammatory 
response genes

The authors report a decrease in 
mechanical allodynia, related to a 
decrease in TNF-α and IFN-γ 
levels. In addition to a smaller 
number of cells marked with 
cluster of differentiation (CD) 68 
in the region

The von Frey test was performed to assess 
mechanical allodynia, while immunofluor-
escence was used to observe changes in 
CD68 and IBA-1 levels. TNF-α and IFN-γ 
levels were assessed by the ELISA assay

Intramuscular 106

The authors demonstrate that 
treatment with stem cells alone 
can reduce thermal hyperalgesia 
and mechanical allodynia, with 
the potentiated effects after 
combined treatment with 
probiotics. Interestingly, they 
found a reverse correlation 
between protein expressions of 
inflammatory (phospho-NF-κB, 
IL-1β, TNF-α and MMP-9), 
apoptotic (cleaved-caspase-3, 
cleaved-PARP), oxidative-stress 
(NOX-1, NOX-2), deoxyribo-
nucleic acid (DNA)-damaged (γ-
H2AX) and MAPK-family (p-P38, 
p-JNK, p-ERK 1/2) biomarkers as 

Chen et al
[194], 2022

Synergic Effect of 
early administration 
of probiotics and 
adipose-derived MSCs 
on alleviating inflam-
mation-induced 
chronic neuropathic 
pain in rodents

To observe pain-related behavior 
alterations, Hargreaves and von Frey tests 
were applied. Immunofluorescence was 
performed for p-p38; NF200; peripherin, 
53BP1, β3 Tubulin analysis. Western blot 
was chosen to identify alteration of p-NF-
kB, IL-1ß, TNF-α, MMP-9, NOX-1, NOX-2, 
caspase 3, cleaved-PARP, γ-H2AX, p-
ERK1/2, p-JNK, p-p38, Nav.1.3, Nav.1.8, 
Nav.1.9 and immunoglobulin G

i.v. 3.0 × 105



Silva MDVD et al. SCs and pain

WJSC https://www.wjgnet.com 1049 December 26, 2023 Volume 15 Issue 12

well as the protein levels of 
voltage-gated sodium channels 
(Nav.) 1.3, Nav.1.8, and Nav.1.9 
in L4-L5 in DRG to the pain-
behavior results obtained by 
thermal hyperalgesia and 
mechanical allodynia testing, 
characterizing a set of “pain-
connived cells” presenting the 
following profiles: 
Nav1.8+/peripherin+, p-
ERK+/peripherin+, p-
p38+/peripherin+ and p-
p38+/NF200+. Mainly by 
suppressing inflammation and 
oxidative stress, the combination 
of probiotic and ASCs therapy 
was found superior for 
alleviating CCI-induced 
neuropathic pain

Zhang et al
[195], 2021

Lncenc1 is identified 
as a novel regulator in 
neuropathic pain by 
interacting with EZH2 
and downregulating 
the expression of Bai1 
in mouse microglia

Virgin embryonic stem cells 
express Lncenc1, which can 
activate microglia in DRG and 
induce the production of TNF-α, 
IL-1β, and MCP-1. Lncenc1 
silencing reduced mechanical and 
thermal hyperalgesia, as well as 
lower levels of pro-inflammatory 
cytokines

The mechanical withdrawal threshold was 
measured by von Frey filaments and 
thermal hyperalgesia via hot plate assay. 
Immunofluorescence was performed to 
analyze OX-42, western blot to assess 
EZH2, suppressor of zeste 12, embryonic 
ectoderm development, BAI1, tri-
methylation of histone 3 lysine 27 
(H3K27me3), H3K27ac, total histone H3, 
glyceraldehyde-3-phosphate dehydro-
genase and OX-42. RT-qPCR was 
performed to identify expression 
alterations on Lncenc1, EZH2, BAI1, OX-
42, inflammatory factors TNF-α, IL-1β and 
chemokine MCP-1. TNF-α, IL-1β and 
MCP-1 protein changes were assessed by 
ELISA

Not informed Not informed

Masoodifar 
et al[161], 
2021

Effect of the 
conditioned medium 
of MSCs on the 
expression levels of 
P2X4 and P2X7 
purinergic receptors in 
the spinal cord of rats 
with neuropathic pain

Animals treated with the 
conditioned medium (stem cells 
secretome) showed a reduction in 
mechanical and thermal 
hyperalgesia. A decrease in the 
expression of P2X4 and P2X7 
receptors was related to the 
interaction of neurons and glial 
cells in neuropathic pain

The von Frey and hot plate tests were 
applied to measure mechanical and 
thermal hyperalgesia, respectively. In 
addition, qPCR was performed to measure 
the expression of P2X4 and P2X7 receptors

i.p. 1 × 105

Kotb et al
[196], 2021

Preemptive stem cells 
ameliorate 
neuropathic pain in 
rats: A central 
component of 
preemptive analgesia

MSCs-treatment increased 
allodynia, mechanical 
hyperalgesia, and thermal 
hyperalgesia thresholds. Stem 
cells were able to reach the 
cerebral cortex, as the CCI group 
had few stem cells expressing 
PCNA, CD117 and nestin in the 
cerebral cortex. The treated group 
had numerous CD117-, nestin-, 
PCNA-positive stem cells 
recently proliferated in the 
cerebral cortex. Together, the 
results indicate a potential central 
analgesic effect of i.v. MSC-
treatment

To evaluate pain behavior, von Frey, 
Randall and Selitto, and hot plate tests 
were performed. Immunohistochemical 
analyses of GFAP, PCNA and nestin were 
also performed

i.v. 1 × 106

Zhang et al
[197], 2021

Therapeutic effects of 
peripherally 
administered neural 
crest stem cells on 
pain and spinal cord 
changes after sciatic 
nerve transection

The treatment was able to induce 
thermal and mechanical 
analgesia, possibly by decreasing 
the expression of TRPV1, cFOS, 
p-ERK, ERK, iNOS and NF-κB, 
p65 and increasing BDNF and 
GAP-43 in the spinal cord

To assess mechanical allodynia, the 
authors used the BEM-404 device (similar 
to the von Frey). For thermal withdrawal 
latency, they use Hargreaves. In the 
western blot, they had the following 
targets: BDNF, cFOS, GAP-43, p-ERK, ERK 
1/2, TRPV1 and iNOS. Immunofluor-
escence: IBA-1, GFAP and CGRP were 
assessed

Local injection 2 × 106

Anti-inflammatory 
protein TSG-6 secreted 
by BMSCs attenuates 
neuropathic pain by 
inhibiting the 
TLR2/MyD88/NF-κB 

I.t. administration of TSG-6 
secreted from stem cells 
decreases mechanical allodynia 
and thermal hyperalgesia, 
inhibiting IBA-1 and the 
activation of the 

The activation of the TLR2/MyD88/NF-κB 
signaling pathway was evaluated by 
western blot and immunofluorescence, 
while allodynia and hyperalgesia were 
assessed by the behavioral tests Dynamic 
Plantar Aesthesiometer, Hargreaves and 

Yang et al
[91], 2020

i.t. 5 × 106
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signaling pathway in 
spinal microglia

TLR2/MyD88/NF-κB pathway 
in the dorsal horn of the 
ipsilateral spinal cord. Levels of 
pro-inflammatory cytokines, such 
as IL-1β, IL-6 and TNF-α, were 
also reduced

rotarod system

Jwa et al
[198], 2020

ASCs alleviate cold 
allodynia in a rat 
spinal nerve ligation 
model of neuropathic 
pain

ASCs or ASC-derived culture 
medium decreased neuropathic 
pain behaviors in a rat model 
with L5 spinal nerve ligation

Mechanical and cold allodynia were 
assessed by von Frey filaments and 
acetone assay, respectively. Mechanisms 
were not assessed

Intrathecal or 
injection into 
the right retro-
orbital sinus

106

Gama et al
[164], 2018

Conditioned medium 
of BMSCs as a 
therapeutic approach 
to neuropathic pain: A 
preclinical evaluation

The animals showed 
improvement in thermal 
hyperalgesia and mechanical 
allodynia. They also showed 
reduced levels of IL-1β, TNF-α 
and IL-6 and increased IL-10 in 
the spinal cord and sciatic nerve

To evaluate thermal hyperalgesia, the 
Hargreaves test was performed, and von 
Frey mechanical allodynia. To evaluate the 
motor function test, the rotarod test was 
performed. Using the ELISA method, 
TNF-α, IL-1β, IL-6 and IL-10 were 
quantified

i.v. 106

Lin et al
[165], 2017

Autologous ASCs 
reduce burn-induced 
neuropathic pain in a 
rat model

There was no difference between 
the groups regarding thermal 
hyperalgesia, whereas in 
mechanical allodynia, the treated 
group presented analgesia from 
the 3rd wk of the first treatment. 
Western blot analyses revealed a 
decrease in p-Akt/Akt and 
Bax/Bcl-2 and levels of LC3B-II 
and Beclin 1 in the spinal cord, 
suggesting that the treatment also 
decreased apoptosis and 
autophagy. This effect was 
accompanied by a reduction in 
COX-2, iNOS and nNOS. The 
treated group also showed lower 
expression of p-JNK (an inflam-
matory marker), TUNEL 
(apoptosis marker), phospho-
NFκB (inflammatory marker) and 
increased p-IκB (an inhibitor of 
NFκB activation)

Immunofluorescence were performed to 
analyze p-IκB; NeuN, GFAP, phospho-
NFκB and p-JNK; and western blot for 
COX-2, iNOS, nNOS, Akt/protein kinase 
B, p-Akt, B-cell lymphoma 2, Bcl-2-
associated X protein, β-actin, LC3B and 
Beclin 1

Subcutaneous 
into the scar 
tissue of the 
right hind paw

106

Vaquero et 
al[199], 2018

I.t. administration of 
autologous bone 
marrow stromal cells 
improves neuropathic 
pain in patients with 
SCI

Treatment with mesenchymal 
stromal cells for human chronic 
SCI: Pain scores demonstrated a 
continuous decrease in 
neuropathic pain from the first 
month until the 10th

Intensity of neuropathic pain was 
evaluated by standard numerical rating 
scale (visual analogue scale) from 0 to 10. 
Mechanisms were not assessed

i.t. 106

Sun et al
[200], 2017

I.t. administration of 
hBMSCs genetically 
modified with human 
proenkephalin gene 
decrease nociceptive 
pain in neuropathic 
rats

hBMSCs engineered with human 
proenkephalin gene were used 
on sciatic nerve (CCI)-induced 
model to reduce neuropathic 
pain in rats

Mechanical withdrawal threshold (von 
Frey filaments) and paw thermal 
withdrawal assays were used to assess the 
changes in pain-related behavior. Levels of 
Leu-enkephalin, a neurotransmitter that 
activates opioid receptors and is released 
by hBMSCs were found augmented via 
ELISA assay in genetically modified 
BMSCs compared to secretions released by 
naıve BMSCs

i.t. 6 × 106

Fischer et al
[201], 2017

Inhibition of 
neuropathic 
hyperalgesia by i.t. 
BMSCs is associated 
with alteration of 
multiple soluble 
factors in 
cerebrospinal fluid

BMSCs decrease the levels of 
intracellular adhesion molecule 1, 
IL-1β, hepatocyte growth factor), 
IL-10, and Nope protein 
relacionated by Tibial nerve 
injury

Antibody array analysis was performed 
and the levels of cytokines and other 
soluble factors in cerebrospinal fluid 
samples was measured

i.t. 2.5 × 105

Xie et al
[202], 2017

Active nerve 
regeneration with 
failed target 
reinnervation drives 
persistent neuropathic 
pain

Semaphorin 3A, an inhibitory 
axonal guidance molecule, 
reduces functional regeneration, 
spontaneous activity, and pain 
behaviors when applied to the 
injury site in vivo. Silencing of 
the upregulated GAP43 with 
interfering RNA injected into the 
axotomized sensory ganglion 
reduced pain behaviors

Behavior assays: von Frey filaments 
acetone cold sensitivity, dynamic tactile 
allodynia with a wisp of cotton across the 
plantar surface of the hindpaws, and 
spontaneous guarding behavior score. 
Immunohistochemistry for GAP43 tracer 
methods to assess anatomical nerve 
regeneration

Injury site
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Brini et al
[203], 2017

Therapeutic effect of 
human ASCs and their 
secretome in experi-
mental diabetic pain

Treatments with both human 
ASC and their secretome were 
able to reverse mechanical, 
thermal allodynia and thermal 
hyperalgesia inducing high IL-1β, 
IL-6 and TNF-α and low IL-10 
levels, restoring cytokine balance, 
Th1/Th2 balance and preventing 
skin innervation loss in 
neuropathic STZ-diabetic mice 
model

Mechanical allodynia was tested using the 
Dynamic Plantar aesthesiometer, a drop 
(50 μL) of acetone was placed in the 
middle of the plantar surface of the hind 
paw to evaluate cold allodynia and the 
hot-plate test was used to assess thermal 
hyperalgesia. Immunohistochemistry and 
ELISA were performed for cytokines 
assessment

i.v. 1 × 106

Watanabe et 
al[87], 2015

Early transplantation 
of MSCs after SCI 
relieves pain 
hypersensitivity 
through suppression 
of pain-related 
signaling cascades and 
reduced inflammatory 
cell recruitment

BMSC improved SCI model via: 
Down of protein kinase C-γ and 
phosphocyclic AMP response 
element binding protein on DRG 
neurons, both of which are 
upregulated in association with 
at-level allodynia after contusion 
spinal cord. Decreased activation 
of MAPK signaling in injured 
spinal cord by p-p38 and p-
ERK1/2 decrease. Decreasing 
macrophage recruitment 
through. Down TNF-α, IL-6, 
MMP-9, CCL2, CCL5, and C-X-C 
motif chemokine ligand 10. 
Decreased microglia stimulation 
factor, granulocyte-macrophage 
colony stimulating factor, 
platelet-derived growth factor 
receptor α

For behavioral and sensory testing, the 
Basso Mouse Locomotor Scale, the 
Dynamic Plantar Aesthesiometer 
(allodynia), and the Plantar Test 
Apparatus (thermal sensitivity) were 
assessed. immunohistochemistry, flow 
cytometry and immunoblot assays were 
performed to determine protein levels

BMSCs were 
injected into the 
middle of the 
contusion site, 
identified as the 
middle point of 
the 
laminectomy 
area

2 × 105

Zhang et al
[204], 2014

I.t. administration of 
MSCs reduces the 
ROS and pain 
behavior in 
neuropathic rats

I.t. rat MSCs injection reduced 
pain response and ROS 
production in the dorsal horn of 
neuropathic rats induced by 
spinal nerve L5 ligation model

Mechanical sensitivity was assessed using 
von Frey filaments and production of ROS 
via dihydroethidium fluorescent staining

i.t. 105 

Liu et al
[205], 2014

MSCs inhibit lipopoly-
saccharide-induced 
inflammatory 
responses of BV2 
microglial cells 
through TSG-6

Anti-inflammatory effects of 
MSCs and TSG-6 in an in vitro 
LPS-induced BV2 microglial 
activation model inhibiting NF-
κB and MAPK pathways. MSCs 
can modulate microglia 
activation through TSG-6 and 
TSG-6 attenuates the inflam-
matory cascade in activated 
microglia

RT-qPCR, western blot, electrophoretic 
mobility shift assay, immunofluorescence 
and laser-scanning confocal microscopy 
techniques were used

In vitro 1.0 × 105 LPS-
activated MSCs

Vicker et al
[206], 2014

A preliminary report 
on stem cell therapy 
for neuropathic pain 
in humans

Treatment led to a reduction in 
stem cell treatment pain intensity 
scores in 7/9 patients (two with 
marginal improvement and five 
subjects with good to excellent 
pain reduction). Five of these 
positive responders also reduced 
their need for gabapentin 
medication

Patients were assessed for: Change in pain 
intensity and the secondary outcome was 
any reduction in daily consumption of 
anti-neuropathic medication

Perineural, 
directly in the 
center or source 
of pain, and in 
the adjacent 
pain field of the 
affected 
branches of the 
trigeminal 
nerve

Number of 
cells not 
reported, but 
extracted from 
100-200 g of 
patient tissue

Tao et al
[154], 2013

Role of NRG1/ErbB 
signaling in stem cell 
therapy for SCI-
induced chronic 
neuropathic pain

The treatment induces 
remyelination in the injured 
spinal cord and reduces SCI-
injury-induced chronic 
neuropathic pain. In addition to 
increasing levels of NRG1 and 
ErbB4 slightly reduced by SCI. 
Also, the author related that Stem 
cells differentiated into 
oligodendrocytes

To evaluate mechanical allodynia, the von 
Frey filament test was applied. Immuno-
fluorescence for NG2, APC-CC1, GFAP, 
NeuN, and western blot for NRG1 and 
ErbB4 levels assessment

i.t. 106

Xu et al
[207], 2013

I.t. transplantation of 
NSCs appears to 
alleviate neuropathic 
pain in rats through 
release of GDNF

The treatment was able to cause 
thermal and mechanical 
analgesia. Accompanied by an 
increase in GDNF in the DRG 
and spinal cord. The authors also 
suspected that these changes 
occurred due to the 
transformation of stem cells into 
astrocytes in the spinal cord

To evaluate the mechanical withdrawal 
threshold, the Electric von Frey test was 
used. For thermal withdrawal latency, a 
method with a high-intensity projection 
lamp bulb was used. For immunofluor-
escence: Nestin; βIII-tubulin; GFAP. For 
ELISA: BDNF and GDNF

i.t. 106
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Choi et al
[208], 2013

Core-shell 
nanoparticle 
controlled human 
adipose tissue-derived 
stem cells 
neurogenesis for 
neuropathic pain 
therapy

Treatment activated biochemical 
functions of Dicer, Oct4, Sox2, 
Nanog, and glutathione 
peroxidase 3 improving stem 
cells self-renewal and differen-
tiation abilities

von Frey and Hargreaves behavior tests 
were performed to assess mechanical and 
thermal hyperalgesia changes, 
respectively. Immunofluorescence, 
western blot and RT-qPCR techniques 
were used to study alterations in protein 
production/expression/localization

i.t. Unspecified

Franchi et al
[137], 2012

I.v. NSCs abolish 
nociceptive 
hypersensitivity and 
trigger nerve 
regeneration in experi-
mental neuropathy

NSCs administration in CCI 
mouse model significantly 
decreased proinflammatory (IL-1
β, IL-6), activated anti inflam-
matory (IL-10) cytokines in the 
sciatic nerve, and reduced spinal 
cord Fos expression in laminae I-
VI

Thermal hyperalgesia was tested 
according to the Hargreaves using a 
Plantar Test Apparatus, while mechanical 
allodynia was assessed using the Dynamic 
Plantar Aesthesiometer. Immunohisto-
chemistry, immunofluorescence, and 
qPCR plus ELISA assays were performed 
for Fos and GFPI; substance P and CGRP; 
and IL-1β, IL-6 and IL-10, respectively

i.v. 106

Sacerdote et 
al[209], 2013

Systemic aAdminis-
tration of human 
ASCs reverts 
nociceptive 
hypersensitivity in an 
experimental model of 
neuropathy 

Human ASCs were able to 
completely revert neuropathic 
pain symptoms in a murine CCI 
model by: IL-1β decreased and 
IL-10 increased in the lesioned 
nerve. Restored normal iNOS 
expression

Thermal hyperalgesia was tested 
according to the Hargreaves, while 
mechanical allodynia was assessed using 
the Dynamic Plantar Aesthesiometer (von 
Frey filament)

i.v. 1 × 106, 3 × 106 
and 6 × 106

Choi et al
[73], 2011

Anti-inflammatory 
protein TSG-6 secreted 
by activated MSCs 
attenuates zymosan-
induced mouse 
peritonitis by 
decreasing TLR2/NF-
κB signaling in 
resident macrophages

TSG-6 interacts through the CD44 
receptor on resident 
macrophages to decrease 
zymosan/TLR2-mediated 
nuclear translocation of the NF-
κB

RT-qPCR, ELISA, NF-κB translocation 
assays and isolation of resident 
macrophage RNA was performed

i.p. 1.6 × 106

Siniscalco et 
al[210], 2011

Long-lasting effects of 
human MSCs systemic 
administration on 
pain-like behaviors, 
cellular, and 
biomolecular modific-
ations in neuropathic 
mice

The treatment was able to reduce 
pain-like behaviors such as 
mechanical allodynia and 
thermal hyperalgesia. In addition 
to reducing IL-1β and IL-17 levels 
and increasing IL-10 in the spinal 
cord and reducing labeling for 
alternatively activated 
macrophages (CD106)

For behavior analysis, the following tests 
were applied: von Frey filaments, Rotarod 
and Hargreaves. Immunofluorescence: 
CD73; IL-1β; IL-17; CD4; GFAP; IBA-1; 
western blot: IL-1β, IL-17, IL-10 e CD106

i.v. 2 × 106

Huc-MSCs: Human umbilical cord mesenchymal stem cells; TLR2: Toll-like receptor 2; MyD88: Myeloid differentiation primary response 88; NF-κB: 
Nuclear factor kappa B; Rsad2: Radical S-adenosyl methionine domain containing 2; p-p65: Phospho-protein 65; CCI: Chronic constriction injury; i.t.: 
Intrathecal; i.v.: Intravenous; MSCs: Mesenchymal stem cells; ATF-3: Activating transcription factor 3; IBA-1: Ionized calcium-binding adapter molecule 1; 
DRG: Dorsal root ganglion; MBP: Myelin basic protein; NeuN: Neuron-specific nuclear protein; NF: Neurofilament; TNF: Tumor necrosis factor; ASCs: 
Adipose tissue derived-mesenchymal stem cells; RT-qPCR: Real time quantitative polymerase chain reaction; hTERT-BMSCs/Tet-on/GAL: Rafted human 
telomerase reverse transcriptase-immortalized bone marrow mesenchymal stromal cells with inducible galanin expression; GalR: Galanin receptor; SDH: 
Spinal dorsal horn; IFN-γ: Interferon gamma; CD: Cluster of differentiation; ELISA: Enzyme-linked immunosorbent assay; i.m.: Intramuscular; IL: 
Interleukin; MMP: Matrix metalloproteinase; PARP: Poly ADP-ribose polymerase; NOX: NADPH oxidase; MAPK: Mitogen-activated protein kinase; p-
JNK: Phosphorylated Jun N-terminal kinase, p-ERK: Phospho-extracellular signal-regulated kinase; Nav: Voltage-gated sodium channels; LncRNA: Long-
chain noncoding ribonucleic acid; Lncenc1: Long-chain noncoding RNA embryonic stem cells expressed 1; EZH2: Enhancer of zeste homologue 2; MCP-1: 
Monocyte chemoattractant protein-1; SUZ12: Suppressor of zeste 12; EED: Embryonic ectoderm development; BAI1: Brain-specific angiogenesis inhibitor 1; 
H3K27me3: Tri-methylation of histone 3 lysine 27; P2X4: P2X purinoceptor 4; i.p.: Intraperitoneal; PCNA: Proliferating cell nuclear antigen; GFAP: Glial 
fibrillary acidic protein; TRPV1: Transient receptor potential cation channel subfamily vanilloid 1; iNOS: Inducible nitric oxide synthase; p65: Protein 65; 
BDNF: Brain-derived neurotrophic factor; GAP-43: Growth-associated protein 43; CGRP: Calcitonin gene-related peptide; TSG-6: Tumor necrosis factor-α-
stimulated gene 6 protein; BMSC: Bone marrow mesenchymal stem cells; p-Akt: Phospho protein kinase B; LC3B: Light chain-3B; COX-2: Cyclooxygenase 
2; nNOS: Neural nitric oxide synthase; hBMSCs: Human bone marrow stem cells; CSF: Cerebrospinal fluid; Th1: Type 1 helper; SCI: Spinal cord injury; p-
CREB: Phosphocyclic AMP response element binding protein; CCL: C-C motif chemokine ligand; CXCL: C-X-C motif chemokine ligand; GM-CSF: 
Granulocyte-macropgahe colony stimulating factor; PDGFR-α: Platelet-derived growth factor receptor α; ROS: Reactive oxygen species; LPS: 
Lipopolysaccharides; NRG1: Neuregulin-1; GDNF: Glial cell derived neurotrophic factor; NSC: Neural stem cells.

substance P)[151]. When activated, glial cells’ function will be related to the maintenance and enhancement of the 
interaction between the peripheral and CNSs, secreting, for instance, cytokines that will activate spinal cord neurons
[152]. Interestingly, this glial activation can be detected by the expression of some targets, such as IBA-1 for microglia and 
glial fibrillary acidic protein (GFAP) for astrocytes[61]. These glial cells are responsible for the subsequent release of 
cytokines inducing a series of cellular responses, such as upregulation of glucocorticoids and glutamate receptors, leading 
to spinal cord excitation and neuroplasticity[136].

It has been reported that in experimental conditions involving spinal cord injury and spinal cord treatment with SC, 
embryonic stem (ES) cells differentiate into oligodendrocytes using positive selection and mechanical enrichment[153], 
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promoting functional recovery after a spinal cord injury producing myelination[154]. Spinal cord SC treatment also 
decreases GFAP[155] and IBA1[156] indicating the down-regulation of astrocyte and microglia activation, respectively. 
SC express high levels of CXCL12[157]. CXCL12 can reduce the activation of astrocytes and microglia in spinal nerve 
ligation models, thus, potentially contributing to the activity of SC in NP[158]. There are other potential repercussions of 
glial inhibition. For instance, the decrease of IBA1 also occurs by inhibiting gasdermin D-induced microglia pyroptosis, 
thus, promoting autophagy[159]. In fact, impaired autophagic flux aggravates NP by increasing neuroinflammation[160]. 
Moreover, the mitogen-activated protein kinase signal pathway is activated after microglial activation, which promotes 
long-term potentiation and central sensitization in pain[136].

Another mechanism of action of SC that explains their analgesic activity by down-modulating glial cell activation is the 
capability they have at reducing the expression of purinergic P2X purinoceptor 4 (P2X4) and P2X7 receptors in a rat 
model of NP induced by CCI of the sciatic nerve[161]. P2X4 and P2X7 receptor activation mainly by ATP (coming from 
nerve damage) leads to the activation of glial cells and the release of IL-1β, TNF-α and IL-6, capable of sensitizing 
nociceptors and perpetuating NP[162,163].

In a different perspective, it has also been shown that SC are capable of increasing IL-10 levels in the spinal cord[164], 
in addition to secreting TSG-6 in the spinal cord[91], and decreasing IBA-1 activity by inhibiting the TLR2/MyD88/NF-
κB signaling pathway in spinal microglia. These activities reduce nociceptor neuron activation and neuronal plasticity.

The third analgesic mechanism of SC in the CNS involves the inhibition of neuronal death in the CNS. SC treatment 
can reduce the levels of p-Akt/Akt and Bax/Bcl-2, LC3B-II, Beclin 1 and TUNEL (markers of cellular death) in the dorsal 
horn of lumbar spinal cords in burn-induced NP. Thus, suggesting that SC can reduce the levels of apoptosis, necrosis 
and autophagy related to inflammation in spinal cord neurons of dorsal horn cells[165].

SC TECHNOLOGY AS A TOOL FOR INVESTIGATING PAIN-RELATED MECHANISMS
Although most of the efforts in scientific research regarding SC and pain are guided towards finding suitable painkillers, 
it is worth mentioning that SC technology can also be proven valuable to create different experimental models, which can 
contribute to understanding pathophysiological mechanism of pain and thus, evolving towards therapy. As an example, 
Kaneski et al[166] developed a human ESC (hESC)-based model to study the poorly understood pathophysiology of pain 
in Fabry disease. This X-linked glycolipid storage disorder that results in a deficiency in the lysosomal enzyme alpha 
galactosidase A (AGA) can cause recurrent attacks of excruciating pain (“Fabry pain crisis”) that occur spontaneously or 
in response to extreme temperatures, fever, fatigue, stress, overheating, or exercise. The group generated two AGA-
deficient hESC clones using CRISPR-Cas9 gene editing techniques and demonstrated that AGA-deficient human SC could 
be differentiated into peripheral neurons with nociceptor properties, offering a tool for the investigation of cellular 
mechanisms for this and other peripheral neuropathies[166].

Some studies utilized dental pulp SC to investigate the possible effects of sirtuin 6 (SIRT6) - an NAD-dependent 
protein deacetylase known for its role as a differentiation regulator - as a modulation factor using a model of LPS-induced 
pulpitis (inflammation in the dental pulp). LPS is the major virulence component of gram-negative bacteria cell walls and 
is widely recognized as a potent activator of inflammation[167]. Their results demonstrated that injection of lentiviral 
vector-expression SIRT6 leads to SIRT6 overexpression in rats, reduced LPS-induced neutrophils infiltration, a marked 
decrease in proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and deactivation of the NF-κB pathway. LPS-induced 
pulpitis in turn, upregulated TRPV1 expression and activity, by downregulating SIRT6. Interestingly, CGRP release was 
induced by pulpitis while the overexpression of SIRT6 inhibited TRPV1 expression and CGRP release. The expression of 
inflammatory cytokines, dentin matrix acidic phosphoprotein 1, and NF-κB activation were upregulated after the 
addition of capsaicin, a TRPV1 channel agonist. Taken together, their results suggest that SIRT6 may be both a negative 
regulator of pulpitis and an inflammatory pain modulator[168].

DOWNSIDES AND POSSIBLE TREATMENT SIDE-EFFECTS
The biggest concern surrounding SC treatment is the onset of tumors as a result of the therapy, particularly via systemic 
administration routes. This concern is due to the proliferation potential that these cells have, thus, raising the possibility 
of tumor development if they continue to proliferate after transplantation[169]. The literature lacks in vivo studies 
evaluating the tumorigenic effect of SC treatment. However, it is currently acknowledged that tumorigenicity can 
develop through three different manners. Firstly, the presence of undifferentiated SC anchored in other already differen-
tiated lineages can lead to tumor formation, due to their high replication rate[169]. Second, reprogramming factors may 
remain active in transplanted SC, promoting the transformation of these cells and, consequently, tumorigenic 
transplantation[169]. Finally, tumorigenicity can also develop during in vitro culture through genetic mutations[169]. 
Studies demonstrate that a significant rate of SC derived from bone marrow undergo spontaneous transformations 
towards a malignant profile in long-term cultures (5 to 106 wk), showing an increase in the rate of proliferation and 
morphological and phenotypic changes[170].

Another disadvantage is the possible development of cellular rejections. This can occur when the individual’s immune 
system recognizes the SC as foreign antigens and develops an immune response against them[25,169]. Polymorphic 
molecules of the MHC are an example of immunologically recognized molecules that induce rejection[171]. In fact, 
studies have already demonstrated that the administration of ESC in the myocardium of allogeneic mice results in the 
development of an immune response with significant infiltration of T lymphocytes and dendritic cells[172]. Likewise, 
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abnormal gene expression in cells differentiated from iPSC can induce a T cell-dependent immune response[173]. Finally, 
even though there are studies that demonstrate the effects of systemic administration of SC, there is a lack of data in the 
literature that assess their distribution and actions in the body after treatment.

CONCLUSION
In this review, we provide evidence on the therapeutic potential of the use of SC in pain treatment. Analgesia was 
observed with SC administration as well as SC extracellular vesicle administration. This analgesic effect was found to be 
achieved with a variety of routes, such as intra-articular, intravenous, intrathecal, intramuscular, intraganglionar, 
perineural, subcutaneous, and local injection. Additionally, the SC load for these administrations varied between 1.0 × 105 
to 24 × 106 for SC, and 1 × 106 to 1 × 109 for SC extracellular vesicle. The specific conditions of each experiment can be 
appreciated in the Tables 2 and 3.

This review discussed that the analgesic mechanism of action of SC treatment can be indirect by acting on inflam-
mation, changing the pattern from pro-inflammatory to anti-inflammatory mediators. SC can decrease the levels of 
cytokines that have a role in mechanical and thermal hyperalgesia in addition to promoting the secretion of cytokines 
with analgesic roles. These anti-inflammatory analgesic mechanisms have been demonstrated in peripheral tissue. In the 
CNS, SC can cause analgesia by inhibiting the effects of glutamate on spinal cord neurons and by its ability to decrease 
glial activity and therefore central sensitization.

There are still gaps in the elucidation of the mechanism of action of SC, since most of the articles in the literature aim 
mainly at the treatment of NP. Among the literature hiatus we can cite the lack of studies on the analgesic mechanisms of 
SC in models using microorganisms as stimuli. Confirmatory studies on SC therapy long-term safety are also missing. SC 
rejection is also a potential drawback and there are no studies comparing the success of therapy using autologous cells to 
the patient, and cells of exogenous origin. On the other hand, much of the success of therapy using SC comes from the use 
of MSC, which have a lower possibility of rejection, as well as greater effectiveness in the treatment.

Even with all the limitations and shortcomings, there are already clinical studies using SC both in the treatment of 
inflammatory diseases and in NP. In all reports, treatments were able to decrease pain scores and restore mobility-related 
functions. Therefore, SC treatment is a potential approach for pain relief and to achieve such biotechnological 
advancements, there is a need to fill the current knowledge gaps in order to develop efficient and safe therapies based on 
SC.
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