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Abstract
Over the last few years, the importance of the resident 
intestinal microbiota in the pathogenesis of several gastro-
intestinal diseases has been largely investigated. Growing 
evidence suggest that microbiota can influence gastro-
intestinal motility. The current working hypothesis is that 
dysbiosis-driven mucosal alterations induce the production 
of several inflammatory/immune mediators which affect 
gut neuro-muscular functions. Besides these indirect 
mucosal-mediated effects, the present review highlights 
that recent evidence suggests that microbiota can directly 
affect enteric nerves and smooth muscle cells functions 
through its metabolic products or bacterial molecular 
components translocated from the intestinal lumen. Toll-
like receptors, the bacterial recognition receptors, are 
expressed both on enteric nerves and smooth muscle and 
are emerging as potential mediators between microbiota 
and the enteric neuromuscular apparatus. Furthermore, 
the ongoing studies on probiotics support the hypothesis 
that the neuromuscular apparatus may represent a target 
of intervention, thus opening new physiopathological and 
therapeutic scenarios.
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Core tip: This article reviews the current evidence of gut 
microbiota and neuromuscular apparatus connection 
that results to be both direct and indirect. Besides 
dysbiosis-driven mucosal inflammatory mediators, 
recent evidence suggests that gut neuromuscular 
apparatus can be modulated directly by microbiota 
metabolic products or circulating bacterial molecular 
components translocated from the intestinal lumen. 
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INTRODUCTION
Microbiota and gut motility are clearly associated, 
but it’s difficult to establish what plays the major role 
in influencing the other. According to the classical 
theory, gastrointestinal (GI) motility can affect the 
microbiota in terms of amount, location and diversity. 
This concept is mainly supported by the association 
between different GI motility disorders and small 
intestinal bacterial overgrowth (SIBO)[1,2]. GI motility 
disorders and alterations of migrating motor complex 
(MMC), that eliminates residual content through 
the GI tract during periods of fasting, predispose to 
SIBO because bacteria are not swept from the small 
bowel into the colon, as reported in experimental 
models and specific clinical conditions[3-5]. Neuropathic 
and myopathic diseases, such as scleroderma and 
polymyositis, seem to be associated with SIBO[1,6] as 
well as conditions associated to long-standing diabetes, 
such as gastroparesis[7].

On the other hand, both in vivo and in vitro evidence 
highlights that microbiota can affect GI motility[8,9]. In 
studies conducted on germ-free animals, impairment 
of neural and motor functions of the GI tract due to 
reduced expression of neurotransmitters and contractile 
proteins, were reversed by gut colonization[10]. Moreover, 
probiotics have been shown to affect GI motility in 
vivo and in vitro. Prebiotic or probiotic therapies are 
associated with a significant clinical improvement in 
irritable bowel syndrome (IBS)[11,12] and animal studies 
suggest that the neuromuscular apparatus could 
represent a target for probiotics[13-15]. Finally, dysbiosis 
is associated with significant alterations in intestinal 
transit time[16].

By interacting directly with mucosal environment, 
the microbiota impacts intestinal mucosal functions 
and permeability, and influences local and systemic 
inflammatory activity[12]. In normal conditions 
neuromuscular apparatus is not in contact with the 
luminal content and quite inaccessible by the luminal 
microbes. However, dysbiotic conditions cause an 
increase in mucosal inflammation and intestinal 
paracellular permeability[17,18] (Figure 1) with possible 
translocation of pathogens, toxins, antigens and 
bacteria in the circulatory system[16,19,20]. GI motility 
might then be affected by microbiota essentially by 
two mechanisms: an indirect mechanism driven by 
the inflammatory mediators released by the mucosal 
immune system and a direct mechanism driven 
both by the release of end products of bacterial 

fermentation and bacterial substances. 

INDIRECT EFFECTS
The potential for the microbiota to produce inflam
matory alterations in the gut microenvironment 
deranging gastrointestinal motor function prompts to 
a unifying hypothesis for the role of the microbiota 
in the pathogenesis of IBS. To support a role 
of the microbiota in IBD pathophysiology is the 
evidence that an acute episode of gastroenteritis 
precedes the onset of IBS, a specific condition 
called post-infectious IBS (PI-IBS)[11,21,22]. PI-IBS is 
characterized by persistent abdominal discomfort, 
bloating and diarrhea, despite the elimination of 
the causative pathogen. In this condition, the imba
lance in microbiota composition leads to low-grade 
inflammation followed by alteration of the sensory 
and motor bowel functions. An increased amount of 
immune cells in the colonic, ileal, and jejunal mucosa 
of IBS patients has been largely reported[23,24]. The 
persistent inflammatory state is also characterized by 
increased mucosal interleukin 1β levels and mast cells 
count, as well as activation of entero-endocrine cells 
(EC), mainly those producing serotonin (5-HT)[25-28]. 
The interesting data is that most of these mucosal 
alterations persist for over a year and thus could 
contribute to the persistence of a PI-IBS. Therefore, 
the mucosal inflammation resulting from an acute 
infection can lead to a dysfunction of intestinal 
motility and 5-HT could play a pivotal role as its 
release increases motility and secretion, features 
which may explain diarrheal symptoms frequent in 
PI-IBS patients[29]. With an experimental model of 
primary infection with Trichinella spiralis, that causes 
hypercontractility of intestinal muscle persisting 
for over 20 d after the infection was cleared, it was 
shown that chronic immune response may extend 
to smooth muscle layers[30]. In this model, the 
levels of Th2 cytokines (interleukins 4, 5, and 13) 
resulted increased during the acute infection but 
not thereafter, whereas cyclooxygenase-2 (COX-2) 
and relative enzymatic activity localized to muscle 
remained significantly increased. These effects did 
not occur in athymic mice, suggesting a crucial role 
of T cells in the impairment of intestinal muscle 
function in post-infective disorders[30]. The role of 
COX-2 in muscle impairment during inflammation has 
been reported both in animal and humans. During 
severe mucosal inflammatory conditions, it has been 
shown in colonic muscle cells an altered expression of 
contractile key-signaling molecules and an increase 
in nuclear factor NF-kB DNA binding, which is low 
or absent in normal colonic muscle cells[31-33]. In 
human colonic smooth muscle, NF-kB activation leads 
to inflammatory gene expression of COX-2 and to 
production of prostaglandin E, both widely considered 
responsible for muscle cell impairment[34-37].

9872 December 7, 2016|Volume 22|Issue 45|WJG|www.wjgnet.com

Guarino MPL et al . Microbiota and intestinal motility



Mediators released by the colonic mucosa of IBS 
patients are able to activate aberrant responses in the 
enteric nervous system[38,39] and to impair contractility 
of human colonic smooth muscle likely through 
a receptor-dependent mechanism[40]. Histamine 
and proteases, two soluble inflammatory products 
obtained from IBS biopsy supernatants, are able 
to excite visceral afferents neurons and to cause 
hyperalgesia and allodynia when introduced into the 
colon of mice[41,42]. Beside increased visceral sensory 
activation, the soluble products found in supernatants 
derived from the colon of IBS patients have been 
shown to evoke excitatory cholinergic longitudinal 
muscle contractions in the guinea pig ileum[43]. This 
effect correlates with the number of mast cells and the 
activation of the nerve fibers appears to be mediated 
by the activation of different receptors, including 
transient receptor potential vanilloid subfamily member 
1 (TRPV1), purinergic and prostanoids receptors[43].

Many studies have been conducted in attempt to 
identify a specific pattern of intestinal faecal microbiota 

in IBS patients and, although heterogeneity of IBS 
patients, qualitative and quantitative alterations in 
intestinal microflora have been found. Differently from 
traditional microbial culture-based techniques, studies 
using DNA-based techniques showed that specific fecal 
and mucosal microbiota composition are associated 
with different subgroups of IBS patients, even if 
these investigations have produced non univocal 
results. Some studies reported increased abundance 
of Proteobacteria and Firmicutes and reduction in 
Actinobacteria and Bacteroidetes in patients with 
IBS[11,44] while others reported a decreased amount of 
Lactobacilli and Bifidobacteria[45]. A very recent meta-
analysis demonstrated that composition of IBS patients 
microbiota vary across geographical regions. The study 
reported a decreased numbers of Bifidobacteria and 
Lactobacillus and increased numbers of Escherichia coli 
and Enterobacterium in Chinese IBS patients with no 
significant differences in the abundance of Bacteroides 
and Enterococcus. On the other hand, a decreased 
numbers of Bifidobacteria and increased numbers of 
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Figure 1  Dysbiosis and intestinal motility disorders. One hypothesis regarding the pathogenesis of functional intestinal disorders suggests that dysbiosis 
increases paracellular permeability leading to translocation of luminal contents with activation of immunocytes, cytokines and inflammatory mediators release. The 
activation of this state of inflammation and the presence of bacterial components, such as LPS, lead to nociceptive hypersensitivity, thus explaining the pain, and to 
enteric nervous system (ENS) or muscle impairment, thus explaining the intestinal motor disorders. LPS: Lipopolysaccharide.
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Deconjugated bile salts, another bacterial meta
bolite[57], have also been reported to affect gastro
intestinal motility through activation of transmembrane 
G-protein coupled receptor (TGR5)[58]. In animals, 
TGR5 have been detected in inhibitory intestinal motor 
neurons and on gallbladder smooth muscle cells[59]. 
The direct activation of TGR5 causes relaxation of 
the smooth muscle cells and inhibition of gallbladder 
contractility resulting in gallbladder filling. In humans, 
treating normal gallbladder muscle cells with a hydro
phobic bile acid, the tauro-chenodeoxycholic acid, 
results in impairment of contraction to cholecystokinin 
due to a significant reduction in receptor binding and 
an increase in inflammatory mediators and oxidative 
stress[60,61]. These latter abnormalities, observed also 
in gallstone patients, are prevented by treatment with 
the hydrophilic ursodeoxycholic acid[61,62].

Among microbiota compounds that might influence 
GI motility, there is tryptamine, a secondary metabolite 
resulting from the transformation of the aromatic 
amino acid tryptophan, that mimics the serotonin 
stimulatory effects on motility in ex vivo preparations 
of guinea pig ileum[63]. It is of note that most genes 
encoding amino-acid-metabolizing enzymes involved 
in the synthesis of neurotransmitters (catecholamines, 
serotonin/melatonin, acetylcholine) are present in 
the microbiota genome[64]. Commensal bacteria have 
also been shown to be a significant source of nitric 
oxide (NO), a key molecule in the control of gut motor 
functions[65].

Finally, fermentation by the anaerobic flora of 
the undigested polysaccharide fraction of certain 
carbohydrates generates gases, mostly hydrogen 
(H2) and methane (CH4). Even if clinical studies are 
still controversial, experimental evidence has been 
provided that methane is not an inert intestinal 
gas since it can affect the intestinal neuromuscular 
function[66]. In animal models, it has been shown 
that intestinal methane infusion slowed down small 
intestinal transit time and augmented ileal circular 
muscle contractile activity[66,67]. In turn, in an ex vivo 
experiment on guinea pig gut, H2 by itself has been 
reported to significantly shorten colonic transit times, 
this effect being restored by methane[68]. Finally, the 
resident sulfate-reducing bacteria produce hydrogen 
sulfide (H2S) that inhibits intestinal contractile activity 
acting on interstitial cells of Cajal and enteric extrinsic 
neurons[66]. The effects of fermentation products on GI 
motility are summarized in table 1.

Bacterial molecular components
One of the main mechanisms of bacterial recognition 
are toll-like receptors (TLRs) a family of pattern 
recognition receptors that are emerging as potential 
mediators between microbiota and the enteric 
neuromuscular apparatus. TLR-dependent signaling 
regulates structural integrity in both the myenteric and 
submucosal plexus[69,70]. The mRNA encoding for TLRs 

Bacteroides were found in IBS patients from other 
regions of the world[46]. The strict relationship between 
dysbiosis and GI motility in IBS need to be further 
elucidated as one of the major challenges in IBS is the 
absence of an animal model that fully represent this 
condition. 

DIRECT EFFECTS
New physiopathologic and therapeutic scenarios 
have arisen by the recent evidence highlighting that 
microbiota metabolic products or bacterial molecular 
components can directly affect enteric nerves and 
smooth muscle cells functions.

Fermentation products
The microbiota is a formidable metabolic “organ”, not 
only able to capture calories from food but also to 
elaborate a large amount of compounds such as short-
chain fatty acids (SCFAs), neurotransmitters homologs 
and gases that can act directly with the enteric 
neuromuscular apparatus[47]. 

SCFAs such as acetate, propionate, and butyrate are 
produced by bacterial fermentation of dietary fibers. 
SCFAs exert multiple beneficial effects and act both as 
signal transduction molecules, via G-protein coupled 
free fatty acid receptors (FFAR2, FFAR3, OLFR78, 
GPR109A) and regulators of gene expression[48]. 
Besides improving the intestinal environment, SCFAs 
directly affect various host peripheral tissues, generate 
potent motor responses and have a considerable 
role in regulating the propulsive activity of the gut, 
both in animal models and in humans. SCFAs, when 
administered into the human terminal ileum, have 
been shown to increase parietal tone and stimulate 
ileal propulsive contractions[49,50]. This compounds are 
suggested to act via either extrinsic or intrinsic afferent 
neurons which can ultimately stimulate myenteric 
cholinergic neurons[51]. Most of these responses are 
not observed in mucosal free preparations, suggesting 
that SCFAs receptors are located on mucosal EC 
cells. In particular, propionate acts on receptors in 
the mucosa causing the release of 5-HT from EC 
cells that activates, through 5-HT4 receptors on 
the endings of intrinsic primary afferent neurons, 
the enteric peristaltic reflex pathways[51]. In the rat 
distal colon, propionate causes also tonic contraction 
via prostaglandin release[52]. Similarly, butyrate and 
acetate may also affect GI motility through several 
mechanisms including direct effects on smooth muscle 
and myenteric neurons[53] and production of mucosal 
5-HT[54]. SCFAs receptors have been also localized 
in mucosal EC cells containing peptide YY that might 
represent another important messenger in transducing 
this contractile signal[55]. However, the effect of these 
metabolites still remain controversial; a recent human 
study found no significant differences in global motility 
index after intracolonic infusion of SCFAs[56].

Guarino MPL et al . Microbiota and intestinal motility



9875 December 7, 2016|Volume 22|Issue 45|WJG|www.wjgnet.com

have been detected on neurons[71], glial[72] and smooth 
muscle cells[73]. TLR-2 activation on smooth muscle 
leads to the production of neurotrophins that enhance 
the structural and functional integrity of the enteric 
nervous system[74]. 

In acute inflammatory conditions an excessive 
increase of mucosal permeability leads to luminal 
bacteria/endotoxins translocation[75]. Bacteria or 
bacterial products can migrate from the intestinal 
lumen to mesenteric lymph nodes, or the circulation, 
due to the disruption of the normal host/flora 
equilibrium as reported in cirrhosis[76], inflammatory 
bowel diseases[77] and recently in diarrhea-predominant 
IBS patients[78].

Most evidence on the effects of bacterial com
ponents on the neuromuscular apparatus derives 
from studies on lipopolysaccharide (LPS), the major 
component of the outer membrane of Gram-negative 
bacteria. Although the exact mechanisms whereby 
LPS is able to impair muscle contractility are still to be 
established, various targets have been demonstrated. 
LPS can directly activate muscular TLR4 inducing a 
time- and concentration-dependent impairment of 
contractility associated to cytoskeleton alterations, 
together with an intracellular oxidative imbalance 
as shown on human colonic smooth muscle cells[79] 

(Figure 2). Many of these effects persisted even after 
LPS withdrawn suggesting that motility dysfunction 
might play a pivotal role both during an acute infective 
process and after its resolution. In an experimental 
model that enables to stimulate human intestinal 
mucosa in a polarized fashion with LPS[37], it has 
been shown that LPS affects enteric contractility 
both through translocation from the mucosa and 
submucosa, with subsequent activation of TLR 
expressed in muscle, and through mucosal production 
of oxygen free radicals. LPS effects on human smooth 
muscle were reversed by the H2O2 scavenger catalase, 
by NFkB transcription inhibitors and by indomethacin, 
which blocks activation of COX2[37]. Besides, LPS 
can directly activate macrophages embedded within 

the intestinal muscularis externa that produce in
flammatory mediators that indirectly alter smooth 
muscle contractility[80,81].

Interestingly, the expression of multiple TLRs 
receptors subtypes differentially activated by bacterial 
antigens on the enteric neuromuscular apparatus 
seems to allow a discrimination between pathogens 
and probiotics, as reported for both human enteric 
glial[72], smooth muscle cells[73,82]. The crosstalk 
between TLRs subtypes is emerging as an important 
regulatory defense mechanism also in neuromuscular 
apparatus[83]. On human colonic smooth muscle cells, 
it has been observed that the activation of TLR2, 
whose ligands are the components of the outer 
membrane of Gram-positive bacteria, prevents LPS-
induced muscular alterations. By interacting with this 
receptor, Lactobacillus rhamnosus GG (LGG) is able to 
reduce LPS-induced NFkB activation and inflammatory 
IL6 secretion cytokine and to restore the levels of 
secretion of anti-inflammatory cytokine IL10[82]. These 
in vitro studies support the recent evidence that 
indicates the neuromuscular apparatus as possible 
target for probiotics[13-15]. Escherichia coli strain Nissle 
1917 specifically modulates contractility of human 
colonic muscle strips[84], Lactobacillus species regulate 
jejunal motility[14], colonic neuron excitability[15] and 
attenuate post-infective muscle hypercontractility[85]. 
Bifidobacterium and Lactobacillus also alleviate visceral 
hypersensitivity and recover intestinal barrier function 
as well as inflammation[86]. Also in humans recent 
evidence further suggests that probiotics might be 
effective in neuro-motor disorders[87,88].

CONCLUSION
In summary, the current working hypothesis is that 
dysbiosis-driven mucosal alterations induce the 
production of several inflammatory/immune mediators 
which affect gut neuro-muscular functions suggesting 
a potential for disturbances in the microbiota to 
elicit directly intestinal dismotility or, if sustained, 

Table 1  Direct effect of bacterial fermentation products on gastrointestinal motility

Fermentation 
product

Effect on GI motility Mechanism Ref.

Short-chain fatty 
acids 

Increase of ileal tone and propulsive contractions Activation of G-protein coupled free fatty acid receptors 
(FFAR2, FFAR3, OLFR78, GPR109A)

[48-55]

Smooth muscle and myenteric neurons activation Release of 5-HT from EC cells
Release of prostaglandins

Deconjugated bile 
salts

Relaxation of gallbladder smooth muscle cells Activation of transmembrane G-protein coupled receptor [58-61]
Inhibition of gallbladder contractility Reduction in cholecystokinin receptor binding

Increase of inflammatory mediators and oxidative stress
Tryptamine Stimulation of ileum motility Synthesis of neurotransmitters [63-65]
Gases Decrease of small intestinal transit time Methane (CH4) production [66,67]

Augmented ileal circular muscle contractile activity
Shortening of colonic transit times Hydrogen (H2) production [68]

Inhibition of intestinal contractile activity Hydrogen sulfide (H2S) production [66]

GI: Gastrointestinal.
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to lead to chronic sensory-motor dysfunction. The 
understanding in these fields would hopefully open 
new therapeutic scenarios in GI disease with under
lying neuromuscular disorders as manipulation of 
gut microbiota composition could also correct the 
mechanisms promoting development and maintenance 
of symptoms. 
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